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Detection Task. Two monkeys were trained to detect a vibro-
tactile stimulus of variable amplitude applied to one of each
monkey’s fingertips (6). Stimulus-present trials were ran-
domly interleaved with an equal number of stimulus-absent
trials. Stimuli were delivered to the skin of the distal segment of
one digit of the restrained hand, via a computer-controlled
stimulator (2-mm round tip; BME Systems). Initial probe in-
dentation was 500 μm. Vibrotactile stimuli consisted of trains of
20-Hz mechanical sinusoids with nine different amplitudes be-
tween 2.3 μm and 34.6 μm. Crucially, some of the amplitudes
were very weak and consequently difficult to detect. Animals
were rewarded with a drop of liquid for correct behavioral re-
sponses (correct detections in stimulus-present trials and CRs in
stimulus-absent trials) and received no reward otherwise (miss
trials and FA trials).

Recordings. Data for this analysis were obtained from an earlier
study (27). Recordings were obtained with quartz-coated plati-
num–tungsten microelectrodes (2–3 MΩ; Thomas Recording)
inserted through a recording chamber located over the central
sulcus, parallel to the midline. Midbrain DA neurons were
identified on the basis of their characteristic regular and low
tonic firing rates (1–10 spikes per second) and by their long
extracellular spike potential (2.4 ms ± 0.4 SD). Among the
69 neurons analyzed in the previous work we selected a group of
23 cells (monkey A, n = 9; monkey B, n = 14). The selected
group of cells corresponded to those neurons whose response to
the reward delivery did not violate a RL principle: They showed
a positive phasic activation or lack of response in correct trials
(hit and CR trials) while the activity paused or remained at the
baseline level when the reward was omitted (miss and FA trials).
A similar criterion has been adopted in many electrophysiolog-
ical studies of midbrain DA neurons (23, 33). The recorded sites
of the selected neurons differed from the discarded ones only in
their depth (the antero-posterior and medio-lateral coordinates
were kept constant). The median depth of the 23 selected neu-
rons was 362 μm above the median of the other 46 neurons. A
two-sample t test between the depths of the two groups of neu-
rons showed that their difference was at the margin of statistical
significance (P = 0.055).

Data Analysis. For each neuron, we computed the firing rate as a
function of time, using 300-ms sliding windows displaced every
50 ms (Fig. 1B). Responses to the stimulus (Fig. 1C and in Fig.
2A, Right) were measured in a 500-ms window centered 350 ms
after the stimulus onset and were standardized with respect to a
prestimulation window (of 500 ms centered 700 ms before the
stimulus presentation). Responses to the go instruction (Fig.
3A) were measured in a 250-ms window centered 170 ms after
the instruction and were standardized with respect to a precue
window (of 250 ms centered 500 ms before the cue pre-
sentation). Responses to the reward delivery were measured in
a 400-ms window centered 350 ms after the PB and were
standardized with respect to a precue window of 200 ms cen-
tered 200 ms before the PB (Fig. 3B). The activity outside the
PSW was calculated in two 1-s windows before the start and
after the end of the PSW (from 500 ms to 1.5 s after the KD
event and from 3.7 s to 4.7 s after that event). The mean activity
during and outside the PSW was standardized with respect to
a 500-ms window centered 1 s after the KD event (Fig. 2B).
To determine the statistical significance of the computed

AUROCs in Fig. S5, we used a permutation test with 10,000
resamples (significance was assessed when the permutation test
indicated P < 0.01).

Model.Themodel relies on twomodules: a Bayesianmodule and a
RL module.
Bayesianmodule.This module uses noisy observations to estimate
a posterior probability (belief) about the current state of the
external world, st. More specifically, it calculates the belief
bspðtÞ about the presence of the (ambiguous) vibrotactile
stimulus,

bspðtÞ=P
�
st = spjX1: t

�
, [S1]

where X1 : t is the entire history of observations up to time t. In
what follows we describe the detailed equations used by the
Bayesian module. This module represented some high-level cor-
tical areas receiving inputs from sensory areas. We referred to
these inputs as observations xt and interpreted them as Poisson
trains with firing rates λiði= 0, . . . ,NaÞ.
Each λi corresponded either to the absence of a vibrotactile

stimulus (i= 0) or to the application of that stimulation with one
of the Na = 9 possible values of its amplitude during the time step
t. Each of the 10 mean firing rates corresponded to a state i of
the world. In each time step t the module computed a posterior
probability (belief) btðiÞ about the hidden state of the world,
using the entire history of observations up to time t :

btðiÞ=Pðλt = λijX1: tÞ0. [S2]

The beliefs about the absence and the presence of the stimulus
corresponded, respectively, to

btðsaÞ=Pðλt = λ0jX1: tÞ
btðspÞ=

X
i≠0

Pðλt = λijX1: tÞ. [S3]

Due to the complex temporal structure of the task, evaluating the
btðiÞ required estimating the joint posteriors ~btði, nÞ on the value
of the firing rate of the input ðλiÞ and the time n elapsed since the
environment underwent a change to the state i. We therefore
computed the belief over λt by marginalizing:

btðiÞ=
X
n

Pðλt = λi, lt = njX1: tÞ=
X
n

~btði, nÞ. [S4]

We separated the last part of the history, i.e., the last observa-
tion xt, and calculated each belief recursively over time, using
Bayes’ rule,

~btði, nÞ=Pðλt = λi, lt = njX1: t−1, xtÞ
= k.Pðxtjλt = λiÞ

X
n

Pðλt = λi, lt = njX1: t−1Þ, [S5]

where k=PðxtjX1: t−1Þ is a normalization constant. The second
term in Eq. S5 was simplified using the Markov assumption
and the fact that xt did not depend on the length lt (it depends
only on the firing rate at the current time, λt). This term in
Eq. S5 represented the observation probability (Observation
probabilities). The last term in Eq. S5 could be rewritten as
follows:
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Pðλt = λi, lt = njX1: t−1Þ=
X
j,m

�
P
�
λt = λi, lt = njλt−1= λj, lt−1=m,X1: t−1

�
×P

�
λt−1 = λj, lt−1 =mjX1: t−1

��
=
X
j,m

h
P
�
λt= λijλt−1= λj, lt−1=m, lt = n,X1: t−1Þ

×P
�
lt = njλt−1 = λj, lt−1 =m,X1: t−1

�
× ~bt−1ðj,mÞ

i
.

[S6]

Eq. S5 together with Eq. S6 represented a recursive relationship
for the joint posteriors ~btði, nÞ. Evaluating them required the knowl-
edge of the change-point prior CPPðlt, lt−1, λt−1,X1: t−1, t− 1Þ=
Pðlt = njlt−1, λt−1,X1: t−1Þ and of the transition probability
Pðλt = λijλt−1 = λj, lt−1 =m, lt = n,X1: t−1Þ.
The change-point prior resulted independent from the history

X1: t−1 and, taking into account that the run length either in-
creased by one after each time step or became zero at a change
point, the CPP could be expressed as

CPP
�
n,m, λj, t− 1

�
=

8<
:

1− h
�
λj,m, t− 1

�
h
�
λj,m, t− 1

�
0

if   n=m+ 1
if   n= 0

otherwise.
[S7]

The function hðλt−1, lt−1, t− 1Þ represented the hazard rate, i.e.,
the probability that a change point occurred at time t− 1 given
that the state of the world was λt−1 for exactly lt−1 time steps. It
could be defined accordingly to the task structure (Hazard rate).
The third term of Eq. S6, i.e., the transition probability, could be
written as

P
�
λt = λijλt−1 = λj, lt−1 =m, lt = n

�
=

8<
:

δij
Tij

0

if   n=m+ 1
if   n= 0

otherwise,

[S8]

where δij represented the Kronecker delta and we introduced the
matrix Tij =Pðλt = λijλt−1 = λj, lt = 0Þ representing the transition
probability conditioned to the occurrence of a change point
(Transition probabilities). Using Eqs. S7 and S8 we could rewrite
Eq. S5 as

~btði, 0Þ∝
X
j≠i

X
m

Tijh
�
λj,m, t− 1

�
~bt−1ðj,mÞ

~btði, n≠ 0Þ∝ ½1− hðλi, n− 1, t− 1Þ�~bt−1ði, n− 1Þ.
[S9]

The equations above completely described the temporal evolu-
tion of the ~btði, nÞ once the hazard rate h and the transition
probability matrix Tij were defined.
Transition probabilities. Given that the transition matrix Tij was
conditioned to the occurrence of a change point, we needed only
to define the quantities Ti≠0,sa and Tsp,i≠0. These probabilities
were independent from the particular value of the firing rate λi in
the stimulus-present condition. We obtained that Ti≠0,sa = 1=9
(because all of the nine amplitude values were equally probable)
and Tsp,i≠0 = 1 (because the delay period always followed the
stimulation).
Hazard rate. As for the transition matrix, the hazard rate for the
stimulus-present condition was independent from the particular
value of the firing rate λi. The hazard rate depended only on the
time t− 1, on the duration of an epoch before the transition, lt−1,
and on the state corresponding to that epoch, λt−1.
In the stimulus-absent condition this function took a value

different from zero only during the PSWs and depended on the

epoch length λt−1 and on the time t− 1 (because transitions were
not allowed during the delay period). We defined it as

h
�
λj−1 = λ0, lt−1 =m, t− 1

�
=
�
hsaðmÞ

0
if  m= t− 1
otherwise. [S10]

In the stimulus-present condition, given the task, the hazard rate
depended only on the duration of the epoch before the transition
and was defined as

h
�
λj−1 ≠ λ0, lt−1 =m, t− 1

�
= hspðmÞ. [S11]

The exact form of the functions hsaðmÞ and hspðmÞ depended on
the task temporal structure. If the interval timing mechanism was
perfect, the function hsaðmÞ would represent the hazard rate
corresponding to a uniform probability density function while
hspðmÞ would represent the hazard rate corresponding to a fixed
duration interval lasting the stimulation period.
Nevertheless, these definitions ignored the fact that animals’

interval timing processes did not take place with infinite accuracy
(the accuracy of temporal estimation is supposed to be con-
strained by Weber’s law). Following ref. 44 we calculated a
“subjective” hazard function (based on the assumption of timing
scalar noise) and used these subjective hazards to perform the
inference. The value of the Weber fraction for time estimation
used in the simulations was ϕ= 0.18.
Observation probabilities. The last step to implement Eq. S5 was to
define the quantities PðxtjλtÞ. We considered that the observa-
tion xt represented the number of spikes produced in a sensory
area on a given time step and it was generated from a Poisson
distribution with mean λt. The parameter λ represented the
mean firing rate of a sensory area. Depending on the presence of
the stimulus and on the amplitude value, the parameter λt could
take the value λ0, in stimulus-absent conditions, and the value λi,
with i≠ 0, when a stimulus with amplitude i is presented. There-
fore, we defined the observation xt as follows:

xt =
�
Poissonðλ0Þ
PoissonðλiÞ

  if   the  stimulus  is  absent
if   the  stimulus  is  present  with  amplitude  i.

[S12]

We defined the probability to obtain the observation xt given a
mean firing rate λi at time t as

PðxtjλiÞ=PpoissonðxtjλiÞ, [S13]

where PpoissonðxjλÞ indicated the probability to obtain the obser-
vation x given a Poisson process with mean λ. The 10 values of
the parameters λi were obtained from previously recorded data
of the same experiment (6) and corresponded to the mean firing
rates of a sensory area in the 10 different conditions. Their
values, ordered according to increasing values of the amplitude
of the stimulus, were 15 Hz, 15.2 Hz, 15.5 Hz, 16 Hz, 17 Hz,
20 Hz, 23 Hz, 27 Hz, 35 Hz, and 40 Hz.
Belief equations. Using Eq. S9 the posterior probability btðiÞ of
being in the state i could be expressed as

btðiÞ=
X
n

~btði, nÞ

∝
X
j≠i

X
m

Tijhjðm, t− 1Þ~bt−1ðj,mÞ

+
X
n≠0

½1− hiðn− 1, t− 1Þ�~bt−1ði, n− 1Þ.

[S14]

For the stimulus-absent state the above equation took the form
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btðsaÞ∝
X
j≠0

X
m

Tsa,jhjðm, t− 1Þ~bt−1ðj,mÞ

+
X
n≠0

½1− hsaðn− 1, t− 1Þ�~bt−1ðsa, n− 1Þ. [S15]

Using the fact that ~btðsp,mÞ=
X
j≠0

~btðj,mÞ and the considerations

about the hazard rate and the transition probabilities made in
the previous sections, we obtained that

btðsaÞ= k ·PðxtjsaÞ
" X

m

hspðmÞ~bt−1ðsp,mÞ+
X
n≠t

~bt−1ðsa, n− 1Þ

+ ½1− hsaðlt−1 = t− 1Þ�~bt−1ðsa, t− 1Þ
#
.

[S16]

The first two terms of Eq. S16 represented the probability of the
delay interval while the last term corresponded to the probability
of remaining within the prestimulus interval. Using Eq. S9 we
could define btðλi ≠ λ0Þ for each of the nine amplitudes (with
λi ≠ λ0) as follows:

btði≠ 0Þ= k ·PðxtjλiÞ
"X

m

Ti≠0,sahsaðt− 1Þ~bt−1ðsa, t− 1Þ

+
X
n>0

�
1− hspðn− 1Þ�~bt−1ði, n− 1Þ

#
.

[S17]

Taking into account that btðspÞ=
X
i

btði≠ 0Þ and the consider-

ations about the transition probabilities and the hazard rate, we
obtained

btðspÞ= k·

"
1=9

X
i

PðxtjλiÞ
# X

m

hsaðt− 1Þ~bt−1ðsa, t− 1Þ

+ k ·

" X
n>0

�
1− hspðn− 1Þ� X

i

PðxtjλiÞ~bt−1ði, n− 1Þ
#
.

[S18]

The former term in the above equation represented the probabil-
ity of stimulus onset while the latter was the probability of remain-
ing in a stimulus-present state condition before the stimulus offset
(but after the onset of the vibration).
The stimulus was detected by the Bayesian module when the

belief about its presence exceeded the belief about its absence:

btðspÞ> btðsaÞ⇒ stimulus  detected. [S19]

The RL module. The latter module consists of a standard RL ar-
chitecture known as actor/critic (18). We consider a total of six
events: the vibrotactile stimulus, the start and go signals, and the
response movements of the animal (KD and the two PBs in-
dicating yes/no responses).
The physical salience function of event i is represented by the

ith component of the vector. With the exception of the vibro-
tactile stimulus, the component eðtÞ takes value one at the onset
of the event i and zero otherwise. The component evðtÞ corre-
sponding to the vibrotactile stimulus is activated when the
Bayesian module detects it. In this case we set evðtdÞ= bspðtdÞ
(with td denoting the time of the detection).
The onset of the salience function eiðtÞ at time tion activates a

temporal representation xiðtÞ of the event i. Since the stimulus

has to be represented during a long delay period, we have used a
temporal representation with optimal accuracy given a fixed
number of resources (53). This is defined as a set of N functions
TimðtÞ ðm= 1, . . . ,NÞ, each representing the event (a pulse of
one time step duration) around time τm after its detection. We
assume that the resolution of these functions decreases with τm
and that the times τm are distributed uniformly on a logarithmic
timescale (from a minimum value τmin = 0.1  s to a maximum
value τmax = 10  s). This leads to a scale-invariant representation
of the event i. An explicit mathematical realization is (53)

TimðtÞ≡Ti
�
t− tion, τm

�
=

1
jτmjCðkÞ

ZaiðtÞ
diðtÞ

�
τ′
τm

�k

e−k
τ′
τmdτ′, [S20]

where CðkÞ= kk+1=k!, aiðtÞ= tion − t, diðtÞ= tion + dt− t, and dt is
the duration of the original pulse (alternatively, Eq. S19 could
be expressed as a convolution of an alpha function with a pulse).
The parameter k controls the smear in the representation (the
larger k is, the more accurate the representation). The temporal
representation xiðtÞ= fxi1ðtÞ, xi2ðtÞ, . . . , xN1ðtÞg is taken equal to
the functions in Eq. S19 multiplied by the physical salience func-
tion of the event i :

xiðtÞ= ei
�
tion

�
TiðtÞ. [S21]

The reward predicted by the event i is expressed as

PiðtÞ=
XN
m=1

ximðtÞwim. [S22]

The total predicted reward at time t, V ðtÞ is given by

V ðtÞ=
X
i

PiðtÞ. [S23]

Following ref. 42, we suppose that the occurrence of an event i
with reward prediction higher than the total reward prediction at
the previous time disrupts earlier events representations:

Pi
�
tion

�
>
V
�
tion − 1

�
γ

⇒ xjm = 0  , j≠ i. [S24]

The DA signal is assumed to be represented by the RPE. How-
ever, DA neurons show an asymmetrical activity due to their low
baseline firing rate. This asymmetry is taken into account by in-
troducing a rectification threshold ψ > 0 for the RPE,

δðtÞ=
�
rðtÞ+TDðtÞ if   rðtÞ+TDðtÞ>ψ
−ψ otherwise, [S25]

where TDðtÞ= γV ðtÞ−V ðt− 1Þ and rðtÞ takes the value of R if the
reward occurs at time t and 0 otherwise. The ratio between the
value of ψ and the scalar reward value R determined the degree
of asymmetry in the error signal (the asymmetry increases if the
ratio decreases). The weights wim in Eq. S21 are adapted during
learning as

Δwim =
�
η+c   ximδðtÞ if   δðtÞ> 0
η−c   ximδðtÞ if   δðtÞ< 0, [S26]

where η+c indicates the learning rate for acquisition and η−c is the
learning rate in extinction.
The input to the actor component is a vector trace �eðtÞ whose

components �ei are defined as
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�eiðtÞ= eiðtÞ+ ρ�eiðt− 1Þ, [S27]

where ρ< 1 is a decay parameter. The actor selects an action aj only at
the end of each trial, after the go cue. The possible actions are pressing
one of the two buttons corresponding to yes/no decisions (the action
of withholding movement is not allowed). The probability of choosing
the action aj for an input �eðtÞ is given by a softmax distribution

P
�
ajj�eðtÞ

�
=
exp

P
i
νij ei

β

Z
, [S28]

where Z is the normalization constant and the parameter β gov-
erns the exploration/exploitation trade-off: As β approaches 0,
action selection approaches a winner-take-all mode while larger
values of β favor exploration. The weights νij in Eq. S27 are
adapted only at the end of each trial when the reward is
expected. Pressing of one of the two buttons occurs 0.3 s after
the go cue. The reward is delivered 0.2 s after the movement.
The weights νij are adapted with the learning rule

Δνij =

8>>><
>>>:

η+a
X
t

�eiðtrÞδðtÞ if   j=�j  , δðtÞ> 0

η−a
X
t

�eiðtrÞδðtÞ if   j=�j  , δðtÞ< 0

0 if   j≠�j,

[S29]

where �j denotes the selected action and tr is the time when the
reward is expected (i.e., five time steps after the go cue). The
parameters η+a and η−a correspond to the learning rate in acqui-
sition and in extinction.
Model analysis. In all of the simulations we used a time bin dt =
100 ms (for a full list of parameters used in the model see Table
S1). To compare the model results with the mean activity of DA
neurons we transformed the simulated RPE δðtÞ in an equivalent
firing rate ½δðtÞ�equiv as follows:

½δðtÞ�equiv = baseline+FδðtÞ. [S30]

The baseline representing the baseline activity of DA neurons
during the trial was set to 5.1 Hz. The value of the scale factor
F was chosen to obtain an equivalent prediction error ½δðtÞ�equiv
that matched the mean DA response at the start cue. Its value
in all of the simulations was 27.5 Hz. Additionally, the signal
½δðtÞ�equiv was filtered using a 300-ms sliding window displaced
every 100 ms (a procedure equivalent to the one done to obtain
the firing rate of DA neurons as a function of time). Responses
to the stimulus (in Fig. 6B) were calculated, averaging the signal
½δðtÞ�equiv over a 300-ms window centered 100 ms after the stim-
ulus onset. Responses to the go instruction and to the reward
delivery were calculated, averaging the signal ½δðtÞ�equiv over a
300-ms window centered, respectively, 100 ms after the go cue
and after the reward delivery (Fig. 6A).

Fig. S1. Selection of midbrain neurons. The neurons used for the study (n = 23) corresponded to those cells whose responses to the reward delivery in correct
trials were significantly higher than the responses to reward omission in incorrect trials (P < 0.05, two-sample t test). Responses to the reward were measured in
a 400-ms window centered 350 ms after the PB.

Start cue Stimulus Go cue Reward
Hits
Misses
False alarms
Correct rejections

Fig. S2. Mean firing rate of the discarded neurons. Mean population firing rate (black line, ±SEM colored bands) of the discarded neurons was plotted as a
function of time for the four trial types. Activity is aligned to the start cue (Left), the go cue (Center), and reward delivery (Right). The dotted line indicates the
baseline activity (5.9 spikes per second). The color code used to indicate the four trial types is the same as in Fig. 1B.
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Fig. S3. DA phasic responses and RPEs at the reward delivery. Both the mean firing rate (Left) and the RPE (Right) showed a positive activation in rewarded
trials and a pause in incorrect decision trials. The larger fraction of rewarded trials with the stimulus-present decision was responsible for the smaller RPE in hit
trials than in CR ones (Right). The color code used to indicate the four trial types is the same as in Fig. 1B. PB denotes the push button event.

-0.2

0

0.2

0.4

Fig. S4. DA activity in low-amplitude hit trials compared with the activity in stimulus-absent trials. The mean activity in low-amplitude hit trials (SI Materials
and Methods) exhibited a significant positive modulation with respect to CR trials during the PSW (P < 0.05, two-sample one-tailed t test) but not outside it (P =
0.26, two-sample one-tailed t test). Notably the activity in low-amplitude hit trials and in FA trials during the PSW did not show any significant difference (P =
0.21, two-sample one-tailed t test).

Fig. S5. The activity of DA neurons covaries with the animal’s choice during the presentation of the stimulus. The PSW was divided into four temporal bins. Hit
and miss trials of intermediate amplitudes were separately sorted according to their SO timing. For each time bin the normalized responses to the stimulus in
hit and miss trials were used to evaluate AUROC values. The analysis showed that the DA activity covaried with behavior significantly during the first three time
bins (P < 0.01). The small value of the index at the end of the PSW could be a consequence of the dynamics of cortical networks. Those dynamics can be
explained (31) in terms of a response criterion that becomes smaller during the PWS (to improve detection). After this temporal window the criterion increases
to reduce the production of FA events. It is reasonable to think that by the end of the PWS the criterion evolves continuously from a small to a large value. As a
consequence during the last time bin the firing response of cortical neurons in miss trials is more similar to the response in hit trials; DA midbrain neurons
reflect this situation. Green asterisks indicate significant AUROC values. The red dashed line indicates the chance level (AUROC = 0.5).

Table S1. List of the parameters adopted by the computational
model

Component of
the RL model Description Symbol Value

Critic Learning rate in acquisition η+c 0.1
Learning rate in extinction η−c 0.2
Rectification ψ 0.15
Discount factor γ 0.98
Smear of the T functions k 80
Spacing of the T functions c 0.2

Actor Learning rate in acquisition η+a 0.03
Learning rate in extinction η−a 0.1
Noise of the softmax β 0.5
Decay of stimulus trace ρ 0.98
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