Deep mutational scanning of S. pyogenes Cas9

reveals important functional domains

Jeffrey M Spencer^{1,2} and Xiaoliu Zhang^{1,2,*}

¹ Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA

² Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston,

Texas, 77204, USA

* To whom correspondence should be addressed. Email: xzhang5@central.uh.edu

Supplementary Figure 1: pACYC184-tacP-ccdB-T2 Plasmid Map. This plasmid was used for positive selection. Multiple gRNAtargeted sites (T2) were inserted at different locations in the plasmid to facilitate degradation of the plasmid following Cas9 cleavage. The P_{tac} drives IPTG dependent ccdB expression. The p15a promoter maintains the plasmid at moderate copy levels.

Supplementary Figure 2: pH3-OT9 Plasmid Map. This plasmid was used for negative selection. Two gRNA off-target sites (OT9) were inserted in the plasmid to facilitate Cas9 cleavage. The pSC101 origin of replication maintains the plasmid at a low copy number.

T2 Protospacer: GACCCCCTCCACCCGCCTC

Supplementary Figure 3: pUC-ProD-Cas9-T2 Plasmid Map. This plasmid was used to express SpCas9 and a targeting gRNA (T2). The synthetic, insulated promoter, ProD, constituvely drives SpCas9 expression. The short, synthetic promoter, J23119, has a defined transcription initiation site making it ideal for gRNA expression.

T2 Protospacer: GACCCCCTCCACCCCGCCTC

Supplementary Figure 4: pUC-ProD-LacZ-T2 Plasmid Map. This plasmid was used to clone the SpCas9 mutant library. Esp3I sites allow for efficient Golden Gate Cloning of PCR amplicons into the expression cassette.

RBS – 5' – TCACACAGGAAACC – 3'

Supplementary Figure 5: EF-RBS-SpCas9 Plasmid Map. This plasmid was generated to create a SpCas9 template with a prokaryotic RBS that was distinct from the desired final product in order to reduce unmutated template background. Additionally, Esp3I sites required for Golden Gate cloning were added to simplify the post-PCR cloning procedure.

Human Codon Optimized SpCas9 Coding Sequence

NLS HA Tag

ATGGATAAAAAATACTCAATCGGGCTGGACATCGGGACCAACTCAGTGGGCTGGGCAGTCATCACAGACGAATACAAAGTCC CAAGCAAGAAGTTCAAGGTGCTGGGGAACACCGATCGCCACAGTATCAAGAAAAATCTGATTGGGGCCCTGCTGTTCGACTC AGGAGAGACAGCTGAAGCAACTCGGCTGAAAAGAACAGCTCGGAGAAGGTATACTCGCCGAAAGAATCGGATCTGCTACCTG GGGACATTTTCTGATCGAGGGCGATCTGAACCCAGACAATAGCGATGTGGACAAGCTGTTCATCCAGCTGGTCCAGACATAC GGAGACTGGAGAACCTGATCGCTCAGCTGCCAGGCGAAAAGAAAAACGGACTGTTTGGCAATCTGATTGCACTGTCCCTGGG GCTGACACCCAACTTCAAGTCTAATTTTGATCTGGCCGAGGACGCTAAACTGCAGCTGTCTAAGGACACTTATGACGATGACC GAGTGATATTCTGAGAGTGAACACCGAGATTACAAAAGCCCCCCTGAGCGCCAGCATGATCAAGCGGTACGACGAGCACCAT CAGGATCTGACCCTGCTGAAGGCTCTGGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAAATCTTCTTTGATCAGAGCAAGA ATGGGTACGCCGGATATATTGACGGCGGGGCTTCCCAGGAGGAATTCTACAAGTTTATCAAACCTATTCTGGAGAAGATGGAC GGCACCGAGGAACTGCTGGTGAAACTGAATAGGGAAGACCTGCTGAGGAAGCAGCGCACATTTGATAACGGGAGCATCCCT CACCAGATTCATCTGGGGAGAGCTGCACGCCATCCTGAGGCGCCAGGAAGACTTCTACCCATTTCTGAAGGATAACAGGGAGA AGATCGAAAAAATTCTGACCTTCCGCATTCCCTACTATGTGGGACCTCTGGCAAGAGGCAATAGTAGGTTTGCCTGGATGACA AGAAAATCAGAGGAAACAATCACTCCCTGGAACTTCGAGGAAGTGGTCGATAAGGGCGCTTCCGCACAGTCTTTCATTGAGA GGATGACAAACTTCGACAAGAACCTGCCAAACGAAAAAGTGCTGCCCAAGCACTCTCTGCTGTACGAGTATTTCACCGTCTAT TGGACCTGCTGTTTAAAACCAATCGGAAGGTGACAGTCAAGCAGCTGAAAGAGGACTATTTCAAGAAAATTGAATGTTTCGATT CTGTGGAGATCAGTGGAGTCGAAGACCGGTTCAACGCCAGCCTGGGCACCTACCACGATCTGCTGAAGATCATTAAGGATAA AGACTTCCTGGACAACGAGGAAAATGAGGATATCCTGGAAGACATTGTGCTGACCCTGACACTGTTTGAGGATAGGGAAATG ATCGAGGAACGCCTGAAGACTTATGCCCATCTGTTCGATGACAAAGTGATGAAACAGCTGAAGCGACGGAGATACACCGGGT GGGGACGACTGTCCCGGAAGCTGATCAATGGCATTAGAGACAAACAGAGCGGGAAGACTATCCTGGACTTTCTGAAATCCGA TGGCTTCGCCAACAGGAACTTCATGCAGCTGATTCACGATGACAGCCTGACCTTCAAAGAGGATATCCAGAAGGCACAGGTG TCCGGCCAGGGGGGACTCTCTGCACGAGCATATCGCAAACCTGGCCGGATCCCCTGCCATCAAGAAAGGCATTCTGCAGACC GTGAAGGTGGTCGACGAGCTGGTGAAAGTCATGGGGCGCCATAAGCCAGAAAACATCGTGATTGAGATGGCCCGAGAAAAT CAGACCACACAGAAAGGACAGAAGAACTCAAGGGAGCGCATGAAACGCATCGAGGAAGGGATTAAGGAACTGGGAAGCCAG ATCCTGAAAGAGCACCCCGTGGAAAACACTCAGCTGCAGAATGAGAAGCTGTATCTGTACTATCTGCAGAATGGCAGGGATAT GTACGTGGACCAGGAGCTGGATATTAACCGCCTGTCCGATTATGACGTGGATGCGATCGTCCCACAGTCATTCCTGAAAGAT GACAGCATTGACAATAAGGTGCTGACCCGCTCTGACAAAAACCGAGGGAAGAGTGATAATGTCCCCTCAGAGGAAGTGGTCA AGAAAATGAAGAACTACTGGCGGCAGCTGCTGAATGCCAAACTGATCACCCAGCGAAAGTTTGATAACCTGACAAAAGCTGA GCGGGGAGGCCTGAGTGAACTGGACAAAGCAGGCTTCATTAAGCGACAGCTGGTGGAGACCCGGCAGATCACAAAGCACGT CGCTCAGATTCTGGATAGCCGCATGAACACAAAGTACGATGAGAATGACAAACTGATCCGGGAAGTGAAGGTCATTACTCTGA AGTCAAAACTGGTGAGCGACTTTCGGAAAGATTTCCAGTTTTATAAGGTCAGAGAGATCAACAACTACCACCATGCTCATGAC GCATACCTGAACGCAGTGGTCGGAACCGCCCTGATTAAGAAATACCCTAAACTGGAGAGCGAATTCGTGTACGGCGACTATA AGGTGTACGATGTCAGGAAAATGATCGCCAAGTCTGAGCAGGAAATTGGCAAAGCCACCGCTAAGTATTTCTTTTACAGTAAC ATCATGAATTTCTTTAAGACTGAGATCACCCTGGCAAATGGCGAAATCCGAAAGCGGCCACTGATTGAGACTAACGGCGAGAC CGGGGAAATCGTGTGGGACAAAGGGAGAGATTTTGCTACCGTGAGGAAGGTCCTGAGCATGCCCCAAGTGAATATTGTCAAG AAAACAGAGGTGCAGACTGGGGGGATTCAGTAAGGAATCAATTCTGCCTAAACGCAACTCCGATAAGCTGATCGCCCGAAAGA AAGACTGGGATCCTAAGAAATATGGCGGGTTCGACTCCCCAACAGTGGCTTACTCTGTCCTGGTGGTCGCAAAGGTGGAGAA GGGGAAAAGCAAGAAACTGAAATCCGTCAAGGAACTGCTGGGAATCACTATTATGGAGAGAGCTCCTTCGAAAAGAATCCTA TCGATTTTCTGGAGGCCAAAGGATATAAGGAAGTGAAGAAGACCTGATCAAGCTGCCAAAGTACTCACTGTTTGAGCTG GAAAACGGCAGAAAGAGGATGCTGGCAAGCGCCGGCGAGCTGCAGAAAGGGAATGAACTGGCCCTGCCCTCCAAGTACGTG AACTTCCTGTATCTGGCTTCTCACTACGAGAAGCTGAAAGGCAGTCCTGAGGATAACGAACAGAAACAGCTGTTTGTGGAGCA GCACAAGCATTATCTGGACGAGATCATTGAACAGATTAGCGAGTTCTCCAAAAGAGTGATCCTGGCTGACGCAAATCTGGATA CGCTACCCTGATCCACCAGAGTATTACTGGACTGTACGAGACCAGAATCGACCTGAGTCAGCTGGGAGGCGATTCAAGGGCC GACCCTAAAAAGAAAAGAAAAGTCTGTACATATCCCTATGATGTCCCTGATTATGCCTAA

Supplementary Figure 6: Coding Sequence of SpCas9. The human optimized CDS of SpCas9 that we used in this study. The added NLS is in blue while the HA tag is in red.

Supplementary Figure 7: pCRII – U6 gRNA Plasmid Map. The plasmid used to express gRNAs in mammalian cells drives gRNA expression with the U6 promoter. The cloning vector with a 34 bp insert was used to as a non-targeting control in gRNA transfections. Oligos were used to generate gRNAs by digesting the plasmid with Esp3I followed or in concert with ligation.

Supplementary Figure 8: EF-SpCas9 Plasmid Map. The plasmid used to express SpCas9 in mammalian cells drives SpCas9 expression with the EF1 α promoter and terminates transcription with the SV40 pA signal.

Supplementary Figure 9: Frequencies of specific amino acid substitutions by domain. Instances of amino acid substitutions from Fig. 2b were normalized by the total number of amino acids in each domain.

Supplementary Figure 10: Correlation of selection replicates.

Selection replicates were converted to frequencies by adding one to the numerator and denominator of counts before calculating Spearman's Rho. Shown are representative plots of log₂ transformed frequencies and calculations from each selection.

Supplementary Figure 11: Enriched and depleted mutations from negative selection. Histograms showing the number of enriched (Increased) or depleted (Decreased) amino acid mutations from negative selection. The top enriched and depleted mutations are colored in blue.

Supplementary Figure 12: Mutability score mapped onto the SpCas9 crystal structure. Mutability scores were calculated for each residue as explained in the methods. These scores were then mapped on the cartoon structure of SpCas9 bound to gRNA and dsDNA based on PDB: 5f9r (ref. 27). Red indicates residues with a mutability score that is greater than zero. Blue indicates a mutability score less than zero. White indicates a mutability score of zero. Color intensity is saturated at the top and bottom ten percentiles.

Supplementary Figure 13: Mutability score mapped onto the RuvC domain. A close-up view of the RuvC domain, colored as in Supplementary Fig. 12. Other domains have been removed for clarity.

Supplementary Figure 14: Mutability score mapped onto the HNH domain. A close-up view of the HNH domain, colored as in Supplementary Fig. 12. Other domains have been removed for clarity.

Supplementary Figure 15: Mutability score mapped onto the PI domain. A close-up view of the PI domain, colored as in Supplementary Fig. 12. Other domains have been removed for clarity.

Supplementary Figure 16: Activity of R133C SpCas9 in *E. coli*. The positive selection plasmid was transformed along with an R1333C expression plasmid as in Figure 1 (n=3, error bars indicate S.E.M.). The results from the transformation are show alongside WT SpCas9 results from Figure 1c for comparison.

Supplementary Figure 17: Enriched and depleted mutations from positive selection. (a) Significantly enriched (Increased) or depleted (Decreased) mutation counts of each amino acid were divided by the total number instances of that mutation in the initial library. The frequency indicates the fraction of each amino acid mutation that was significantly enriched or depleted following positive selection. (b) Histograms showing the number of enriched or depleted amino acid mutations from positive selection. The top enriched and depleted mutations are colored in blue. (c) Same counts as in b, but colored by the WT amino acid that the mutation was substituting. (d) The top and bottom ten percent of enriched and depleted mutations colored as in c.

Supplementary Figure 18: Expression of specificity enhancing mutant Cas9s. Western blots of SpCas9 mutations from Fig. 4.

а

Supplementary Figure 19: General activity of doubly selected mutants. (a) Mutants from Figure 4 were assessed with an additional site 7 gRNA (S7) and their ability to tolerate single mismatches at the 5' end of the protospacer (n = 3, error bars indicate S.E.M.). Mismatches at the 15th (one-way ANOVA $F_{3,8}$ = 4.94, P = 0.032, followed by post hoc linear contrasts) and 19th position impaired function more than with WT for two of the mutants (one-way ANOVA $F_{3,8}$ = 6.14, P = 0.018, followed by post hoc linear contrasts). (b) These mutants were further assayed

with additional GFP-targeting gRNAs to determine their general on-target activity (n = 2, error bars indicate S.E.M., two-tailed Student's t-test, P = * < 0.05, ** < 0.01, *** < 0.001).

Supplementary Figure 20: Off/On Target Ratio of positive and negative selection enriched mutants. The off-target activity of each SpCas9 variant with the position 12 mismatched gRNA from Fig. 4 were divided by the on-target activity of each variant.

Supplementary Figure 21: Mutability score mapped onto the

Rec domains. A close-up view of the Rec domains, colored as in Supplementary Fig. 12. Other domains have been removed for clarity. The Rec2 domain is enclosed in a dashed circle.

Supplementary Figure 22: Expression of enhancing mutation Cas9s. Western blots of SpCas9 mutations from Fig. 7.

Supplementary Figure 23: Activity of combination mutants with site 7 gRNA. Combinations of mutations that had retained activity in mammalian cells as single mutants were compared to WT SpCas9's ability to cleave with a gRNA targeting GFP site 7 (S7) (n = 3, error bars indicate S.E.M.).

Supplementary Figure 24: Location of activating mutations.

Cartoon structure of SpCas9 bound to gRNA and dsDNA based on PDB: 5f9r (ref. 27). Domains are colored as in Figure 4. The mutations which alter SpCas9 activity are shown as red spheres.

Supplementary Table 1: Primers used in this study

Name	Sequence (5' - 3')	Description	
pACYC184 -tacP- ccdB -T2 Construction			
tacP For	CCGAGCTGTTGACAATTAATCATCGGCTGTATAATGTGTGGAATTGT GAGCGGATAACAATTTCA	tacP ccdB amplicon primer	
ccdb Rev	GTTTAAACTTCATCCGGGGTCAGCACCGTTTCT	tacP ccdB amplicon primer	
	Mutagenesis		
EF For	CACACTGAGTGGGTGGAGACTG	Mutagenesis Primer	
Sv40 For	TTAATTAAAACTTGTTTATTGCAGCTTATAATG	Mutagenesis Primer	
	EF- RBS-SpCas9 Construction		
SV40 POE For	GCCTAACGTGAGACGAAGGATGCGGCCGCGACATGATAAGATACA TTGA	POE-PCR Vector Primer	
EF- POE - Rev	TGTGTGAAGAGAGAGAGAACTGGGTGGCGCTAGTGAATTCCTCA CGAC	POE-PCR Vector Primer	
Cas9 RBS For 4	CAGTTCTCTCGTCTCTTCACACAGGAAACCTCATAGATGGATAAAAA ATACTCAATCGGGCTGGA	POE-PCR Cas9 amplicon Primer	
HA Rev 4	CATCCTTCGTCTCACGTTAGGCATAATCAGGGACATCATAGGGA	POE-PCR Cas9 amplicon Primer	
	Mutation Cloning Primers		
G-Cas For	AAAATACTCAATCGGGCTGGACATCGGGA	Primer	
G-Cas Rev	CGCTTAGGCATAATCAGGGACATCATAGGGA	C-terminal Fragment Primer	
1152-E For	GGTCGCAAAGGTGGAGAAGGAGAAAAGCAAGAAACTGAAATC	1152-E Cloning	
1152-E Rev	GATTTCAGTTTCTTGCTTTTCTCCTTCTCCACCTTTGCGACC	1152-E Cloning	
1160-I For	AAAGCAAGAAACTGAAATCCATCAAGGAACTGCTGGGAATC	1160-I Cloning	
1160-I Rev		1160-I Cloning	
11//-K FOr		1177-K Cloning	
1177-K Rev		1177-K Cloning	
1178-H FOr		1178-H Cloning	
1105 V Eor			
1195-V Pov	GTACTTTGGCAGCTTGATGACCAGGTCTTCTTCACTTCCT	1195-V Cloning	
1196-V For		1196-V Cloning	
1196-V Rev	GTGAGTACTTTGGCAGCTTGACGATCAGGTCTTCTTCACTT	1196-V Cloning	
1204-Y For	AGCTGCCAAAGTACTCACTGTATGAGCTGGAAAACGGCAGAAAG	1204-Y Cloning	
1204-Y Rev	CTTTCTGCCGTTTTCCAGCTCATACAGTGAGTACTTTGGCAGCT	1204-Y Cloning	
1209-A For	ACTGTTTGAGCTGGAAAACG C CAGAAAGAGGATGCTGGCAAG	1209-A Cloning	
1209-A Rev	CTTGCCAGCATCCTCTTTCTGGCGTTTTCCAGCTCAAACAGT	1209-A Cloning	
1210-I For	GTTTGAGCTGGAAAACGGCA T AAAGAGGATGCTGGCAAGCG	1210-I Cloning	
1210-I Rev	CGCTTGCCAGCATCCTCTTTATGCCGTTTTCCAGCTCAAAC	1210-I Cloning	

1243-K For	TGTATCTGGCTTCTCACTACAAGAAGCTGAAAGGCAGTCCTG	1243-K Cloning
1243-K Rev	CAGGACTGCCTTTCAGCTTCTTGTAGTGAGAAGCCAGATACA	1243-K Cloning
1253-K For	AAGGCAGTCCTGAGGATAACAAACAGAAACAGCTGTTTGTG	1253-K Cloning
1253-K Rev	CACAAACAGCTGTTTCTGTTTGTTATCCTCAGGACTGCCTT	1253-K Cloning
1299-G For	CGCATACAACAACACCGGGGTAAGCCAATCAGAGAGCAGG	1299-G Cloning
1299-G Rev	CCTGCTCTCTGATTGGCTTACCCCGGTGTTTGTTGTATGCG	1299-G Cloning
	CATACAACAACACCGGGATAAGCTAATCAGAGAGCAGGCCGAAAA	
1301-L For	TATC	1301-L Cloning
	GATATTTTCGGCCTGCTCTCTGATTAGCTTATCCCGGTGTTTGTT	
1301-L Rev	ATG	1301-L Cloning
1333-C For	GTATTTTGACACTACCATCGATTGCAAACGATACACATCTACTAAG	1333-C Cloning
1333-C Rev	CTTAGTAGATGTGTATCGTTTGCAATCGATGGTAGTGTCAAAATAC	1333-C Cloning
	CGAGACCAGAATCGACCTGAGTCACCTGGGAGGCGATTCAAGGGC	
1364-H For	С	1364-H Cloning
1364-H Rev	GGCCCTTGAATCGCCTCCCAGGTGACTCAGGTCGATTCTGGTCTCG	1364-H Cloning
221-K For	CCGCCTGTCTAAGAGTCGGAAACTGGAGAACCTGATCGCT	221-K Cloning
221-K Rev	AGCGATCAGGTTCTCCAGTTTCCGACTCTTAGACAGGCGG	221-K Cloning
	GGACTGTTTGGCAATCTGATTGCACAGTCCCTGGGGCTGACACCCA	_
244-Q For	AC	244-Q Cloning
	GTTGGGTGTCAGCCCCAGGGACTGTGCAATCAGATTGCCAAACAGT	
244-Q Rev	CC	244-Q Cloning
367-P For	CCGGATATATTGACGGCGGGCCTTCCCAGGAGGAATTCTACAAG	367-P Cloning
367-P Rev	CTTGTAGAATTCCTCCTGGGAAGGCCCGCCGTCAATATATCCGG	367-P Cloning
	AGGAACTGCTGGTGAAACTGAAGAGGGAAGACCTGCTGAGGAAGC	
394-K For	A	394-K Cloning
394-K Rev	TGCTTCCTCAGCAGGTCTTCCCTCTTCAGTTTCACCAGCAGTTCCT	394-K Cloning
	GGAAGTGAAGGTCATTACTCTGAAGGCAAAACTGGTGAGCGACTTT	
960-A For	CGG	960-A Cloning
	CCGAAAGTCGCTCACCAGTTTTGCCTTCAGAGTAATGACCTTCACTT	_
960-A Rev	CC	960-A Cloning
1109-L For	GGATTCAGTAAGGAATTAATTCTGCCTAAACGCAACTCCGATAAG	1109-L Cloning
1109-L Rev	CTTATCGGAGTTGCGTTTAGGCAGAATTAATTCCTTACTGAATCC	1109-L Cloning
	AGAAACTGAAATCCGTCAAGGAACGGCTGGGAATCACTATTATGGA	
1163-R For	GAG	1163-R Cloning
	CTCTCCATAATAGTGATTCCCAGCCGTTCCTTGACGGATTTCAGTTT	-
1163-R Rev	СТ	1163-R Cloning
	GCCTGACCTTCAAAGAGGATATCCAGAAGGCAGAGGTGTCCGGCC	
1211-Q For	AGG	1211-Q Cloning
	CCTGGCCGGACACCTCTGCCTTCTGGATATCCTCTTTGAAGGTCAG	
1211-Q Rev	GC	1211-Q Cloning
	ATCTGGCTTCTCACTACGAGAAGGTGAAAGGCAGTCCTGAGGATAA	
1245-V For	CG	1245-V Cloning
	CGTTATCCTCAGGACTGCCTTTCACCTTCTCGTAGTGAGAAGCCAG	
1245-V Rev	AT	1245-V Cloning
	GATCGCAAACGATACACATCTACTACGGAGGTGCTGGACGCTACCC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1340-T For	TG	1340-T Cloning
	CAGGGTAGCGTCCAGCACCTCCGTAGTAGATGTGTATCGTTTGCGA	
1340-T Rev	ТС	1340-T Cloning

NGS Primers			
		Initial Sequencing	
ProD For	GGGCATGCATAAGGCTCGTATAATA	Amplicon	
Omega		Initial Sequencing	
Rev2	GCAGCGCGATTACAGTGGTTT	Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNN		
Spfor-3	gctcacacaggaaacctca	Fragment 1 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev214	tccgattctttcggcgagta	Fragment 1 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNN		
Spfor215	gaacagctcggagaaggta	Fragment 2 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev442	agatcagtctcaggtctgct	Fragment 2 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNg		
Spfor441	aaactggtggactctaccgataa	Fragment 3 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev652	ggttctccagtctccgactc	Fragment 3 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNtg		
Spfor653	agcgcccgcctgtctaa	Fragment 4 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev865	gattcttagcggccaggaac	Fragment 4 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNg		
Spfor866	gcgatcagtacgcagacct	Fragment 5 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev1078	ccccgccgtcaatatatccg	Fragment 5 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNtc		
Spfor1079	agagcaagaatgggtacgc	Fragment 6 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev1269	tgggtagaagtcttcctggc	Fragment 6 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNnct		
Spfor1270	gcacgccatcctgaggc	Fragment 7 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev1490	gtttggcaggttcttgtcgaa	Fragment 7 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNa		
Spfor1491	gtctttcattgagaggatgacaaac	Fragment 8 Amplicon	
_	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev1678	tcctctttcagctgcttgac	Fragment 8 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNgt		
Spfor1679	ttaaaaccaatcggaaggtgac	Fragment 9 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev1895	cataagtetteaggegtteet	Fragment 9 Amplicon	
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNct		
Spfor1896	gtttgaggatagggaaatgatc	Fragment 10 Amplicon	
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN		
Sprev2118	cacctgtgccttctggatat	Fragment 10 Amplicon	

	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNC	
Spfor2119	agcctgaccttcaaagagg	Fragment 11 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN	
Sprev2342	atcccttcctcgatgcgttt	Fragment 11 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNN	
Spfor2343	gaactcaagggagcgcatg	Fragment 12 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN	
Sprev2570	cggtttttgtcagagcgggt	Fragment 12 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNc	
Spfor2571	agcattgacaataaggtgctg	Fragment 13 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN	
Sprev2794	atgcggctatccagaatctg	Fragment 13 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNN	
Spfor2795	gatcacaaagcacgtcgct	Fragment 14 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN	
Sprev3020	ccttatagtcgccgtacacgaa	Fragment 14 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNN	
Spfor3021	ccctaaactggagagcgaa	Fragment 15 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN	
Sprev3217	aaatctctccctttgtcccac	Fragment 15 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNg	
Spfor3218	cgagaccggggaaatcgt	Fragment 16 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN	
Sprev3428	tccacctttgcgaccaccag	Fragment 16 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNc	
Spfor3429	caacagtggcttactctgtc	Fragment 17 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN	
Sprev3632	ggcgcttgccagcatcct	Fragment 17 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNN	
Spfor3633	gctggaaaacggcagaaag	Fragment 18 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNN	
Sprev3852	ggacaggaccttatccagatttg	Fragment 18 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNa	
Spfor3853	agagtgatcctggctgacg	Fragment 19 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNN	
Sprev4070	tgactcaggtcgattctggt	Fragment 19 Amplicon
	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNN	
Spfor4071	gagtattactggactgtacgag	Fragment 20 Amplicon
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNN	
Sprev4246	cgcctacctgcatctgacga	Fragment 20 Amplicon

Supplementary Table 2: Plasmids used in this study

Plasmid Name	Description	Source	
pUC-ProD-Cas9-T2	Cas9 and T2 gRNA bacterial	This work	
	expression plasmid		
pUC-ProD-LacZ-T2	Cloning plasmid used to generate mutant library	This work	
EF-SpCas9	Cas9 mammalian expression plasmid	Our lab	
EF- RBS-SpCas9	Template plasmid for ep-PCR	This work	
pCRII – U6 gRNA	gRNA mammalian expression plasmid	Our lab	
pACYC184 -tacP- ccdB -T2	Positive selection plasmid	This work	
рН3 – ОТ9	Negative selection plasmid	This work	
pACYC184	Parent vector of positive selection plasmid	NEB	
pH3U3-mcs	Parent vector of negative selection plasmid	Addgene plasmid # 12609	

Supplementary Table 3: Oligos used in this study

Sense	Sense Oligo	Anti-	Anti-sense Oligo
Name		Sense	
		Name	
	GFP Ta	rgeting gRN	As
Site1 (s)	ACCGGGCACGGGCAGCTTGCCGG	Site1 (a)	AAACCCGGCAAGCTGCCCGTGCC
Site 4 (s)	ACCGGCGAGGGCGATGCCACCTA	Site 4 (a)	AAACTAGGTGGCATCGCCCTCGC
Site 5 (s)	ACCGGTCGCCACCATGGTGAGCA	Site 5 (a)	AAACTGCTCACCATGGTGGCGAC
Site 6 (s)	ACCGGTCAGGGTGGTCACGAGGG	Site 6 (a)	AAACCCCTCGTGACCACCCTGAC
Site 7 (s)	ACCGGTGGTGCAGATGAACTTCA	Site 7 (a)	AAACTGAAGTTCATCTGCACCAC
Site 8 (s)	ACCGTTGGGGTCTTTGCTCAGGG	Site 8 (a)	AAACCCCTGAGCAAAGACCCCAA
Site 9 (s)	ACCGGTGGTCACGAGGGTGGGCC	Site 9 (a)	AAACGGCCCACCCTCGTGACCAC
Site 10 (s)	ACCGATGCCGTTCTTCTGCTTGT	Site 10 (a)	AAACACAAGCAGAAGAACGGCAT
Site 1 mm 12 (s)	ACCGGGCACGGCCAGCTTGCCGG	Site 1 mm 12 (a)	AAACCCGGCAAGCTGGCCGTGCC
Site 1 mm 19 & 18 (s)	ACCGCCCACGGGCAGCTTGCCGG	Site 1 mm 19 & 18 (a)	AAACCCGGCAAGCTGCCCGTGGG
Site 7 mm 19 (s)	ACCGCTGGTGCAGATGAACTTCA	Site 7 mm 19 (a)	AAACTGAAGTTCATCTGCACCAG
Site 7 mm 18 (s)	ACCGGAGGTGCAGATGAACTTCA	Site 7 mm 18 (a)	AAACTGAAGTTCATCTGCACCTC
Site 7 mm 17 (s)	ACCGGTCGTGCAGATGAACTTCA	Site 7 mm 17 (a)	AAACTGAAGTTCATCTGCACGAC
Site 7 mm 16 (s)	ACCGGTGCTGCAGATGAACTTCA	Site 7 mm 16 (a)	AAACTGAAGTTCATCTGCAGCAC
Site 7 mm 15 (s)	ACCGGTGGAGCAGATGAACTTCA	Site 7 mm 15 (a)	AAACTGAAGTTCATCTGCTCCAC
Site 7 mm 14 (s)	ACCGGTGGTCCAGATGAACTTCA	Site 7 mm 14 (a)	AAACTGAAGTTCATCTGGACCAC
Site 7 mm 13 (s)	ACCGGTGGTGGAGATGAACTTCA	Site 7 mm 13 (a)	AAACTGAAGTTCATCTCCACCAC
Site 7 mm 12 (s)	ACCGGTGGTGCTGATGAACTTCA	Site 7 mm 12 (a)	AAACTGAAGTTCATCAGCACCAC
Site 7 mm 11 (s)	ACCGGTGGTGCACATGAACTTCA	Site 7 mm 11 (a)	AAACTGAAGTTCATGTGCACCAC
Site 7 mm 10 (s)	ACCGGTGGTGCAGTTGAACTTCA	Site 7 mm 10 (a)	AAACTGAAGTTCAACTGCACCAC
	рН	3 Targets	1
2x - OT9	GAGCTCGCCCCCACCCACCCGCCT	2x - OT9 (a)	CCGGCCGGAGGCGGGGGGGGGGGGGGCT
(s)	CCGGAGCCCCCACCCACCCGCCTC CGG		CCGGAGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	pACY	C184 Target	S
4x - T2 (s)	TCGACGAATTCACTAAGACCCCCTCC	4x -T2 (a)	TCGACCGGAGGCGGGGGGGGGGGCCC
	ACCCCGCCTCCGGGACCCCCTCCAC		CGGAGGCGGGGTGGAGGGGGTCCCGGAG
	CCCGCCTCCGGGACCCCCTCCACCC		GCGGGGTGGAGGGGGTCCCGGAGGCGGG
	CGCCTCCGGGACCCCCTCCACCCCG CCTCCGG		GTGGAGGGGGTCTTAGTGAATTCG
1x - T2 (s)	TCGGGAATTCGACCCCCTCCACCCCG CCTCCGG	1x - T2 (a)	CCGACCGGAGGCGGGGGGGGGGGGGGGGGGGGGGGGGG

Supplementary Table 4

	Stop Codon			
	TGA	TAG	TAA	Total
Negative Selection				
Increased	19	8	34	61
Decreased	1	11	0	12
Total	20	19	34	73
Positive Selection				
Increased	12	3	3	18
Decreased	22	116	112	250
Total	34	119	115	268

Supplementary Table 4: Stop codons with significantly altered frequencies following selection. Nonsense mutations with significantly different frequencies after selection as determined by Fisher's exact test are separated by codon, selection, and direction of change.