

## Supporting Information

© 2017 The Authors. Published by Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim

## Interactions of Protonated Guanidine and Guanidine Derivatives with Multiply Deprotonated RNA Probed by Electrospray Ionization and Collisionally Activated Dissociation

Jovana Vušurović, Eva-Maria Schneeberger, and Kathrin Breuker\*<sup>[a]</sup>

open\_201700143\_sm\_miscellaneous\_information.pdf



**Figure S1.** Mass spectra from electrospray ionization of 1  $\mu$ M RNA solutions in 1:1 H<sub>2</sub>O/CH<sub>3</sub>OH with 100  $\mu$ M tetramethylguanidine (tmeGnd), 1-methylguanidine (meGnd), guanidine (Gnd), 1,1,3,3-L-2-amino-3-guanidinopropanoic acid (aGpa), L-arginine (Arg), and 10  $\mu$ M 3-guanidinopropanoic acid (Gpa) at pH ~7.5; colored circles indicate the number of ligands bound to the 8 nt RNA and grey circles indicate singly charged ligand cluster ions.

![](_page_2_Figure_0.jpeg)

**Figure S2.** Yield of *c*, *y*, *a*, and *w* fragments from RNA backbone cleavage and loss of charged and neutral RNA nucleobases from CAD of  $(RNA-nH)^{n-1}$  ions at n=3 and 4 versus energy, illustrating the higher stability of  $(RNA-3H)^{3-1}$  over  $(RNA-4H)^{4-1}$  ions, the CAD data at n=3 are the same as in Figure 6A for m=0.

![](_page_2_Figure_2.jpeg)

Figure S3. Fraction of products from reaction III out of all products from reactions II and III (left axes) in CAD of (RNA+mL-5H)<sup>5-</sup> ions for m=1 (blue) and m=2 (green) for Gpa, aGpa, and Arg versus laboratory frame energy.

![](_page_2_Figure_4.jpeg)

**Figure S4.**  $E_{50}$  values for dissociation of all ligands in CAD of (RNA+mL-nH)<sup>n</sup> complex ions with m=1-5 for A) n=2 and B) n=4 versus the number of atoms that can potentially be involved in hydrogen bond or salt bridge interactions with the RNA.

| <b>Table S1.</b> From ESI of 1 $\mu$ M RNA and 5-100 $\mu$ M ligand solutions in 1:1 H <sub>2</sub> O/CH <sub>3</sub> OH at pH 7.5, fraction of (RNA+mL-nH) <sup>n-</sup> ions with m≥1 for each n. |                                |      |      |      |      |     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|------|------|------|-----|--|--|--|--|
| ligand                                                                                                                                                                                              | ligand concentration / $\mu M$ | n=2  | n=3  | n=4  | n=5  | n=6 |  |  |  |  |
| tmeGnd                                                                                                                                                                                              | 100                            | 94.3 | 48.8 | 6.2  | 0.1  | 0   |  |  |  |  |
| meGnd                                                                                                                                                                                               | 100                            | 86.4 | 62.2 | 33.7 | 11.4 | 0   |  |  |  |  |
| Gnd                                                                                                                                                                                                 | 100                            | 87.0 | 66.7 | 33.7 | 13.8 | 0   |  |  |  |  |
| Gpa                                                                                                                                                                                                 | 5                              | 78.9 | 52.2 | 30.4 | 6.8  | 0   |  |  |  |  |
|                                                                                                                                                                                                     | 10                             | 94.1 | 88.0 | 63.7 | 14.8 | 0   |  |  |  |  |
| aGpa                                                                                                                                                                                                | 50                             | 77.6 | 68.1 | 39.2 | 9.4  | 0   |  |  |  |  |
|                                                                                                                                                                                                     | 100                            | 81.6 | 73.9 | 45.2 | 14.2 | 0   |  |  |  |  |
| Arg                                                                                                                                                                                                 | 50                             | 73.6 | 65.6 | 40.1 | 9.6  | 0   |  |  |  |  |
|                                                                                                                                                                                                     | 100                            | 81.3 | 76.2 | 46.1 | 11.5 | 0   |  |  |  |  |

| Table S2. Extent of unintended ligand loss during isolation in the linear quadrupole. |                       |        |       |       |       |       |       |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------|--------|-------|-------|-------|-------|-------|--|--|--|
| Complex charge state (n)                                                              | Number of ligands (m) | tmeGnd | meGnd | Gnd   | Gpa   | aGpa  | Arg   |  |  |  |
| 2                                                                                     | 5                     | 78.76  | 32.95 | 89.09 | 0     | -     | -     |  |  |  |
|                                                                                       | 4                     | 63.90  | 16.62 | 10.61 | 0     | 28.24 | -     |  |  |  |
|                                                                                       | 3                     | 48.25  | 9.61  | 0     | 0     | 24.18 | 16.19 |  |  |  |
|                                                                                       | 2                     | 48.75  | 3.38  | 0     | 0     | 11.39 | 17.33 |  |  |  |
|                                                                                       | 1                     | 12.71  | 0     | 0     | 0     | 4.63  | 12.38 |  |  |  |
| 3                                                                                     | 4                     | 99.43  | 53.22 | 48.37 | 11.48 | 16.43 | -     |  |  |  |
|                                                                                       | 3                     | 92.69  | 26.55 | 6.75  | 13.46 | 10.63 | 7.36  |  |  |  |
|                                                                                       | 2                     | 86.07  | 19.17 | 4.35  | 9.48  | 11.56 | 10.89 |  |  |  |
|                                                                                       | 1                     | 65.02  | 4.29  | 1.62  | 1.03  | 3.85  | 7.64  |  |  |  |
| 4                                                                                     | 3                     | 99.66  | 86.86 | 56.32 | 27.42 | 18.13 | 22.00 |  |  |  |
|                                                                                       | 2                     | 98.92  | 44.48 | 21.60 | 12.91 | 11.41 | 7.65  |  |  |  |
|                                                                                       | 1                     | 88.17  | 18.27 | 6.53  | 4.51  | 6.31  | 5.22  |  |  |  |
| 5                                                                                     | 2                     | 100    | 88.30 | 75.87 | 91.16 | 90.28 | 82.90 |  |  |  |
|                                                                                       | 1                     | 100    | 50.90 | 39.00 | 68.70 | 65.63 | 29.35 |  |  |  |

Table S2. Extent of unintended ligand loss during isolation in the linear quadrupole.