
Supporting Information: 1 

Non-Water-Suppressed 1H MR Spectroscopy with Orientational 2 

Prior Knowledge for Robust Separation of Intra- and 3 

Extramyocellular Lipid Signals in Human Myocardium 4 

A Fillmer, A Hock, D Cameron, and A Henning 5 

1. Bulk susceptibility effects cause a frequency shift of the EMCL-signal in 6 

muscle tissue 7 

 8 

Figure S1.1: Representative 1H MR spectrum from the vastus lateralis muscle. The voxel position for this measurement 
is indicated in the inlay on the right. The intramyocellular lipid (IMCL) signal stems from lipids within muscle cells, which 
appear as dark regions as indicated in the inlay image. The extramyocellular lipid (EMCL) signal stems from lipids 
outside of muscle cells. Larger areas of lipids outside of the muscle cells, like subcutaneous fat or fasciae between 
different muscles, appear as bright regions, as indicated in the inlay. However, EMCL occurs also in small quantities 
between muscle cells. These EMCL compartments cannot be visualized by MR imaging. The splitting of the IMCL and 
EMCL resonances in the spectrum is clearly visible. The linewidth of the unsuppressed water peak of this measurement is 
16 Hz. At the top of the figure the structural formula of a lipid molecule is displayed, with the relevant 1H positions and 
their respective resonance peaks being indicated by the red, green and blue arrows. 



2. Relationship between voxel orientation and myocardial fibre orientation 9 

and their influence on the chemical shift of EMCL 10 

Previous studies have shown that the chemical shift of extramyocellular lipids (EMCL) relative to 11 

intramyocellular lipids (IMCL), ∆𝜔𝐸𝑀𝐶𝐿, depends on the angle, 𝜃, muscle fibres take with the 12 

orientation of the main magnetic field B0. As illustrated in Figure S2.1, the 13 

angles 𝜃 and 𝜃 + 𝜋 are equivalent, and these are also equivalent to the 14 

angles – 𝜃 and −𝜃 − 𝜋, as a rotation around B0 does not change the angle the 15 

muscle fibres take with B0. Therefore, ∆𝜔𝐸𝑀𝐶𝐿 can be described by an even 16 

function with a period of 𝜋, such as a cos2 function. Boesch et al. have 17 

calculated the minimum and maximum chemical shift of the EMCL resonances 18 

relative to their corresponding IMCL resonances to be 0.21 ppm, if the muscle 19 

fibres are oriented parallel to the main magnetic field, and -0.1 ppm, if the 20 

muscle fibres are orthogonal to the main magnetic field1. Hence, ∆𝜔𝐸𝑀𝐶𝐿 can 21 

be calculated in terms of 𝜃 as follows:  22 

(S.1)  ∆𝜔𝐸𝑀𝐶𝐿(𝜃) = 0.31 ∙ cos2(𝜃) − 0.1. 23 

However, in the heart, the orientation of muscle fibres within the 24 

interventricular septum relative to B0 is usually not exactly known, and likely 25 

shows inter-individual variation.  26 

Assuming it is possible to consistently position the spectroscopy voxel with 27 

respect to the myocardial fibre orientation, the angle the voxel takes with B0, 28 

𝛼, will have a fixed, yet unknown, relationship with 𝜃. Thus, 𝜃 can be 29 

expressed as a function of 𝛼: 30 

 (S.2) 𝜃 = 𝑓(𝛼). 31 

To derive a general form of 𝑓(𝛼), some simple assumptions are required. 32 

First, let �⃗� be a vector that indicates the voxel orientation. Given that the 33 

length of the vector is not important and only the orientation is of interest, 34 

we can assume the following:  35 

 (S.3)  |�⃗�| = 1. 36 

Second, we assume the voxel is oriented parallel to the external magnetic field, B0, which is 37 

conventionally parallel to the z-axis and can thus be expressed by the unit vector 𝑧:  38 

 (S.4) �⃗� = 𝑧 =  (
0
0
1

), 39 

which leads to 40 

 (S.5) 𝛼 = 0. 41 

Similarly, we can define another vector, �⃗⃗�, that is parallel to the cardiac fibre orientation: 42 

 (S.6)  |�⃗⃗�| = 1. 43 

Figure S2.1: Since 
muscle fibres have an 
orientation, but not a 
direction in the sense 
of being a vector, they 
cannot be oriented 
antiparallel to the 
main magnetic field 
B0. Hence, if the 
muscle fibres take an 
angle 𝜽 with B0, they 
simultaneously take 
an angle 𝜽 + 𝝅 with 
B0. Furthermore, a 
rotation around B0 
does not change the 
angle between B0 and 
the muscle fibres. 
Hence, the four angles 
𝜽, 𝜽 + 𝝅, −𝜽, and 
−𝜽 + 𝝅 are 
equivalent.  



Figure S2.2: The angle 𝜃 the vector �⃗⃗�′ (vector �⃗⃗� after rotation) takes with the main magnetic field, B0, if vectors �⃗� and �⃗⃗�, 
which are parallel to the voxel orientation and the hypothetical fibre orientation, respectively, are rotated around the x-
axis by an angle 𝛼. For 𝛼 = 0°, �⃗� is defined to be oriented parallel to B0 and the z-axis; therefore, �⃗�′, the vector �⃗� after 
rotation, will always take the angle 𝛼 with the z-axis. The different colours represent different angles 𝜌, which vectors �⃗� 

and �⃗⃗� take with each other. During the rotation the angle 𝜌 remains constant. Clearly, while 𝛼 is swept through all 
values between -180° and +180°, the range of the angle 𝜃 is compressed, depending on the angle 𝜌. 

Assuming the voxel can be positioned and oriented reproducibly relative to the muscle fibres, the 44 

voxel orientation, �⃗�, and the cardiac fibre orientation, �⃗⃗�, will take a fixed angle with each other, 45 

which we call 𝜌. 46 

For simplicity, we assume �⃗⃗� lies in the x-z plane for now. This means �⃗⃗� can be calculated by applying a 47 

rotation matrix 𝐑𝑦 to 𝑧, which rotates 𝑧 around the y-axis by the angle 𝜌:  48 

 (S.7) �⃗⃗� =  𝐑𝑦(𝜌)𝑧 =  (
cos(𝜌) 0 sin(𝜌)

0 1 0
−sin(𝜌) 0 cos(𝜌)

) ∙ 𝑧. 49 

The angle 𝜃 between the muscle fibre orientation, �⃗⃗�, and B0 can then be calculated by:  50 

 (S.8) cos(𝜃) =  
𝑧∙�⃗⃗�

|𝑧|∙|�⃗⃗�|
. 51 

Clearly, when the voxel orientation �⃗� is parallel to B0, 𝜃 equals 𝜌.  52 

Now let us assume the voxel orientation �⃗� is not parallel to B0, but is rotated by an angle 𝛼 ≠ 0. For 53 
the sake of simplicity, we define the axis of rotation to be the x-axis. The new voxel orientation can 54 
then be calculated as:  55 

 (S.9)  �⃗�′ =  𝐑𝑥(𝛼)�⃗� = (
1 0 0
0 cos(𝛼) −sin(𝛼)

0 sin(𝛼) cos(𝛼)
) ∙ �⃗�. 56 

Again, assuming a fixed voxel orientation relative to the cardiac fibre orientation, we can calculate 57 
the cardiac fibre orientation in this rotated scenario by a rotation around the x-axis by the angle 𝛼: 58 

 (S.10) �⃗⃗�′ = 𝐑𝑥(𝛼)�⃗⃗� =  (
1 0 0
0 cos(𝛼) −sin(𝛼)

0 sin(𝛼) cos(𝛼)
) ∙ �⃗⃗�. 59 

Calculating 𝜃 according to equation S.8 for different angles 𝛼, and substituting �⃗⃗�′ for �⃗⃗�, it becomes 60 



clear that while 𝛼 can be swept through all values from -180° to +180°, the range of values 𝜃 can take 61 
is smaller, unless 𝜌 = 0. The link between 𝛼 and 𝜃 is illustrated in Figure S2.2 for different angles 𝜌.  62 

If we use equation S.1 to calculate ∆𝜔EMCL in terms of 𝜃, which is restricted in its range, this leads to 63 
the range of ∆𝜔EMCL being compressed as well, as shown in Figure S2.3. 64 

From Figure S2.3 it is clear that the compression of the range of ∆𝜔EMCL depends on the angle 𝜌 the 65 
voxel takes with the fibre orientation. To explore this dependency further, we calculated the scaling 66 
factor:  67 

 (S.11) fsc =
∆𝜔EMCL(𝜌)

∆𝜔EMCL(𝜌=0)
, 68 

and plotted it against 𝜌, as shown in Figure S2.4. From this, the following relationship becomes 69 
apparent:  70 

 (S.12) fsc = cos2(𝜌). 71 

Figure S2.3: The chemical shift difference of EMCL, ∆𝜔EMCL, compared to the fixed chemical shift of IMCL, calculated 
according to equation (S.1) for different angles 𝜃 of the fibre orientation with respect to B0. Angle 𝜃 was calculated from 
equations (S.7), (S.8), and (S.10), and is hence dependent on 𝛼 and 𝜌. The different colours represent different angles 𝜌 
between the voxel orientation and the fibre orientation. It can be seen that the range of  ∆𝜔EMCL is dependent on the 
angle 𝜌. 

Figure S2.4: The scaling factor fsc of the range of ∆𝜔EMCL depending on the angle 𝜌 between the fibre orientation and 
the voxel orientation. It can be seen that fsc = cos2(𝜌). 



Hence, as long as the vectors defining the voxel orientation, �⃗�, the fibre orientation, �⃗⃗�, and the 72 
rotation axis, in this example the x-axis, are all defined in one plane, we can rewrite equation (S.1) as:  73 

 (S.13) ∆𝜔EMCL(𝛼) = cos2(𝜌) ∙ 0.31 ∙ cos2(𝛼) − 0.1, 74 

with 75 

 (S.14) cos2(𝜃) = cos2(𝜌)cos2(𝛼), 76 

or 77 

 (S.15) 𝜃 = 𝑓(𝛼) = arccos(√cos2(𝜌)cos2(𝛼)). 78 

However, in reality the voxel orientation, the fibre orientation, and the rotation axis do not 79 
necessarily lie within the same plane. To account for this in the equations above, an additional 80 

rotation around the x-axis by an angle 𝛼𝜃 can be applied to �⃗⃗�, the fibre orientation, so it is no longer 81 
in the x-z-plane:  82 

 (S.16) �⃗⃗� =  𝐑𝑥(𝛼𝜃)𝐑𝑦(𝜌)𝑧 =  (

1 0 0
0 cos(𝛼𝜃) −sin(𝛼𝜃)

0 sin(𝛼𝜃) cos(𝛼𝜃)
) (

cos(𝜌) 0 sin(𝜌)
0 1 0

−sin(𝜌) 0 cos(𝜌)
) ∙ 𝑧. 83 

As described above, the angle 𝜃 can be calculated using equation S.8. Clearly, with the addition of 84 
𝛼𝜃, 𝜃 will no longer equal 𝜌, unless 𝛼𝜃 = 0. Furthermore, the angle the voxel takes with the fibres, 85 
which is unknown but assumed to be constant, is no longer equal to 𝜌, as in the scenario above. We 86 
define this angle as follows: 87 

(S.17)    𝜑 = arccos (
�⃗⃗�∙�⃗⃗�

|�⃗⃗�|∙|�⃗⃗�|
). 88 

Rotating the whole system around the x-axis, as described above, we can calculate the different 89 
angles 𝜃 for corresponding angles 𝛼 and 𝛼𝜃, as is illustrated in Figure S2.5. It can be seen that 90 
applying the additional rotation, 𝛼𝜃, around the x-axis does not change the range of values 𝜃 can 91 
assume, but shifts the function 𝜃(𝛼) by −𝛼𝜃.  92 

 93 

Figure S2.5: The angle 𝜃 versus 𝛼, calculated for different angles of 𝛼𝜃 – the angle by which the fibre orientation is 
tilted out of the plane that is spanned by the voxel orientation and the rotation axis - and 𝜌. It is clear that the 
maximum and minimum amplitude of 𝜃 is not affected if the voxel orientation is not lying in the same plane as the 
rotation axis and the voxel orientation; however, the whole function 𝜃(𝛼) is shifted by −𝛼𝜃, the angle by which the 
fibre orientation is tilted from that plane. 



In the same way, ∆𝜔EMCL is shifted along the horizontal axis, denoting the rotation angle 𝛼, by a 94 
constant offset of −𝛼𝜃, as shown in Figure S2.6.  95 

Hence, equation (S.1) can be rewritten more generally as:  96 

 (S.18) ∆𝜔EMCL(𝛼) = cos2(𝜌) ∙ 0.31 ∙ cos2(𝛼 − 𝛼𝜃) − 0.1, 97 

with  98 

 (S.19) cos2(𝜃) = cos2(𝜌)cos2(𝛼 − 𝛼𝜃),  99 

and, finally, 𝜃 can be substituted by:  100 

 (S.20) 𝜃 = 𝑓(𝛼) = arccos(√cos2(𝜌)cos2(𝛼 − 𝛼𝜃)). 101 

The use of equation S.18 therefore allows us not only to investigate the angular dependence of the 102 
chemical shift difference, ∆𝜔𝐸𝑀𝐶𝐿, on the angle 𝛼 the voxel takes with B0, but also to estimate the 103 
angle 𝜃, the cardiac fibres take with B0.  104 

While these calculations focus on one main fibre angle, it is known that the fibre angle rotates when 105 
moving from epicardium to endocardium2-4. However, the fibre angle distribution is not isotropic, 106 
and hence a mean fibre orientation exists. This mean fibre orientation will determine the mean 107 
chemical shift of the EMCL moieties. Nevertheless, each individual EMCL molecule within the voxel 108 
contributes to the acquired signal, and EMCL from adipocites between myofibres with a different 109 
angulation will exhibit a different chemical shift from the mean. Hence, the distribution of fibre 110 
angulations will lead to a broadening of the EMCL signals.  111 

Figure S2.6: The chemical shift difference of EMCL, ∆𝜔EMCL(𝛼), calculated for different angles 𝛼𝜃 and 𝜌. It can be seen 
that the maxima are dependent on the angle 𝜌, while the “phase”, namely the rotation angle 𝛼 for which maximum 
and minimum chemical shift differences are observed, is determined by the angle 𝛼𝜃. 



From diffusion tensor imaging (DTI) of the heart, it can be seen that the mean helix angle in the 112 
mesocardium is approximately circumferential with the left ventricle in a short axis view. Figure S2.7 113 
shows the visualisation of such a helix angle distribution across the wall of the left ventricle in a short 114 
axis view, derived from a DTI study2. From these helix angle maps, helix angle profiles across the 115 
septal wall were calculated in 19 volunteers, which were the control cohort in a study published by 116 
Nielles-Vallespin et al.2. Then a mean profile of helix angles across the septal wall was calculated for 117 
each volunteer, and finally a median profile was obtained across all 19 volunteers, which is shown in 118 
Figure S2.8. The error bars indicate the inter-subject inter quartile range. It can be seen that the helix 119 
angles vary between approximately -60° to +60°. However, in our 1H MRS measurements, inner 120 
volume saturation5 saturates the regions with the most extreme helix angles. Furthermore, it can be 121 
seen that the inter-subject variability of helix angles, especially in the mesocardium, is rather small. 122 
Hence, it seems justified to assume that it is possible to consistently place the voxel with respect to 123 
the myocardial fibre orientation, and to derive information about the myocardial fibre orientation 124 
from the voxel angle, using the above outlined calculations. (Data and images about the helix angle 125 
distribution across the septal wall are provided courtesy of Dr. Pedro F. Ferreira, Royal Brompton 126 
Hospital, London.) 127 

Figure S2.7: Map of helix angles of the myocardial fibres of the left-ventrical wall in a short axis view during systole. This 
map was derived from a cardiac DTI acquisition. It can be seen that the helix angle in the mesocardium is approximately 
parallel to the tangent of the according segment of the left ventrical wall. The green lines indicate profiles across which 
the transition of the helix angle from endocardium to epicardium was calculated, in order to determine a mean 
distribution of helix angles across different volunteers, as displayed in Figure S2.7. (This image is provided courtesy of Dr. 
Pedro F. Ferreira, Royal Brompton Hospital, London.) 

Figure S2.8: Helix angles across the septal wall during 
systole (orange) and diastole (blue). Helix angle profiles 
were calculated in 19 healthy volunteers (controls from 
the study published in (ref)). First, several profiles were 
calculated in each volunteer (example lines across which 
the profiles were calculated are indicated as green lines 
in Figure S2.6), then a mean profile was calculated for 
each volunteer. Finally, a median profile was calculated 
across all 19 volunteers. The error bars indicate the inter-
subject inter-quartile range.  (This image is provided 
courtesy of Dr. Pedro F. Ferreira, Royal Brompton 
Hospital, London.) 



3. Effects of phase correction and frequency alignment during post-processing 128 

 129 

 130 

 131 

 132 

Figure S3.1: Effect of post-processing: Water 
peaks of all 512 individual measurements 
from one volunteer are shown at different 
stages of post-processing. Top panel: only 
zero filled; middle panel: zero filled and 
phase corrected; bottom panel: zero filled, 
phase corrected and frequency aligned. Zero 
filling in the time domain leads to an 
interpolation of data in the frequency 
domain. It can be seen, that phase correction 
of each single measurement avoids 
incoherent averaging due to phase 
cancellation and frequency alignment 
prevents artificial peak broadening due to 
dynamic frequency drifts. 



4. Fitting errors due to incomplete model and internal algorithm constraints? 133 

 134 

 135 

 136 

 137 
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 139 

Figure S4.1: Spectrum and fit from the interventricular septum of volunteer 3. Although only 448 averages were 
acquired in this volunteer, the SNR of this spectrum is sufficiently high for proper analysis. From the theory, the 
chemical shift difference between EMCL15 and IMCL13 is estimated as  ∆𝜔𝐸𝑀𝐶𝐿 ≈ 0.15 𝑝𝑝𝑚, placing the resonance 
line at approximately 1.39 ppm. A small shoulder can be seen on the IMCL13 peak at that point; however, LCModel fits 
the EMCL15 resonance line to approximately 1.53 ppm, with an amplitude that is on the order of magnitude of the 
noise level. The two spectral features in question have been highlighted with red question marks. After closer 
investigation it became clear that the frequency shift parameters in LCModel are constrained, to avoid peaks being fit 
too far from their nominal position. While this makes sense for peaks with a fixed resonance frequency, the peak shifts 
allowed by LCModel clearly restrict the fit of resonance frequencies that shift due to fibre angulation differences with 
respect to B0 like the EMCL signals. Indeed, if the frequency shift of the EMCL signals relative to IMCL gets too small, 
the two peaks are not resolvable, independent of SNR levels or linewidths. The two spectra exhibiting these features 
were, hence, excluded from further analysis involving the chemical shift of EMCL resonances, as well as from lipid 
quantification. 
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Figure S4.2: Spectrum and fit from the interventricular septum of volunteer 10. A total of 768 averages were acquired 
in this volunteer. The two spectral features in question of being the signal from the EMCL15 component have been 
highlighted with red question marks, with the higher frequency one being that identified by LCModel and the lower 
frequency one the theoretical position of EMCL15, as calculated from the voxel angle. Since the IMCL13 peak is also 
shifted slightly from its nominal position at 1.3 ppm, it is possible that the resonance identified by LCModel as EMCL15 
actually stems from an IMCL component which resonates at 1.6 ppm, but is not incorporated into the model used to fit 
the data by LCModel. 
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 156 

Figure S4.3: Sum of the residuals from the fitted spectra. The residuals after fitting of the spectrum of each volunteer 
were summed up (spectra excluded from analysis due to not properly approximated frequency shift of EMCL were not 
considered). For reference a measured spectrum is also plotted in black. It can be seen that several spectral features are 
not captured by the underlying fit model, e.g. a peak at approximately 2.7 ppm, which might stem from 
polyunsaturated fatty acids. Moreover, a significant dip can be seen between 1.6 ppm and 2.0 ppm, which suggests 
that the employed basis functions for IMCL21 and I/E23 are too broad to be able to capture the more complex spectral 
structure of the underlying spectral features, which then results in this kind of ‘overfitting’. 



5. Quantification 157 

 158 
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 162 

Figure S5.1: Metabolite/Cr ratios plotted versus BMI. IMCL09/Cr (a), I/E23/Cr (b), and TMA/Cr (c) plotted versus the 
BMI of the volunteers. Data points that were excluded from analysis are shown as open circles. Linear regressions are 
displayed as red line and Pearson regression coefficients, r, and significance values, p, are given for each data set. It can 
be seen that none of the here shown metabolite/Cr ratios correlates with BMI. However, since we know that the fit 
model used by LCModel is incomplete (namely, an IMCL moiety with its resonance frequency at 2.3 ppm is missing, and 
therefore IMCL23 and EMCL23 can only be fitted together), it is possible that future studies will uncover significant 
correlations, especially between the different lipid moieties and BMI.  
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 181 

Figure S5.2: Area under the creatine peak plotted versus BMI. While the area under the creatine peak varies between 
different volunteers, there is no obvious trend or correlation with the volunteers’ BMIs. Hence, correlations found 
between metabolite/Cr ratios are likely to originate from metabolites correlating with the volunteers’ BMIs.  


