Supporting Information

Palladium-mediated Synthesis of a Near-IR Fluorescent K+ Sensor

H. M. Dhammika Bandara[†], Zhengmao Hua[†], Mei Zhang[†], Steven M. Pauff^{†§}, Stephen C. Miller[†], Elizabeth A. Colby Davie[‡]and William R. Kobertz^{*†}

[†]Department of Biochemistry and Molecular Pharmacology, Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States [‡]Department of Natural Sciences, Assumption College, 500 Salisbury Street, Worcester MA 01609, United States

508.856.8861 (phone) 508.856.8867 (fax) william.kobertz@umassmed.edu

Table of Contents

Author Contact Info	S1
Table of Contents	S2
pH response of K _{NIR} -1	S3
Figure S1: KNIR-1 pH sensitivity	S3
Quantum yield calculation of K _{NIR} -1	S4
Cell culture and transient transfection	S5
Figure S2: Full synthetic route of K _{NIR} -1	S6
Figure S3: Full syntheses of precursors for palladium coupling reactions	S7
NMR spectra	S8

Effect of pH on the fluorescence response of K_{NIR} -1. A 15 μ L aliquot of a 2.8 mM K_{NIR} -1 stock solution was transferred to a quartz cuvette containing 3.0 mL of HEPES buffer solution to obtain a 14 μ M K_{NIR} -1 solution (0.5% vehicle concentration), and its fluorescence was recorded. A 30 μ L aliquot of a 0.50 M KCl stock solution was added to above solution to obtain a 5.0mM K⁺ solution. The pH of the above solution was increased to 7.8 by adding 0.1 M NaOH (aq). The pH of the above solution was then adjusted to 7.0, 6.8 and 6.0 by adding 0.1 M HCl (aq). Fluorescence intensity of the solution was measured at each pH.

Figure S1. Effect of pH on fluorescence emission of K_{NIR} -1 (10 mM HEPES, 5 mM K⁺). The pH was adjusted by adding either 0.1 M HCl or 0.1 M NaOH.

Quantum yield of K_{NIR} -1. The fluorescence quantum yield (Φ_f^i) was calculated according to equation 1, using the absorption factor $f_x(\lambda_{ex})$ and the integrated fluorescence response $F^x(\lambda_{em})$ of both sample (x = i) and standard (x = s). The refractive index of solvent for sample was assumed to be equal to that of standard $(n_i = n_x)$. The absorption factor $f_x(\lambda_{ex})$ was calculated using equation 2 where $A_x(\lambda_{ex})$ is the absorbance of sample (x = i) and standard (x = s) at the excitation wavelength.

A 9.3 mM stock solution of the fluorescence reference standard was prepared by dissolving 1.2 mg of oxazine-170 in 300 μ L of acetonitrile. The absorbance and fluorescence emission (630 – 800 nM; 620 nm excitation) of a 14 μ M oxazine-170 solution in 10 mM HEPES pH7.4 in the presence (200 mM) and absence (0 mM) of K⁺. The quantum yields for **K**_{NIR}-1 for apo: $\Phi = 0.0597 \pm 0.0003$ and K⁺ bound: $\Phi = 0.289 \pm 0.005$ were determined from three experiments \pm SEM. The vehicle (acetonitrile) concentration was 0.5% for all measurements.

Cell culture and DNA transfections: Chinese Hamster Ovary (CHO-K1) cells were cultured in F-12K nutrient mixture (Gibco – Invitrogen). All media was supplemented with 10% fetal bovine serum (Hyclone) and 102 U/mL penicillin/streptomycin (Gibco – Invitrogen). Cells were plated at 60-75% confluency in 35 mm dishes. After 24 h, cells were transiently transfected at RT with 1 μg of either empty plasmid DNA (pCDNA) or Shaker-IR DNA with 5 μL Lipofectamine (Invitrogen). Voltage-clamp fluorometry was performed 24 h post-transfection.

Figure S2. Synthesis of near-IR fluorescent K^+ sensor, K_{NIR} -1

Figure S3. Synthesis of oxazine dyes and precursors for palladium-based coupling reactions

NMR spectra

¹³C NMR of compound **2** in CDCl₃

¹H NMR compound **4** in CDCl₃

¹H NMR of compound **7chloride** in CDCl₃

S11

¹H NMR of compound **9** in MeOD

¹³C NMR of compound **9** in MeOD

¹³C NMR of compound **11** in CDCl₃

¹³C NMR of compound **13** in CDCl₃

 ^{13}C NMR of K_{NIR}-1acetate in DMSO-d6

