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Supplementary Figure 1: Original and modified TCO model. (a) 3D (left) and top (right) views of

the original TCO unit cell are shown. (b) We modify the geometry of the TCO by separating a single

vertex (e.g., B in (a)) into two vertices (e.g., Ba and Bb in (b)). The differences between the original

TCO model and modified TCO model are characterized by θcal and R′.
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Supplementary Figure 2: Compression test setup and experimental/analytical data. (a) The photo-

graph of the compression test setup is shown. The fabricated prototype of the TCO-based truss structure

is placed horizontally. The right end of the prototype is fixed, while its left end is attached to a stainless

steel shaft via a ball bearing. This allows the left plate to rotate freely with minimal friction. Axial force

is measured by a force sensor attached the shaft. (b) Dashed curves show measurements of the axial force

(normalized by kh0) as a function of axial compression (normalized by h0) for three different prototypes,

which represent monostable, bistable, and zero-stiffness configurations. Shaded areas represent standard

deviations of the measured data. Solid curves show predictions from the potential energy analysis.
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Supplementary Figure 3: Force-displacement curves for the comparison of stiffness. We zoom up

the force-displacement measurements from the three prototypes near u/h0 = 0. The solid lines are based

on the linear approximation of the experimental data in the range between u/h0 = 0.01 and 0.03. It is

evident that the zero-stiffness case exhibits a significantly smaller slope (i.e., stiffness) compared to the

other cases.

3



a

b

c

Linear bearingsStainless steel shafts

Supplementary Figure 4: Bifurcation test setup and experimental/analytical data. (a) The pho-

tograph shows the compression test setup with constraints on the rotational motion of the left plate of

the prototype. Two stainless steel shafts and linear bearings are used to allow the translational motion

without triggering the rotational motion. (b) The test setup without constraints on the rotational motion

is shown. (c) Force-displacement measurements for the two cases show a bifurcation behavior. Here,

dashed and solid curves indicate the measured experimental results and the predictions from the energy

analysis, respectively. The arrows 4 and 5 indicate the unstable and stable cases respectively.
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Supplementary Figure 5: Tunable behavior of the TCO. Tunable behavior of the TCO-based unit cell

is examined numerically in various combinations of initial configurations (i.e., h0 and θ0). We use θcal =

9.7◦ for all calculations. Red and green regions indicate monostable and bistable behaviors respectively.

If θ0 = 90◦ (blue solid line), the unit cell shows the zero-stiffness mode. The black solid line (θ0 = 0◦)

indicates that the system shows the bifurcation behavior in the investigation range of the height ratio.
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Supplementary Figure 6: TCO-based mechanical memory storage. (a) Two monostable TCO-based

unit cells (h0 = 90 mm, θ0 = ±46◦) are connected horizontally as shown in the schematic illustration.

The upper panel illustrates the initial configurations under no external force and torque. We apply pre-

compression to this system (denoted by uC), and we fix the distance between leftmost and rightmost

plates as shown in the lower panel. The rotation of the leftmost surface of the system is ϕ1 measured

with respect to its initial configuration. (b) Photographs show the preparation of the system with pre-

compression by tightening a set screw of the bearing which is attached to the cross-section of the TCO-

based unit cell.
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Supplementary Figure 7: Single bit operation for memory storage. (a) Photograph shows the test

setup for measuring the relationship between torque and ϕ1. We obtain the torque information by using

the force sensor attached to the crank system, which is operated by the linear stage. (b) The crank system

is used to convert the translational motion (δ) into the rotational motion. We measure/control δ to impose

an accurate amount of the rotation of the system. (c) Measurements of the torque as a function of the

rotational angle (red curve) show a good agreement with the prediction from the energy analysis (black

curve). The insets show the graphical illustrations of the ‘0’ and ‘1’ states.
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Supplementary Figure 8: Readout of the bit information for the single-bit and the two-bit systems.

(a) We consider the single-bit system with (h0, θ0) = (90 mm,±46◦), and we apply angular perturbations

(∆ϕ1) around each local minimum energy state (ϕ1 = −29◦ for ‘0’ and ϕ1 = +29◦ for ‘1’). The blue

and red curves show torque change around ‘0’ and ‘1’ respectively. (b) The same perturbation of the

rational angle is applied to the two-bit system with (h0, θ0) = (90 mm, [+46◦, −46◦, +46◦, −46◦]), and

we obtain torque change. The blue, green, black, and red curves indicate torque change around ‘00’,

‘10’, ‘01’, and ‘11’ respectively.
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Supplementary Figure 9: Configuration of TCO cells for two-bit memory operation. (a) Four TCO-

based unit cells are used to form a two-bit memory as shown in the schematic illustration. To achieve four

different states, we apply compression to the first and second bits, which is denoted by uC1 and uC2. (b)

Photograph shows the test setup for the two-bit memory operation. ϕ1 is controlled by the motor-driven

linear stage, and ϕ3 is measured by the laser doppler vibrometer. (c–d) Pulse input is designed based on

a trapezoid-shaped waveform, whose amplitude changes between maximum and minimum values of ϕ.

The shape of the pulse input is determined depending on the initial state and duration.
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Supplementary Figure 10: Operation of the two-bit memory. (a) The normalized energy of the two-

bit system as a function of ϕ1 and ϕ3 is shown. The blue and green curves are obtained from ∂U/∂ϕ3 =

0, and blue and green lines indicate stable and unstable paths, respectively. The experimental result for

the trajectory of the two-bit memory operation is shown in a red curve. Red circles are the states where

the system takes local minimum energy. The experiment starts from (i) and changes the state to (ii) and

eventually to (iii). (b) Photographs of the prototype show the transition from ‘00’ to ‘10’, then to ‘11’.

(c) Trajectory for the case of ‘01’ → ‘10’ is shown in a red curve. (d) Photographs of the prototype

shows the transition from ‘01’ to ‘11’, then to ‘10’.
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Supplementary Figure 11: Conceptual illustration of extended TCO-based mechanical memory in

horizontal connections. (a) The top disks of two neighboring bits are connected by a linear spring. If

we apply clock-wise torque to the left bit, the right bit transforms from ‘1’→ ‘0’. (b) If we connect two

adjacent bits in a diagonal direction and apply the same torque to the left bit, the right bit transforms

from ‘0’→ ‘1’.
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Supplementary Figure 12: Conceptual illustration of TCO-based mechanical computing.

Schematic illustration of calculation flow is shown.



Supplementary Note 1: Modeling of the TCO-based truss structure

In this study, we approximate the TCO cell into a truss-like structure composed of inter-

facial polygons and axial members (Supplementary Fig. 1a). This is to eliminate the effect of

surface warping in the TCO cells, while preserving their key characteristics, such as the coupled

dynamics of the axial and torsional motions (Supplementary Movie 1). We model the folding

behavior of the TCO-based truss structure using the principle of minimum potential energy [1].

Here we briefly describe this modeling process. First, we derive the expressions of the length

change of crease lines a and b, as the TCO cell experiences axial and angular deformations. Let

h be the height of the unit cell and R be a radius of the circle circumscribing the cross-section.

Then, we obtain the distance between vertex Aa (Ab) and D as follows:

La = 2R sin

(
θ

2
− π

2n

)
Lb = 2R sin

(
θ

2
+

π

2n

) (S1)

where θ is a relative angle of rotation, which is defined as an angle between OB and the per-

pendicular bisector of AaAb (see Supplementary Fig. 1a).

Also, from the geometry of the TCO, we obtain

L2
a + h2 = a2

L2
b + h2 = b2,

(S2)

Then, substituting Eq. (S1) into Eq. (S2), we can calculate the length of each crease lines as

follows:

a =

√
(h0 − u)2 + 4R2sin2

(
ϕ

2
+
θ0
2
− π

2n

)
,

b =

√
(h0 − u)2 + 4R2sin2

(
ϕ

2
+
θ0
2

+
π

2n

)
.

(S3)

Here h0 and θ0 are the initial height and relative angle, respectively, and u and ϕ are the axial

and rotational displacements, which are defined as u = −(h − h0) and ϕ = θ − θ0. It is noted

that the maximum limit of the rotational angle (ϕmax) is determined by

ϕmax =
(
π − π

n

)
− θ0. (S4)
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If ϕ = ϕmax, the crease lines intersect each other, limiting the maximum axial and angular

deformation of the TCO cell.

Based on Eq. (S3), the total elastic energy is calculated as

U =
1

2
nk(a− a0)2 +

1

2
nk(b− b0)2, (S5)

where a0 and b0 are initial length of a and b, and k is a spring constant of the truss members.

Here we assume that all truss members exhibit identical axial stiffness. Also, the work done on

this system is

W = Fu+ Tϕ, (S6)

where F and T are the external force and torque respectively. Then, by using the expressions

of the elastic energy and work in Eq. (S5) and Eq. (S6), the total potential energy (Π) can be

expressed as [1]:

Π(u, ϕ) = U −W =
1

2
nk(a− a0)2 +

1

2
nk(b− b0)2 − Fu− Tϕ. (S7)

We apply the principle of minimum total potential energy (i.e., δΠ = 0) [1] to Eq. (S7) as

follows:

∂Π/∂u = 0 and ∂Π/∂ϕ = 0. (S8)

As a result, we obtain expressions of F and T in terms of u and ϕ as follows:

F (u, ϕ) = nk (u− h0)
(

2− a0
a
− b0

b

)
,

T (u, ϕ) = nkR2

{(
1− a0

a

)
sin
(
ϕ+ θ0 −

π

n

)
+

(
1− b0

b

)
sin
(
ϕ+ θ0 +

π

n

)}
.

(S9)

Supplementary Note 2: Modified TCO model

In the original TCO model, axial truss members a and b intersect at vertices that are posi-

tioned on the surface of interfacial polygons (see Supplementary Fig. 1a). Such intersecting

joints are not easy to fabricate, when we build a prototype with mechanical joints. Thus, to

secure enough space for mechanical joints that connect axial members to the interfacial poly-

gons, we modify the original TCO model. Specifically, we separate a single vertex (e.g., B in
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Supplementary Fig. 1a) into a pair of vertices (e.g., Ba and Bb in Supplementary Fig. 1b). The

difference between the original model and the modified model can be characterized by a shifted

angle of the vertices (θcal in the 3D view of Supplementary Fig. 1b) and a modified radius of

these vertices (R′ in the top view of Supplementary Fig. 1b).

We can reflect these modifications in Eq. (S3) as follows:

a =

√
(h0 − u)2 + 4R′2sin2

(
ϕ

2
+
θ0
2
− π

2n
+ θcal

)

b =

√
(h0 − u)2 + 4R′2sin2

(
ϕ

2
+
θ0
2

+
π

2n
− θcal

) (S10)

where

R′ =
R cos

(
π
n

)
cos
(
π
n
− θcal

) . (S11)

Then, Eq. (S9) also needs to be modified accordingly as follows:

F (u, ϕ) = nk (u− h0)
(

2− a0
a
− b0

b

)
T (u, ϕ) = nk(R′)

2

{(
1− a0

a

)
sin
(
ϕ+ θ0 −

π

n
+ 2θcal

)
+

(
1− b0

b

)
sin
(
ϕ+ θ0 +

π

n
− 2θcal

)}
.

(S12)

Note that a and b in Eq. (S12) are based on the expressions in Eq. (S10), which include the

modification parameters θcal and R′. In this manuscript, the computation results of the TCO’s

folding behavior are based on this modified model.

Supplementary Note 3: Compression test setup and measurement data

In this study, we conduct a series of compression tests on the fabricated TCO prototypes.

Supplementary Fig. 2a shows a unit-cell prototype placed horizontally on the load frame (see

also Supplementary Movie 2). In this setup, the right end of the prototype is fixed in both

translational and rotational directions. The polygon on the left side is supported by a stainless

steel shaft. We use a ball bearing to grab the shaft at the tip, so that the left polygon can rotate

freely with minimal friction. The other end of the shaft is connected to the motor-driven linear
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stage (BiSlider, Velmex). We control the axial compression of the prototype by translating the

shaft along the horizontal direction (see the arrow in Supplementary Fig. 2a). Note that by using

this shaft system, we apply a desired compression to the system, while allowing free rotational

motions and restricting any bending motions of the prototype. The axial force transmitted

through the shaft is measured by a force sensor located between the right tip of the shaft and

the linear stage (LUX-B-50N-ID, Kyowa).

By using the compression test setup, we obtain force-displacement data. Supplementary

Fig. 2b shows the measured force-displacement curves (dashed curves) for (h0, θ0) = (90 mm,

46◦), (150 mm, 40◦), and (140 mm, 92◦). The corresponding analytical results are also shown

in solid curves. As noted in the main text, these curves show remarkably different behaviors,

depending on the choice of the TCO’s geometry in terms of h0 and θ0. The monostable model

(h0 = 90 mm, θ0 = 46◦) shows a maximum peak around u/kh0 of 0.16, and after this maxi-

mum peak, the slope of the force-displacement curve becomes negative, i.e., negative stiffness

(red curves in Supplementary Fig. 2b). The bistable model (h0 = 150 mm, θ0 = 40◦) in-

dicates the transition from compressive force to tensile force during folding (green curves in

Supplementary Fig. 2b).

Lastly, for the zero-stiffness model, the measurement indicates that the slope of the force-

displacement is nearly zero at the initial stage (blue curves in Supplementary Fig. 2b). This

zero-stiffness effect is more evident if we zoom up the region near u/h0 = 0 (Supplementary

Fig. 3). By applying the linear approximation to the measurements between u/h0 = 0.01 and

0.03, we can compare the slope of the force-displacement curves among the different prototypes

(see the solid lines in Supplementary Fig. 3 for the linearization). The reason that we apply the

linearization not from u/h0 = 0 is due to the static friction in the mechanical joints (see the

initial force required to overcome this friction in all curves in Supplementary Fig. 3). The

slope of these non-dimensionalized graphs are 0.326, 0.479, and 0.000861 for monostable,

bistable, and zero-stiffness cases, respectively. As noted in the main manuscript, the slope of
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this zero-stiffness case corresponds to mere 0.26% and 0.18% compared to the monostable and

bistable cases. This successfully verifies the feasibility of zero-stiffness structure using this

TCO architecture, making it potentially applicable for impact mitigation purposes.

Overall, the force-displacement curves obtained from the compression tests are in qualitative

agreement with the analytical predictions (Supplementary Fig. 2b). The discrepancy between

the experimental and analytical data may be attributed to the friction in the mechanical joints of

the prototypes. In fact, the application of grease to these joints significantly improved the quality

of the experimental data, particularly in the earlier part of the compression tests. In the main

manuscript, we numerically integrated these force-displacement curves and presented the total

energy profiles (Fig. 2 in the main text). This was to highlight tailorable monostable/bistable

features (e.g., double-well potential) in the TCO systems.

Supplementary Note 4: Zero-stiffness mode

Here we mathematically derive how to meet the zero-stiffness condition using the truss-based

TCO architecture. We first linearize Eq. (S3) around the undeformed, initial state (u = ϕ = 0):

a ≈ a0 + αuu+ αϕϕ

b ≈ b0 + βuu+ βϕϕ,

(S13)

where a0 and b0 are initial length of a and b respectively, and

αu = −h0
a0

αϕ =
R2 sin (θ0 − π/n )

a0

βu = −h0
b0

βϕ =
R2 sin (θ0 + π/n )

b0
.

(S14)

After the linearization, Eq. (S13) can be expressed in a matrix form as

e ≈ Aξ (S15)
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where

A =

αu αϕ

βu βϕ

 ,

e =

a− a0
b− b0

 ,

ξ =

u
ϕ

 .
Here, e represents the length change of the crease lines, a and b. To fulfill the zero-stiffness

condition, the length change of the crease lines (i.e., e) need to be infinitesimal given external

excitations (i.e., ξ). Mathematically, this implies detA = αuβϕ − αϕβu = 0. By using the

definitions of the coefficients in Eq. (S14), we obtain

sin
(π
n

)
cos (θ0) = 0 (S16)

This means, if the initial angle (θ0) is π/2, detA becomes zero, which leads to the zero-stiffness

mode. Note that this condition can be also met by having n → ∞. Thus, a TCO cell with a

large number of truss members that connect the top and bottom polygons (i.e., polygons with

numerous vertices) will also exhibit a small stiffness under compression. It should be noted

that Eq. (S16) contains only θ0 and n. Therefore, the zero-stiffness mode is not affected by the

spring constant of the truss members (k) or the initial height of the TCO cell (h0).

Supplementary Note 5: Bifurcation test setup and measurement data

In this study, we also conduct the compression test on the bifurcation model (h0 = 119 mm,

θ0 = 0◦). As shown in Fig. 2d in the main text, this bifurcation model has two distinctive modes

of folding: an unstable mode that undergoes only axial motions without rotation, and a stable

mode that develops combined axial and rotational motions. To verify this bifurcation behavior,

we consider two experimental setups. The first one is with the constraints on the rotational
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motion of the prototype (Supplementary Fig. 4a), and the other one is without any constraints

(Supplementary Fig. 4b). For application of the constraints on the rotational motion of the

prototype, we use a pair of stainless steel shafts and linear bearings, which allow the prototype

to translate in the axial direction without any rotational motions (Supplementary Fig. 4a). The

setup without any constraints is identical to the test configuration described in Supplementary

Note 3. See Supplementary Movie 4 for the comparison of these two operations.

Supplementary Fig. 4c shows the experimental results (dashed curves) and analytical pre-

dictions (solid curves). In the unstable case (red curves indicated by arrow 4), the axial force

increases monotonically from u/h0 = 0 to 0.1. As shown in the inset, the TCO cell compresses

without twisting motions. This unstable mode is possible only if there exist constraints that

prevent any onset of rotational motions. On the other hand, if the constrains are removed,

the measurement shows a kink point where the slope of the force-displacement curve changes

to negative (blue curves indicated by arrow 5 in Supplementary Fig. 4c). Note that the TCO

cell experiences a twisting motion in one or the other direction after the bifurcation point, as

illustrated by the inset. We observe noticeable discrepancies between the experimental and an-

alytical results, particularly in terms of the bifurcation point. Again, this is probably due to the

friction existing in the prototypical systems.

Supplementary Note 6: Tunable stability of the TCO-based truss structure

In this study, we observe versatile nature of the TCO-based truss structure as we alter its

geometry. Particularly, the stability of the system can be manipulated by changing its two geo-

metrical parameters: initial twist angle (θ0) and height (h0). To examine such tunable stability

of the TCO-based unit cell, we numerically analyze its stability for various initial configura-

tions. The process is as follows. We first calculate the elastic energy (U ) as a function of axial

compression (u) by following the trajectory of the minimum energy valley (e.g., see Fig. 2

in the main manuscript). Then, the slope of this energy curve is numerically obtained by using
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(Ui+1 − Ui)/(ui+1 − ui), where i represents a step for numerical calculations. If the TCO-based

structure exhibits the bistable behavior, there exists a transition from a positive to negative slope.

Thus, we can judge whether the unit cell shows monostable or bistable behavior.

The results are shown in Supplementary Fig. 5. We evidently observe monostable and

bistable regions. We also mark lines that represent zero-stiffness (θ0 = 90◦) and bifurcation

(θ0 = 0◦) modes in the investigation range. Note that the zero-stiffness mode is located at

the boundary between the monostable and bistable regions. In the bistable regions, there exist

two stable states, and these two stable states merge at this boundary as the initial angle (θ0)

increases. The four prototypes that we fabricate are also marked as circles in the figure.

Supplementary Note 7: Mechanical bit operation for memory storage

To verify our concept of a mechanical bit operation based on the double-well potential, we

assemble a pair of monostable TCO cells (R = 90 mm, h0 = 90 mm, θ0 = ±46◦) that are

connected horizontally by sharing the middle surface. As shown in Supplementary Fig. 6a, we

apply pre-compression (uC) and fix the distance between the leftmost and rightmost polygons

of the structure by using a stainless steel shaft and a ball bearing. Similar to the single cell

test described in Supplementary Note 3, this shaft setup allows a free rotation of the leftmost

polygon, while restricting its translational motion as shown in Supplementary Fig. 6b.

For the operation of the single bit, we control the rotation of the leftmost polygon (denoted

by ϕ1) by applying torque to the polygon (Supplementary Fig. 7a). For the accurate control

of the imposed rotational angle, we use a crank system attached to the leftmost polygon of the

prototype (Supplementary Fig. 7b). We measure the exact amount of the translational motion

(δ) by using a non-contact laser Doppler vibrometer (OFV-505, Polytec), and covert the mea-

surement values to the rotational motion (ϕ1). A force sensor (LUX-B-50N-ID, Kyowa) is also

attached at the end of the crank arm to calculate the torque applied.

Supplementary Fig. 7c shows the experimental measurements (red curve) of the torque and
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the rotational angle, in comparison to the analytical results (black curve) predicted by the energy

analysis. We observe that as we rotate the leftmost polygon (i.e., ϕ1 increases), the system

changes its state from ‘0’ (i.e., the initial configuration that the right cell is folded) to ‘1’ (i.e.,

the final configuration that the left cell is folded). This experimental trend agrees well with the

prediction from the energy analysis. See Supplementary Movie 5 for the manual bit operation.

Supplementary Note 8: Readout stored bit information

In this study, we have used a laser vibrometer to determine the bit states by measuring the

rotational angles ϕ1 and ϕ3 individually. However, it would be useful to determine the state

of both bits only by measuring the response of the first bit mechanically. To readout both bits

simultaneously, we propose to apply angular perturbations (ϕ1) to the origami system on its

actuation side (i.e., the left-most cross-section as shown in the insets of Supplementary Fig. 8)

and measure the torque profile. In the case of a single-bit system (Supplementary Fig. 8a), we

consider the initial condition of (h0, θ0) = (90 mm, ±46◦) and the pre-compression of uC = 45

mm (same as the condition described in the main manuscript). In this configuration, there are

two local minimum energy states (ϕ1 = −29◦ for ‘0’ and ϕ1 = +29◦ for ‘1’). Then, we apply

angle perturbation of ∆ϕ1 = ±15◦ and measure the torque profile from the left-most side (i.e.,

the torque profile is measured in the range of ϕ1 =−29◦±15◦ for ‘0’ case, and ϕ1 = +29◦±15◦

for ‘1’). Please note that ∆ϕ1 = ±15◦ is chosen not to overcome the energy barrier of the

single-bit system, so that we avoid the destruction of the bit information in this perturbation

range. Supplementary Fig. 8a shows the numerical results of the torque profiles for the single-

bit case. We obtain two distinctive torque curves, which indicate that the bit information can be

extracted by the application of angular perturbations (∆ϕ1) and the subsequent reading of the

torque profiles.

Similarly, we can extend this readout method to the two-bit case. Here, we numerically

consider the case of (h0, θ0) = (90 mm, [+46◦, −46◦, +46◦, −46◦]) and the pre-compression of
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uC = 50 mm and 47.5 mm for the first and second bit, respectively (again, the condition identical

to that described in the main manuscript). We first apply rotational perturbations of ∆ϕ1 =

±15◦ at four local minimum energy states: (ϕ1, ϕ3) = (−63◦ , −31◦) for ‘00’, (+2◦, −31◦)

for ‘10’, (−2◦, +31◦) for ‘01’, and (+63◦, +31◦) for ‘11’. Supplementary Fig. 8b shows our

calculation results, from which we observe four different curves for each bit state. This again

confirms that we can extract the information about the bit state by applying ∆ϕ1 and measure

the corresponding torque. We want to point out that because ‘01’ and ‘10’ cases show similar

torque curves, the practical challenge would be a precise measurement of the torque under

external influence such as noise and friction. However, we expect that these torque profiles can

be further separated by changing uC values or the initial twist angles (θ0) imposed on both cells.

Also, the dynamic response of the system (e.g., frequency response) can be also measured to

predict the stiffness of the system and thus, to read its memory state.

Supplementary Note 9: Two-bit memory operation

By using a pair of single bits (R = 90 mm, h0 = 90 mm, θ0 = ±46◦), we design a two

bit system (Supplementary Fig. 9a). We apply pre-compressions to the first and second bit,

which are denoted by uC1 and uC2 respectively. Depending on the deformed states of these two

bits, the two-bit system exhibits four different states: ‘00’, ‘01’, ‘10’, and ‘11’, where the first

and second numbers indicate the first bit (the left pair in blue color in Supplementary Fig. 9a)

and second bit (the right pair in red color), respectively. The state of the system is determined

by the overall rotational angles of these two TCO pairs, which are represented by the twisted

angles of the first and third polygons, ϕ1 and ϕ3. In the experiments, we use the crank system

to control ϕ1 via the motor-driven linear stage, and ϕ3 is obtained from the non-contact laser

Doppler vibrometer (OFV-505, Polytec). See Supplementary Fig. 9b for the digital image of

the experimental setup.

For the two-bit memory operation, we use a pulse input based on a trapezoid-shaped wave-
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form to change the amplitude of ϕ1 between maximum and minimum values in a systematic

manner. This technique based on trapezoidal input has been used in [4] for the verification

of the controlled NOT gate, which also employs two bit units. In this study, we use two dif-

ferent waveforms of the trapezoidal pulse as shown in Supplementary Fig. 9c and d. For the

monotonous increase of the input pulse, we use the waveform in Fig. 9c, while for the increasing

– then decreasing – trend of the input pulse, we employ the waveform in Fig. 9d. Note that the

two pulse inputs are taken from the identical trapezoidal waveform, and the shape of the pulse

input is determined by the location of the wave profile selected from the trapezoidal waveform

with a half period (T/2).

Supplementary Fig. 10 shows the experimental and computational results of two-bit opera-

tion along with digital images of experimental tests. In Figs. 10a and c, blue and green curves

indicate stable and unstable paths of the two-bit system, respectively, based on the calculation

of ∂U/∂ϕ3 = 0. The stability of the curve has been determined by the criterion whether the en-

ergy shows valley states (stable) or hilltop states (unstable). The red curves have been obtained

from the experiments. The initial state is ‘00’, in which ϕ1 = −62◦, ϕ3 = −31◦ (see the state

(i) in Supplementary Fig. 10 a and b). We apply to the left-most polygon the gradual increase of

ϕ1 in the shape of the trapezoidal pulse input (Supplementary Fig. 9c). Once the system departs

from ‘00’, it quickly jumps to ‘10’ to avoid the unstable branch (see the change of states from

(i) to (ii) in Supplementary Fig. 10a and b). After that, it continues following the stable branch

to reach ‘11’ state as marked by state (iii) in Supplementary Fig. 10 a and b. See Supplementary

Movie 6 for this sequential operation.

We also demonstrate ‘01’→ ‘10’. Since the initial state is ‘00’ from the previous test, we

apply the pulse input (Supplementary Fig. 9c) to ϕ3 to obtain ‘01’. Thus, we reach the state

(i) in Supplementary Fig. 10 c and d, in which ϕ1 = 0◦, ϕ3 = 28◦. Now we apply another

pulse input (Supplementary Fig 9d) to ϕ1. It is noted that the initial state of the first bit shows

ϕ1 = 0◦, and therefore, the pulse input starts from 0◦ and it is applied for T/2. Also, unlike
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the monotonously increasing pulse input needed for the previous operation of ‘00’ → ‘11’,

the operation of ‘01’ → ‘10’ requires the increasing – then decreasing – trend of the pulse

input. This is due to the intermediary step of ‘11’, which is positioned at the high value of ϕ1.

Therefore, for this operation, we use the trapezoidal waveform as shown in Supplementary

Fig. 9d. During the application of the pulse input, the state of the system changes from ‘01’

(state (i) in Supplementary Fig. 10 c and d) to ‘11’ (state (ii) in Supplementary Fig. 10 c and d).

Then it becomes ‘10’ (state (iii) in Supplementary Fig. 10 c and d).

Supplementary Note 10: Extension of TCO-based mechanical memory

To extend the TCO-based mechanical memory concept to multi-dimensions, we consider two

different types of multiple bit systems. One is a two dimensional array of TCO-based memory

units as shown in Supplementary Fig. 11. Two adjacent memory units are connected by a

linear spring. In this horizontal connection between two neighboring bits, planar arrangements

of origami can enable tight network of unit cells through rotational motions. Supplementary

Fig. 11a shows that the application of clock-wise torque to the left bit changes the state of

the right bit from ‘1’ to ‘0’. On the other hand, if the two bits are connected in a diagonal

direction and the same torque is applied to the left bit, the right bit transforms from ‘0’ to ‘1’.

Such origami cells arranged in a two-dimensional horizontal plane can interact with each other

through rotational interactions. Note in passing here that a similar concept of plannar torsional

network has been proposed for a wave dynamics application [2].

The other extended system is a multi-bit architecture based on controllable connections

among cells (Supplementary Fig. 12). That is, if we can have control over the connection of each

cell (e.g., mechanical clutch that engages and disengages the mechanical connections among

origami cells in a controllable way), we can possibly build a multi-bit system in combination

of one- and two-bit memory cells. In Fig. 12, we see an example of converting <000000> to
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<101001> by arranging single- and double-bit operations in sequences, which are enabled by

turning coupling on and off controllably. The concept of combining single and double bits for

multi-bit operations has also been explored in [3].

In case we do not have a control over the inter-cell connections, it might be still possible

to achieve multi-bit operations by employing origami cells with various potential levels (in a

configuration analogous to the old rotary dial key of a safe). For example, if we consider a

TCO memory system composed of graded n bits which are sorted according to energy barriers,

we can operate bits one by one from the end of the system to the other end. This basic oper-

ation would require only direct coupling between neighboring cells, not any remote coupling

mechanisms. By using this approach, we will be able to build a multi-bit system in a serial

way without resorting to the inter-connection mechanism among neighboring cells. However,

we expect that there would exist a practical limit in terms of the number of cells connected,

because of the effect of friction.

While the aforementioned extensions of the origami cells in planar and serial fashions are

conceptually feasible, we expect that the practical implementation of such architectures will

be challenging, necessitating state-of-the-art design and fabrication techniques. For example,

the multi-bit memory system illustrated in Supplementary Fig. 12 would require simple – yet

robust and controllable – mechanical engagement mechanisms. Similarly, the planar system in

Supplementary Fig. 11 will necessitate well-designed linkage structures for accurate torsional

interactions among neighboring cells. If realized, however, the multi-dimensional architectures

will be highly useful for various functionalities, e.g., mechanical memory storage and comput-

ing processes.
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