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SUPPLEMENTARY MATERIALS AND METHODS 
 
Non-linear Poisson–Boltzmann equation (NLPB) 
The NLPB equation is widely used to calculate electrostatic interactions in ionic 
solutions (1). The equation reads 
 

∇ ∙ 𝜀 𝑟 ∇ ∙ 𝜙 𝑟 − 𝜀(𝑟)𝜅(𝑟)! sinh 𝜙 𝑟 + 4π𝜌! 𝑟 /kT = 0, 
 
where 𝜙 𝑟  is the electrostatic potential (EP) at any location 𝑟. The unit of 𝜙 𝑟  is kT/e, 
where k is the Boltzmann constant, T is the temperature, and e is the elementary charge. 
ε(𝑟) is the dielectric constant in the solute or solution. The term 𝜅! = 1/𝜆! = 8πq!𝐼/ekT, 
where 𝐼 is the ionic strength (moles/L) of the bulk solution. 𝜌! is the fixed charge density. 
The variables 𝜙, 𝜀, 𝜅 and 𝜌 are functions of the position vector 𝑟. The linearization 
sinh𝜙 𝑟  = 𝜙 𝑟  for small potentials leads to the linear Poisson–Boltzmann (LPB) 
equation in which contributions from different chemical groups are additive (2).  
 
DelPhi – a finite-difference method for solving the NLPB equation 
The DelPhi program (1,3) utilizes a finite-difference method to solve the NLPB equation 
for biomolecules in aqueous solution. The method maps the charge density and 
dielectric constant onto a three-dimensional cubic grid and solves the NLPB equation 
iteratively. The program allows users to specify ionic strength and dielectric constants of 
the solute and solvent. In addition, users can assign charges to the solute and measure 
the particular charge effects on the molecule in terms of EP.  
 
Generation of pentamer query table for EP prediction 
To compile the pentamer query table, we generated a large training dataset of all-atom 
Monte Carlo (MC) predictions for 2,297 different DNA fragments ranging 12 to 27 base 
pairs (bp) in length. We performed NLPB calculations to profile EP on these average 
structures using the DelPhi program (1). For each bp, we derived the EP at the midpoint 
of the minor groove and at 26 points that were equally distributed on a sphere with 1 Å 
radius surrounding this midpoint, with a total of 27 EP values for a sphere (4) (Figure 
2C). After filtering out extreme EP values (> 0 or < –20 kT/e), we calculated the mean 
and standard deviation (SD) for the remaining EP values. We assigned an average 
value to the sphere if its SD was < 3 kT/e, thereby excluding mean values with large EP 
fluctuations. As the sphere lies in the approximate center of the minor groove, EP can 
be defined as a function of sequence, with one value per bp.  
 
 After mapping EP as a function of sequence for 2,297 DNA fragments, we 
applied a pentameric sliding-window approach to each fragment. EP values at the 
central bp in a pentamer were recorded for the 512 unique pentamers. To remove 
outlier effects, we kept 80% of the data points and removed the extreme 10% of data 
points from the head and tail end of the data. Using this filtering approach, we 
generated a query table of average values for each occurrence of 512 possible 
pentamers in our dataset. The average occurrence of possible pentamers was 45.2 with 
a SD of 0.3. This query table was integrated in a sliding-window approach for high-
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throughput (HT) minor-groove EP prediction, similarly to our previous approach for DNA 
shape (5). 
 
High-throughput prediction of EP 
We provide a stand-alone web server (DNAphi; http://rohslab.usc.edu/DNAphi) for HT 
prediction of EP in the minor groove. Input data are nucleotide sequences in FASTA 
format, which can be pasted into a web form or uploaded as a separate file. The 
function ‘φ Prediction’ allows users to perform predictions and view the results in a 
graphical representation that can be downloaded as a quantitative data table for further 
analysis. The function ‘φ Learning’ requires the binding strength per given sequence in 
a user-defined unit as additional input data or response variable. The statistical 
machine-learning (ML) approach of L2-regularized multiple linear regression (MLR) was 
applied to this function (6). We also integrated the HT EP prediction function into 
DNAshapeR (5), our R/Bioconductor package 
(https://www.bioconductor.org/packages/devel/bioc/html/DNAshapeR.html). This 
package provides an easy-to-use and easy-to-extend interface that can be readily 
integrated into other HT genomic analysis platforms (5). 
 
Fis binding site data 
We used Fis-DNA binding site data for the eight sequences of F1, F24, F25, F26, F27, 
F28, F29 and F36 (7,8), which exhibit Fis-binding affinities differing by three orders of 
magnitude. Seven of these sites only differ in their five central bp (colored red in 
Supplementary Table S1). F36 has one additional bp that differs in the flank of the five 
central bp (bold in Supplementary Table S1). Sequences with their logarithms of binding 
affinity Kd are listed in Supplementary Table S1. Analysis of additional Fis binding sites 
is shown in Supplementary Figure S6. 
 
HT-SELEX data for 215 mammalian transcription factors (TFs) 
We used HT-SELEX data for 215 TFs from 27 protein families originally published by 
Jolma et al. (9) and recently re-sequenced with an on average 10-fold increase in 
sequencing depth, resulting in more accurate binding models (10). Sequencing data are 
available at the European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) under 
study identifier PRJEB14744. Data were pre-processed as described in Yang et al. (11) 
and are available at http://rohslab.usc.edu/MSB2017/. 
 
SELEX-seq data for Drosophila Hox proteins 
We used experimental data for 21 Exd-Hox heterodimers derived from binding assays 
followed by deep sequencing (SELEX-seq) (6). Data included the anterior and posterior 
Hox proteins, the Scr mutants containing mutated Arg3, His–12 or Arg5 and the Antp 
mutants in which minor groove-contacting residues from Scr were engineered into the 
Scr linker, all in complex with the cofactor Exd. All sequences selected in SELEX-seq 
experiments with a count ≥ 25 were aligned based on the core motif 5’-TGAYNNAY-3’, 
where N can be any nucleotide and Y represents C or T. Raw data can be downloaded 
from the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under 
accession number GSE65073 (6). Sequences with multiple occurrences of the core 
motif were removed from this analysis. 
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gcPBM data for human basic helix-loop-helix (bHLH) proteins 
We used experimental data for three bHLH dimers Mad1/Max (‘Mad’), Max/Max (‘Max’) 
and c-Myc/Max (‘Myc’) derived from gcPBM experiments (12). Data contained 36-bp 
genomic sequences centered at a putative E-box binding site. The number of 
sequences for Mad was 6,927, for Max was 8,569 and for Myc was 7,535. Data can be 
downloaded from GEO under accession number GSE59845 (12).  
 
Feature vector encoding 
Given a DNA sequence 𝑠 of length 𝑙, the corresponding feature vector can be derived 
from the following basis functions, in a similar way to those introduced by Zhou et al. (12) 
and Yang et al. (11). The basis function for EP features is: 
 

𝛺!!" 𝑠 = 𝐸𝑃! , if 𝑠(!) ∈ A,C,G,T
𝐸𝑃!"#, otherwise

,  𝑖 = 3,4,… , 𝑙 − 2 

 
where  𝐸𝑃!"# is the average value of EP over all possible pentamers. Basis functions for 
mononucleotide sequence features are: 
 

𝛺!× !!! !!
!!! s = 0, if 𝑠 ! ≠ A

1, if 𝑠 ! = A 
, 𝑖 = 1,⋯ , 𝑙 

𝛺!× !!! !!
!"# 𝑠 = 0, if 𝑠 ! ≠ C

1, if 𝑠 ! = C 
, 𝑖 = 1,⋯ , 𝑙 

𝛺!× !!! !!
!"# 𝑠 = 0, if 𝑠 ! ≠ G

1, if 𝑠 ! = G 
, 𝑖 = 1,⋯ , 𝑙 

𝛺!×!
!"# 𝑠 = 0, if 𝑠 ! ≠ T

1, if 𝑠 ! = T 
, 𝑖 = 1,⋯ , 𝑙 

 
where 𝑖 is the position of the given sequence. Basis functions for the DNA shape 
features minor-groove width (MGW), propeller twist (ProT), Roll and helix twist (HelT) 
are: 
 

𝛺!!"# 𝑠 = 𝑀𝐺𝑊! , if 𝑠(!) ∈ A,C,G,T
𝑀𝐺𝑊!"#, otherwise

,  𝑖 = 3,4,… , 𝑙 − 2 

𝛺!!"#$ 𝑠 = 𝑃𝑟𝑜𝑇! , if 𝑠(!) ∈ A,C,G,T
𝑃𝑟𝑜𝑇!"#, otherwise

,  𝑖 = 3,4,… , 𝑙 − 2 

𝛺!!"## 𝑠 = 𝑅𝑜𝑙𝑙! , if 𝑠(!) ∈ A,C,G,T
𝑅𝑜𝑙𝑙!"#, otherwise

,  𝑖 = 2,3,… , 𝑙 − 1 

𝛺!!"#$ 𝑠 = 𝐻𝑒𝑙𝑇! , if 𝑠(!) ∈ A,C,G,T
𝐻𝑒𝑙𝑇!"#, otherwise

,  𝑖 = 2,3,… , 𝑙 − 1 

 
where 𝑀𝐺𝑊!"#, 𝑃𝑟𝑜𝑇!"#, 𝑅𝑜𝑙𝑙!"# and 𝐻𝑒𝑙𝑇!"# are average values with respect to MGW, 
ProT, Roll and HelT, respectively, over all possible pentamers.  
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 EP and DNA shape features, denoted 𝛺!!", 𝛺!!"#, 𝛺!!"#$, 𝛺!!"## and 𝛺!!"#$, 
respectively, were generated and normalized by DNAshapeR (5). Normalization was 
performed by: 
 

𝛺!!" s =  𝐸𝑃! − 𝐸𝑃!"# / 𝐸𝑃!"# − 𝐸𝑃!"#  
 
where 𝐸𝑃! is the predicted EP value, 𝐸𝑃!"# is the minimum EP value and 𝐸𝑃!"# is the 
maximum EP value over all possible pentamers. Similarly, normalization for DNA shape 
features was performed by using: 
 

𝛺!!"# 𝑠 =  𝑀𝐺𝑊! −𝑀𝐺𝑊!"# / 𝑀𝐺𝑊!"# −𝑀𝐺𝑊!"#  
𝛺!!"#$ 𝑠 =  𝑃𝑟𝑜𝑇! − 𝑃𝑟𝑜𝑇!"# / 𝑃𝑟𝑜𝑇!"# − 𝑃𝑟𝑜𝑇!"#  
𝛺!!"## 𝑠 =  𝑅𝑜𝑙𝑙! − 𝑅𝑜𝑙𝑙!"# / 𝑅𝑜𝑙𝑙!"# − 𝑅𝑜𝑙𝑙!"#  
𝛺!!"#$ 𝑠 =  𝐻𝑒𝑙𝑇! − 𝐻𝑒𝑙𝑇!"# / 𝐻𝑒𝑙𝑇!"# − 𝐻𝑒𝑙𝑇!"#  

 
The complete feature vector for the given sequence can be obtained by concatenating 
the six numeric vectors:  
 

𝛺 𝑥 = 𝛺!" 𝑠 ,𝛺!"# 𝑠 ,𝛺!"# 𝑠 ,𝛺!"#$ 𝑠 ,𝛺!"## 𝑠 ,𝛺!"#$ 𝑠 ! 
 
Statistical tests and significance levels 
We applied t-test hypothesis testing to determine whether there was a significant 
difference between two experimental groups. For the predictive-power comparison in 
quantitative modeling (Figure 7, Supplementary Figures S8 and S11), we assumed a 
performance increase in terms of R2 for the augmented models as the alternative 
hypothesis. For the comparison of EP-based models for gcPBM datasets 
(Supplementary Figure S10), we assumed for the alternative hypothesis that the EP 
preferences at a particular position were different for two datasets. The calculated P 
value for the hypothesis test represents the probability of mistakenly rejecting the null 
hypothesis if the null hypothesis is true. The significance level α is the standard value 
for which a P value ≤ α is considered statistically significant. Typical values for α are 0.1 
(*), 0.05 (**), 0.01 (***) and 0.001 (****). For example, the P value 1.549×10-34 (Figure 
7B) indicates that the probability of making a mistake by rejecting a true null hypothesis 
(i.e. probability that there is no improvement achieved by an EP-augmented model) is 
1.549×10-34, which falls below the significance level of 0.001 and is therefore 
considered highly statistically significant.  
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SUPPLEMENTARY FIGURES 
 

 
 
Supplementary Figure S1. Illustration of possible applications of DNAphi. (A) Protein-
DNA binding affinities can be measured by several types of HT assays, including PBM 
(13), HT-SELEX (9,10) and their variants (14,15). Outputs of these experiments are 
represented as sequences followed by corresponding binding affinities. (B) Output 
sequences are used as inputs to the HT prediction programs DNAphi (this study) and 
DNAshape (16) (both methods are included in the DNAshapeR package (5)) for 
prediction of minor-groove EP and DNA shape features. DNAshapeR can encode EP, 
sequence and shape features as a concatenated feature vector. (C) Resulting vectors 
can be used as input of statistical ML methods for further analysis and modeling. (D) 
Resulting models can be used to infer specific mechanisms of protein-DNA recognition 
(without requiring 3D structures) or to identify TF binding sites in the genome. 
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Supplementary Figure S2. Validation of DNAphi predictions at TF-DNA binding sites. 
Minor-groove EPs of binding sites of (A) Exd-Ubx heterodimer (PDB ID 1B8I) (17), (B) 
Tc3 transposase (PDB ID 1V78) (18), (C) Exd-Scr heterodimer (PDB ID 2R5Z) (19) and 
(D) MATα2-MCM1 (PDB ID 1MNM) (20), whose binding interfaces include arginine 
residues inserted into the minor groove, were predicted by using DNAphi (blue) and 
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DelPhi (red). Pearson Correlation Coefficients (PCCs) demonstrate the statistical 
similarity between EP profiles derived by these two approaches. We highlighted the 
more negative minor-groove EP values (≤ –6.505 kT/e) predicted by DNAphi by 
underlining respective positions on the x-axis. Corresponding spheres defined by 
DNAphi are represented by spheres in each structure, with red indicating below-
average EP values ≤ –6.505 kT/e and pink indicating EP values > –6.505 kT/e. Protein 
residues that form minor-groove contacts as defined by DNAproDB (21) are shown in 
each structure.     
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Supplementary Figure S3. Validation of DNAphi predictions using TF-DNA binding 
sites. Minor-groove EPs of binding sites of (A) PhoB response regulator (PDB ID 1GXP) 
(17), (B) OhrR regulator (PDB ID 1Z9C) (18), (C) MogR (PDB ID 3FDQ) (19) and (D) 
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IRF-3 (PDB ID 1T2K) (20), whose binding interfaces include arginine residues inserted 
into the minor groove, were predicted by using DNAphi (blue) and DelPhi (red). PCCs 
demonstrate the statistical similarity between EP profiles derived from these two 
approaches. We highlighted the more negative minor-groove EP values (≤ –6.505 kT/e) 
predicted by DNAphi by underlining respective positions on the x-axis. Corresponding 
spheres defined by DNAphi are represented by spheres in each structure, with red 
indicating below-average EP values ≤ –6.505 kT/e and pink indicating EP values >        
–6.505 kT/e. Protein residues that form minor-groove contacts as defined by DNAproDB 
(21) are shown in each structure.   
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Supplementary Figure S4. Comparison of minor-groove EP predictions using DelPhi 
with different parameter settings. (A-D) EPs for DNA binding sites of four proteins 
(shown in Figure 3) were predicted by using DelPhi with a grid size of 165 and five 
focusing steps (red) vs. a grid size of 501 and three focusing steps (green). PCCs 
demonstrate the statistical similarity between EP profiles derived from DelPhi with 
varying parameter sets. 
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Supplementary Figure S5. EP distributions of 512 unique pentamers based on LPB 
calculations. (A) Distributions for complete nucleotides based on LPB calculations. 
Patterns of distributions are similar to those derived with the NLPB (Figure 4C). (B-D) 
Distributions based on partial charges of the (B) bases, (C) phosphate groups or (D) 
sugar moieties. 
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Supplementary Figure S6. HT predictions of MGW and EP for the mutated regions 
with respect to the high-affinity Fis binding site F1. The reference Fis-F1 co-crystal 
structure (PDB ID 3IV5) and quantitative Fis binding site logo (7) are shown in (A). The 
altered nucleotide positions include (B) mutations introducing asymmetry in the 
structure, (C) mutations introducing a YpR bp step at the ±(4-5) positions (F18) or ±(5-6) 
positions (F31) or eliminating the YpR bp steps (F32), mutations substituting bp flanking 
the core at the ±8 positions (D), ±9 positions (E), ±10 positions (F) or further outside the 
core binding site (G) and (H) mutations inverting AT-rich flanking sequences. We 
highlighted mutated regions in the respective table (orange shaded columns). HT 
predictions of MGW and EP within the mutated regions of the Fis binding sites correlate 
with the logarithm of binding affinity log(Kd). Correlation coefficients R2 between the 
logarithm of Kd and EP (blue) or MGW (red) were calculated for all Fis binding sites.  
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Supplementary Figure S7. HT predictions of EP based on the partial charge of (A) 
bases and (B) phosphates over the five central bp of eight Fis binding sites correlated 
with the logarithm of binding affinity Kd. Contribution from the partial base charges has a 
higher correlation with the logarithm of binding affinity than the contribution from 
phosphate groups, particularly when including the sequence with a central TpA bp step. 
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Supplementary Figure S8. Performance comparison of binding specificity predictions 
for multiple TFs derived from HT-SELEX, SELEX-seq and gcPBM HT binding assays. 
(A) Comparison of sequence+shape+EP and sequence+shape models. (B) Comparison 
of sequence+3shapes+EP models with three shape features (HelT, ProT and Roll) and 
sequence+shape models with four shape features (HelT, ProT, Roll and MGW). (C) 
Comparison of sequence+EP and sequence+MGW models. (D) Comparison of EP and 
MGW models. The P values were calculated by the t-test hypothesis testing method 
with performance increase in terms of R2 as the alternative hypothesis. 
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Supplementary Figure S9. Box plot analysis for quantifying performance gain of EP-
augmented models across TF families. Sequence+shape+EP models were compared 
with sequence+shape models for 239 TFs. Most of the sequence+shape+EP models 
outperform sequence+shape models (225 of 239 tested proteins). The P values were 
calculated by using the t-test hypothesis testing method with performance increase in 
terms of R2 as the alternative hypothesis. The P value for each TF dataset (TF 
family/HT binding experiment) is shown below the corresponding box plot. 
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Supplementary Figure S10. Minor-groove EP preferences of human bHLH TFs. (A) 
Heat maps illustrate minor-groove EP preferences of the Mad1/Max heterodimer (‘Mad’), 
Max/Max homodimer (‘Max’) and c-Myc/Max heterodimer (‘Myc’). Sequence data were 
derived from gcPBM experiments (22) using the top-25% signal intensities. (B) 
Nucleotide positions with significant EP differences based on a t-test are indicated for 
comparisons of Mad vs. Max, Mad vs. Myc, and Max vs. Myc (nucleotide positions with 
different minor-groove EP distributions are shown in different colors for P value). EP 
features were symmetrized based on the palindromic E-box, which is located at the 
central positions –3 to +3 marked by a black frame. 
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Supplementary Figure S11. Performance comparison of binding specificity predictions 
for TFs derived from HT-SELEX, SELEX-seq and gcPBM binding assays based on LPB 
calculations (for bases and phosphate groups). (A+C) Sequence+EP models 
outperform sequence-only models and contribute to the prediction accuracy of DNA 
binding specificities based on L2-regularized MLR and 10-fold cross-validation. (B+D) 
Sequence+shape+EP models outperform sequence+MGW models. The P values were 
calculated by the t-test hypothesis testing method with performance increase in terms of 
R2 as the alternative hypothesis.   
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SUPPLEMENTARY TABLE 
 
Supplementary Table S1. Eight sequences and logarithms of binding affinities of 
Fis-DNA sites. Co-crystal structures were solved for six of these binding sites. 
 
Label PDB ID Sequence log(Kd) Reference 
F1 3IV5 AAATTTGTTTGAATTTTGAGCAAATTT -0.69897 (7,8) 
F24 3JRB AAATTTGTTTGTTTTTTGAGCAAATTT -0.30103 (7,8) 
F25 3JRD AAATTTGTTTGTTAAATGAGCAAATTT 0 (7,8) 
F26 3JRE AAATTTGTTTGAAAAATGAGCAAATTT -0.30103 (7,8) 
F27 3JRF AAATTTGTTTGAACTTTGAGCAAATTT -0.22185 (7,8) 
F28 

 
AAATTTGTTTGAGCGTTGAGCAAATTT 1.748188 (7,8) 

F29 3JRC AAATTTGTTTGGGCGCTGAGCAAATTT 2.146128 (7,8) 
F36   AAATTTGTTTGAATCTCGAGCAAATTT 0.477121 (7) 
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