
 

 

 

 

 

 

Supplementary Figure 1: 100 cyclic compression test. (a) The time-load curve of 100 

cyclic compression test. The non-linear curve of the first two cycles in the inset clearly 

shows that cT phase transformation occurs every cycle. Inset is CaFe2As2 micropillar 

before and after 100 cycles of forward-backward transformation. This image shows that 

there is no residual plastic deformation after 100 cycles. 

 



 

 

 

 

 

Supplementary Figure 2: Schematic diagram of the deformed micropillar. In order 

to obtain the precise strain value in the micropillar, it is important to measure the 

displacement of the base under the micropillar because the total measured displacement (

utot ) includes both the displacement of micropillar (upillar ) and the base (ubase ). 



 

 

 

    

 

 

Supplementary Figure 3:  Strain correction via Sneddon’s flat punch method. (a) 

The measurement of the effective Young’s modulus of [0 0 1] CaFe2As2, and (b) the 

correction of stress-strain curve by considering the displacement of the micropillar base 

(c) Stress-strain curves of four different samples. Note that four stress-strain curves show 

consistent superelasticity results.  

 



 

 

 

 

 

Supplementary Figure 4: A uni-axial stress-strain curve of a single unit cell of 

CaFe2As2. At about 8% uniaxial compression, the cell changes to the collapsed 

tetragonal unit cell with a reduced c-axis length.  The reference value for c0 is taken as 

the equilibrium value for c in the orthorhombic structure.  The stress changes abruptly 

and the moment on the iron atoms vanishes. 
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Supplementary Figure 5: A plot of the internal energy of CaFe2As2 under uniaxial 

loading. The energy is evaluated at each indicated strain and is plotted per formula unit 

of CaFe2As2.  Note that the lateral stresses were allowed to relax during uniaxial loading 

to relieve the lateral stresses.  
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Supplementary Figure 6: A plot of the phase fractions of the two phases as a 

function of the total strain. The phase fraction evolves during the phase transition and 

the two phase fractions add to a total of 1.0.  
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Supplementary Figure 7: A plot of the evolution of the strain in each phase as a 

function of the total strain. The engineering strain used here is defined relative to the c-

axis of the Orthorhombic structure shown in Supplementary Fig. 4 and thus is not the 

elastic strain in the cT phase but is computationally easier to use.  In this case, the strains 

in the two phases must add to the total strain. 

Total Strain
0 0.05 0.1 0.15

St
ra

in
 in

 E
ac

h 
Ph

as
e

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
O-Strain
cT-Strain



 

 

 

   

 

Supplementary Figure 8:  Analysis of onset and offset stress of phase 

transformation. (a) Determination of σ PT
onset , σ PT

offset , and εPT
ave , (b) four experimental and 

one computational stress-strain data. Note that Sample 3 underwent the plastic 

deformation, and did not fully recover to the original shape. However, the elastic portion 

(stage I, II, III) is full recovered. 

 



 

   
 

    

 

Supplementary Figure 9: Superelastic intermetallic compound, LaRu2P2. (a) Optical 

image of single crystalline LaRu2P2; scale bar, 100 µm (b) Stress-strain curve of [0 0 1] 

LaRu2P2. LaRu2P2 also exhibit the distinct three stages of deformation, which is the 

characteristic of superelastic and shape memory material (not published). (c) Contact 

stiffness as a function of strain. The decrease in contact stiffness implies that LaRu2P2 is 

collapsed during deformation.  



 

 

 

 σ PT
onset   

(MPa) 
σ PT

offset
 

(MPa) 
σ PT

ave
 

(MPa) 
εPT
ave

 
WPT

ave
 

(×106 J/m3) 

Sample 1 752 1321 1036.5 0.055 56.6 
Sample 2 700 1286 993 0.052 51.5 
Sample 3 673 1269 971 0.0575 55.8 
Sample 4 690 1252 971 0.0546 53.0 
DFT 852 1711 1281 0.079 101.2 

 

Supplementary Table 1: Calculation of actuation work per-unit-volume (WPT
ave ). 

Here, we calculate WPT
ave

 by σ PT
ave ×εPT

ave , where σ PT
ave

 and εPT
ave  are the average 

transformation stress and strain, respectively. 



Supplementary Note 1: 100 cyclic compression test  

We performed the 100 cyclic test with 20 nm/sec of displacement rate and 6 mN 

of maximum load and 0.6 mN of minimum load, and the time-load curve in the inset 

clearly shows that our micropillar experiences all three stages (I, II and III) for each cycle 

(Supplementary Fig. 1). So, the forward and backward phase transformation should occur 

every cycle3. SEM images before and after the cyclic test confirms no height change. 

Thus, CaFe2As2 does not shows any residual deformation after 100 cycles, which implies 

the fatigue resistance better than that shape memory ceramic micropillars that typically 

fails before 5~30 cycles of forward-backward transition. As discussed in the manuscript, 

cT transition occurs by simple bond adhesion between As layers, which would not 

introduce a significant stress concentration in the course of phase transformation. Also, 

we expect a superior fatigue resistance.  



Supplementary Note 2: Stress-Strain Calculations 

In order to obtain the precise strain value in the micropillar, it is important to 

measure the displacement of the base under the micropillar because the total measured 

displacement (utot ) includes both the displacement of micropillar (upillar ) and the base (

ubase ) (Supplementary Fig. 2),  

upillar = utot −ubase  .                                                                                                  (1) 

The displacement of the base can be calculated by using Sneddon flat punch solution by 

assuming that cylindrical flat punch of CaFe2As2 indents the elastic half space of 

CaFe2As2
1. The contact stiffness ( kSneddon ) from Sneddon solution gives 

kSneddon =
2E
1−ν 2( )

Acontact
π

 ,                                                                                    (2) 

where E  is the Young’s modulus of CaFe2As2, ν  is the Poisson’s ratio of CaFe2As2, and 

Acontact  is the contact area between micropillar and the base. The displacement of the base 

can be given by  

ubase =
P

kSneddon
=

P
2E
1−ν 2( )

Acontact
π

=
P 1−ν 2( )
2E

π
Acontact

 ,                                       (3) 

where P  is the applied force. Then, the engineering strain can be calculated by  

εeng =
upillar
Lo

=
utot −ubase

Lo
=
1
Lo

utot −
P 1−ν 2( )
2E

π
Acontact

"

#
$
$

%

&
'
'

 ,                                       (4) 

where Lo  is the initial height of micropillar.  

 



Here, please note that caution is needed when we use Young’s modulus because it 

is not correct if we use simply the Young’s modulus of tetragonal phase only. We must 

consider the contributions of elastic displacement of the tetragonal phase, elastic 

displacement of the collapsed tetragonal phase, and the phase transformation 

displacement to the total displacement of the base. Thus, it is necessary to measure the 

effective Young’s modulus that includes all these contributions under the condition of 

indentation, and it is possible to obtain it by performing nanoindentation on CaFe2As2 

along c-axis. Poisson’s ratio of intermetallic compound ranges typically from 0.2~0.3. 

Here we assumed ν = 0.2 . Note that the contact stiffness of the Sneddon solution is not 

sensitive to Poisson’s ratio, so our Poisson’s ratio ( ν = 0.2 ) is a reasonable 

approximation. With all of this in mind, we were able to obtain the effective Young’s 

modulus by using the Oliver-Pharr method2. The nanoindentation data is shown in 

Supplementary Fig. 3(a), and the average Young’s modulus is about 48 GPa. Our DFT 

simulation shows that Young’s modulus of orthorhombic phase, which would be similar 

with tetragonal phase, is about 33 GPa, and that of collapsed tetragonal phase is about 

103 GPa. It makes sense that our result (48 GPa) is in between these values because the 

tetragonal and collapsed tetragonal phases co-exist in the base during the 

nanoindentation. Then, the stress-strain curve can be corrected by using Supplementary 

Equation S4 (Supplementary Fig. 3(b)). All stress-strain curves in this work were 

corrected in this manner (Supplementary Fig. 3(c)). 



Supplementary Note 3: DFT Calculations 

Unit Cell Compression 

In order to understand the uniaxial deformation of orthorhombic CaFe2As2, we 

used DFT to simulate the uniform straining of a single unit cell.  It is important to note 

that at room temperature, the conditions in which the experiments were conducted, the 

phase transitions observed occur between the paramagnetic tetragonal phase and the non-

magnetic collapsed tetragonal phase.  All of the DFT calculations, which are done at 0K, 

involve the transition between the antiferromagnetic orthorhombic phase and the 

collapsed tetragonal phase. Here, we use the orthorhombic phase as a surrogate for the 

high temperature paramagnetic tetragonal phase since these two phases have similar 

lattice constants, with c being the most important, and should have similar bonding with 

the largest difference being the disordering of the magnetic moments, which cannot be 

simulated using DFT with current computer resources. The use of the orthorhombic 

phase as a surrogate for the tetragonal phase will include some error, and thus all the DFT 

simulation results should be interpreted as an approximation rather than true one-to-one 

match with experiments. 

  Our uniaxial deformation studies differ from previous ones in that instead of 

conducting a simulation where the uniaxial stress was held at fixed value and the lateral 

stresses were set to zero, these simulations are conducted with mixed boundary 

conditions.  We prescribe a uniaxial strain along the CaFe2As2 c-axis and the stress is 

relaxed along the a- and b-axes. This allows us to specifically probe the behavior of 

CaFe2As2 as a function of strain and removes some of the issues that can arise with 

prescribe stress paths during mechanical deformation.  However, we note that VASP is 



incapable of performing such calculations and a script was written to specifically adjust 

the lateral dimensions to reduce the lateral stresses to zero. The resulting stress – 

engineering strain curve is shown in Supplementary Fig. 4. 

 

Composite Stress-Strain Curve 

In order to investigate the transition from orthorhombic (O) to collapsed 

tetragonal (cT) phases in DFT (tetragonal to collapsed tetragonal in experiments) we have 

attempted to model the response of the CaFe2As2 pillar assuming that it can be comprised 

of two phases: O and cT. We assume that at a given macroscopic strain, ε, the system will 

assume the composition of the O and cT phases that minimizes the free energy under the 

assumption of mechanical equilibrium.  We choose the a free energy that is analogous to 

the enthalpy under uniaxial stress, rather than internal energy, to model phase evolution 

under constant load, which is consistent with the load-controlled nature of the 

nanoindentor.  Note that this free energy, which we call F, would correspond to the 

enthalpy if we considered the hydrostatic stress instead of uniaxial stress. We write this 

free energy (per unit CaFe2As2) as a function of the uniaxial stress and strain as well as 

the internal energy, obtained from DFT, as a function of the strain 

 𝐹 = 𝜑!𝐸! 𝜀! + 𝜑!"𝐸!" 𝜀!" − 𝜎𝜀Ω!,                                                               (5) 

where ϕi is the phase fraction (i.e. the fraction of CaFe2As2 that is in phase “i”), Ei is the 

internal energy-per-unit phase (i.e. the energy per number of CaFe2As2), εi is the strain in 

the “i” phase and Ω0 is the reference atomic volume of CaFe2As2.  Here, we use the 

volume of the orthorhombic CaFe2As2 phase from our DFT simulations, which has lattice 



constants a=5.60 Å, b=5.49 Å, and c=11.48 Å, resulting in Ω! = 353  Å!. The energies 

of the two phases have been computed as a function of uniaxial strain as shown in Figure 

S8.   Mechanical equilibrium of the two phases requires that the constraint: 

𝜎 = !!!
!!!

= !!!"
!!!"

,                                                                                                     (6) 

is satisfied, where ei is the strain energy per unit volume.  Minimization of this free 

energy results in the appropriate volume fractions of the O and cT phases as well as the 

stress in the system under constant load. The strains in the individual phases can be 

determined using this phase fraction as: 

 𝜀 = 𝜑!𝜀! + 𝜑!"𝜀!".                                                                                              (7) 

In this definition, the strain in the cT phase, then, is the change in length per unit length 

in the cT phase relative to the O phase.  This makes the mathematical implemnation 

easiest since both phases have the same reference length. 

The minimization of the total free energy requires smooth functions while the 

DFT data, as shown in Supplementary Figs. 4 and 5, are discrete. To remedy this, we use 

a spline interpolant of the data to make suitable for numerical optimization. This is done 

by first selecting a fixed stress value and an estimate of the volume fractions of the 

phases which can be used, in conjunction with the Supplementary Equations (7) and (8) 

the numerical values for Supplementary Equation (5) can be determined. The 

minimization itself was carried out using the golden ratio search to find the minimum of 

Supplementary Equation (5) with the bounds that the phase fractions between 0 and 1. 

The evolution of the two phase fractions as a function of the applied strain obtained from 

this minimization are shown in Supplementary Fig. 6 demonstrating a non-linear 

relationship between phase fractions and the applied strain. The evolution of the strains 



are plotted in Supplementary Fig. 7 clearly showing that the strains add up to the total 

strain.   

The full solution of these equations results in a stress-strain curve shown in Fig. 

2(c) of the manuscript.  It is important to note a couple of points.  First, the analysis uses 

DFT values of the O and cT phases at zero Kelvin, and has not been corrected for higher 

temperatures observed in the experiments. In addition, the DFT calculations have a stable 

cT structure at 0K, however in the experiments the cT structure spontaneously transforms 

back to the O phase as stress is released as the cT phase is not meta-stable at room 

temperature. Our composite model predicts the same thing because it assumes that the 

transition occurs to minimize the total free energy and ignores energy barriers. We expect 

some differences between theoretical models and experiments at lower temperatures. 



Supplementary Note 4: Actuation work per-unit-volume  

Even though the actuation testing has not been performed, it is still possible to 

calculate the actuation work per-unit-volume from a stress-strain curve as suggested in 

Lai, A., et al. Science 27, 1505-1508 (2013)4, and Huber, J. E., et al. Proc. R. Soc. 

London Ser. A 453, 2185–2205 (1997)5 (Note that Fig. 3 came from these two 

references.). They calculated the actuation work of shape memory alloys and ceramics 

simply by (transformation stress) × (transformation strain) because the actuation work 

per-unit-volume can be defined as the rectangular area below the stress-strain curve 

within the range of transformation strain. However, in the case of CaFe2As2, because the 

transformation stress increases in stage II, we can estimate the actuation work per-unit-

volume as the area of trapezoid. This can be simply done by (average transformation 

stress) × (transformation strain). Here, the average transformation stress (σ PT
ave ) is the 

average of onset (σ PT
onset ) and offset (σ PT

offset ) transformation stress.  

The onset and the offset of transformation can be defined by using the line-

intercept methods. Each blue line in Supplementary Fig. 8(a) can be obtained by taking 

the linear regression on carefully selected linear-like region. Once we get the onset and 

offset stress/strain, we can approximate the area of stage II by (average transformation 

stress) × (transformation strain). The data points in Fig. 3 were calculated by this method 

from four experimental stress-strain curves and one DFT stress-strain curve in 

Supplementary Fig. 8(b). The calculated the actuation work per-unit-volume data are 

available in Supplementary Table 1.  

 

 



Supplementary Note 5: Preliminary results on LaRu2P2 

We recently tested LaRu2P2, which is another ThCr2Si2-type intermetallic compound 

(Supplementary Fig. 9(a)). This material also undergoes collapsed tetragonal phase 

transformation, and exhibit superelasticity. One of the notable mechanical properties is 

the ultra-high yield strength (~7 GPa) (Supplementary Fig. 9(b)). Thus, regardless of 

superelastic strain smaller than that of CaFe2As2, the actuation work is still excellent due 

to the ultra-high yield strength. Note that there is a region of decreasing contact stiffness 

(Supplementary Fig. 9(c)). Note that the decrease in contact stiffness is an another 

evidence of structural collapse because collapsed tetragonal phase is much stiffer than 

tetragonal phase. Our preliminary results show that superelasticity associated with 

collapsed tetragonal phase transition found in CaFe2As2 is only one manifestation of a 

wider class of such transitions found in significant number of ThCr2Si2-type intermetallic 

compounds. This is very important to search for industrial applicable (non-toxic) 

superelastic intermetallic compounds. 
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