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COMPUTATIONAL METHODS WITH FULL REFERENCES 
 
 
Molecular Dynamics Simulations. Long-timescale MD simulations in explicit water were 
performed using AMBER 16 package1 in our in-house GPU cluster Galatea.  
Schiff base parameters for the MD simulations were generated within the antechamber 
module of AMBER 16 using the general AMBER force field (GAFF),2 with partial charges 
set to fit the electrostatic potential generated at the HF/6-31G(d) level by the restrained 
electrostatic potential (RESP) model.3 The charges were calculated according to the Merz-
Singh-Kollman scheme4-5 using Gaussian 09.6 Amino acid protonation states were predicted 
using the H++ server (http://biophysics.cs.vt.edu/H++).7 Then, the enzyme was solvated in a 
pre-equilibrated truncated cuboid box with a 10-Å buffer of TIP3P8 water molecules using the 
AMBER16 leap module, resulting in the addition of ∼9,000 solvent molecules. The systems 
were neutralized by addition of explicit counterions (Na+ and Cl−). All subsequent 
calculations were done using the widely tested Stony Brook modification of the Amber 99 
force field (ff99SB).9 The structures used were taken from the protein data bank (PDB); 
RA95.0 (4A29), RA95.5 (4A2S), RA95.5-5 (4A2R) and RA95.5-8F (5AN7). RA95.5-8 
structure was generated by introducing the corresponding mutations on the RA95.5-5 (4A2R) 
variant using RosettaBackrub software (https://kortemmeweb.ucsf.edu/backrub).10-12 An 
homology model for the complete RA95.5-8F structure (4 amino acids missing in the original 
5AN7 crystal structure, from 57 to 60) was generated using the SWISS-MODEL workspace 
(https://swissmodel.expasy.org)13-16 and taking the RA95.0 (4A29) and RA95.5-8F (5AN7) 
X-ray as template structures.  
A two-stage geometry optimization approach was performed. The first stage minimizes the 
positions of solvent molecules and ions imposing positional restraints on solute by a harmonic 
potential with a force constant of 500 kcal mol−1 Å−2, and the second stage is an unrestrained 
minimization of all the atoms in the simulation cell. The systems are gently heated using six 
50-ps steps, incrementing the temperature 50 K each step (0–300 K) under constant volume 
and periodic boundary conditions. Water molecules were treated with the SHAKE algorithm 
such that the angle between the hydrogen atoms is kept fixed. Long-range electrostatic effects 
were modeled using the particle-mesh-Ewald method.17 
An 8-Å cutoff was applied to Lennard-Jones and electrostatic interactions. Harmonic 
restraints of 10 kcal/mol were applied to the solute, and the Langevin equilibration scheme 
was used to control and equalize the temperature. The time step was kept at 1 fs during the 
heating stages, allowing potential inhomogeneities to self-adjust. Each system was then 
equilibrated without restrains for 2 ns with a 2-fs timestep at a constant pressure of 1 atm and 
temperature of 300 K. After the systems were equilibrated in the NPT ensemble, 3 
independent one microsecond MD simulations (i.e. 3 microsecond accumulated) were 
performed under the NVT ensemble and periodic-boundary conditions using our Galatea 
cluster (composed by 178 GTX1080 GPUs). With Galatea, RA95 simulations were 
performed at a speed of ca. 190 ns/day. 
 
 
 
Correlation Analysis of protein motions. Correlations between the carbon alpha (Cα) of all 
residues of the protein variants were analyzed along the whole microsecond MD simulations 
using the cpptraj module (matrix correl keyword) of AMBER16:1 
 

Cij =
Δri ⋅ Δrj
Δri

2 Δrj
2

 

where Δri  and Δrj  is the displacement of the Cα of the ith residue of the protein along the 
analyzed trajectory with respect to its position at the most populated cluster. This matrix has 
been called dynamic cross-correlation matrix. The correlation values fall in the [-1,1] range. 



A correlation value of 1 indicates that the considered residues move in the same direction in 
most of the frames, i.e. they are correlated. In contrast, a value of -1 denotes that the residues 
move in opposite directions (anti-correlated), and values of 0 indicate that the movement of 
the 2 residues is uncorrelated. 
 
Similarly, the mean distances between Cα of all residues along the MD simulations are 
computed with the cpptraj module (matrix dist keyword) of AMBER 16.1 Both the 
correlation and distance matrices have been computed using the accumulated three 
microsecond MD simulation.  
 
Input files for cpptraj module for computing the correlation and proximity matrices: 
 
# We take as reference the most populated cluster from the MD trajectory 
reference RA95_0_apo_3ms.c0.pdb 
trajin RA95_0_apo_3_micro.nc  1 last 1 
 
rms reference @CA 
matrix dist @CA out distmat_RA95_0_apo_3_micro.dat 
matrix correl name WT_corrCA @CA out corr_RA95_0_apo_3_micro.dat 
 
 
 
 
Shortest Path Map analysis. The first step of the Shortest Path Map (SPM) calculation relies 
on the construction of a graph based on the computed mean distances and correlation values, 
in a similar fashion as done in previous studies. 18-19 For each residue of the protein a node 
will be created and centered on the Cα. The next step is to define edges between pairs of 
nodes. An edge will be drawn between those pairs of nodes whose Cα distances are at less 
than 5 Å during the whole simulation time. The edge distance will be derived from the 
computed correlation values, which define the information transfer across a given edge: dij=-
log |Cij|. Thus, those pairs of nodes presenting larger correlation values (closer to 1 or -1) will 
have shorter edge distances, whereas less correlated residue pairs (values closer to 0) will 
have edges with long distances. The residue auto-correlation value is 1, thus the edge distance 
is 0 (no edge will be created). At this point, a graph with nodes and edges based on proximity 
and correlation is created, which is further simplified. We make use of Dijkstra algorithm as 
implemented in igraph module20 to identify the shortest path lengths. The algorithm goes 
through all nodes of the graph and identifies which is the shortest path to go from the first 
until the last protein residue. The method therefore identifies which are the edges of the graph 
that are shorter, i.e. more correlated, and that are more frequently used for going through all 
residues of the protein, i.e. they are more central for the communication pathway. Pairs of 
residues (i,j) that are more frequently used have a higher frequency score (fij). For more 
details about the Dijkstra algorithm implemented in igraph, check: 
http://igraph.org/python/doc/igraph.Graph-class.html#shortest_paths_dijkstra. We then 
identify which is the edge that has the maximum frequency score (fmax), and compute the 
weight for each edge (i,j) as: fij/fmax (fij=frequency score of the edge between residue i and j).  
Only those edges that are more central are represented, and weighted according to their fij/fmax 
score. The shortest path map (SPM) is then represented on the protein structure using 
PyMoL.21   
 
 
  



Table S1 | Mutations and kinetic properties of the different RA variants studied.  
Enzyme Nº of 

mutations Mutations kcat (s-1) KM (µM) kcat/ KM (M-1 s-1) kcat/kuncat 

RA95.022 16 
K10E, F22V, E51V, K53E, S70A, L83T, 
K110S, E159L, N180S, L184F, L187G, 
E210K, S211L, G233S, F246L, L247E 

0.00005 300  0.17 4.8 x 103 

RA95.523 6 V51Y, E53S, T83K, M180F, R182M, 
D183N 0.0043 270  16 6.6x105 

RA95.5-524 6 R23H, R43S, E53T, T95M, S110N, G178S,  0.17 230  320 1.1x107 

RA95.5-823 5 S43R, F72Y, K135N, S178V, G212D  0.36 230  1600 5.5x107 

RA95.5-8F23 13 
T53L, R75P, N90D, N135E, S151G, 

V178T, F180Y, A209P, K210L, I213F, 
S214F, R216P, L231M 

10.8 ± 0.6 320 ± 36 34000 1.7x109 

 

 
Figure S1 | Representation of the key distances of the enzyme active site residues in the apo state. 
Plot of the distance between the base and the catalytic lysine that will be involved in the Schiff base 
intermediate formation along the three 1 microsecond MD trajectories for RA95.0 (purple), RA95.5 
(green), RA95.5-5 (orange), RA95.5-8 (blue), and RA95.5-8F (yellow). All distances are in Å. 
 
 
 

 



 
Figure S2 | Representation of the enzyme active site conformational dynamics. Overlay of 
representative snapshots obtained along the the three 1 microsecond MD trajectories for the apo states 
of: (a) RA95.0, (b) RA95.5, (c) RA95.5-5, (d) RA95.5-8, and (e) RA95.5-8F. Catalytic residues are 
represented in blue and sticks (for visualization purposes Asn109 has not been included).  
 



 
Figure S3 | Watershell estimation along the MD trajectories for the different RA variants in their 
apo state. Number of water molecules surrounding the catalytic lysine, which suggest a change of 
acidity from RA95.0 (purple), RA95.5 (green), RA95.5-5 (orange), RA95.5-8 (blue), to RA95.5-8F 
(yellow). 
 
 
 
 
Table S2 | pKa estimation for the different RA variants in their apo state. pKa calculations using 
Propka3.025 for the catalytic lysine in the apo state were done using the most populated cluster 
obtained from the 1 microsecond MD simulations.   

 
RA95.0 RA95.5 RA95.5-5 RA95.5-8 RA95.5-8F 

 
Lys210 Lys 83 Lys 83 Lys 83 Lys 83 

Replica 0 10.7 7.7 8.1 9.3 8.0 
Replica 1 10.2 8.7 11.5 10.8 7.8 
Replica 2 9.7 10.0 8.5 8.5 9.0 

 



 
Figure S4 | Schiff base intermediate distances and angles. Representation of the distance between 
the deprotonated base and the oxygen of the Schiff base β-alcohol is represented (in Å) and the angle 
(X···H-O in º) of the hydrogen bond from the oxygen of the Schiff base β-alcohol along the MD 
trajectories. The representations show the different Hbond states explored for the deprotonation step of 
the reaction. 
 
 

 



 
Figure S5 | Schiff base intermediate distances.  Plot of the distance between the base and the β-
alcohol (X-··O) that will be deprotonated and the X-··H-O angle (in º, square parenthesis) of the 
hydrogen from the oxygen of the Schiff base β-alcohol along the three 1 microsecond MD trajectories 
for RA95.0 (purple), RA95.5 (green), RA95.5-5 (orange), RA95.5-8 (blue), and RA95.5-8F with 
Tyr180 acting as the base (yellow). All distances are in Å.   
 
 
 
 
 
 
 

 
 
 



 
Figure S6 | Schiff base intermediate overlays of the three replicas.  (a) RA95.0, (b) RA95.5, (c) 
RA95.5-5, (d) RA95.5-8, (e) RA95.5-8F with Tyr180 acting as the base, (f) RA95.5-8F with Tyr51 
deprotonated. Catalytic residues are represented in blue and sticks (for visualization purposes Asn109 
has not been included). X-ray structures with the diketone inhibitor bound are displayed for: RA95.0 
(PDB: 4A29, in purple), RA95.5 (4A2S, in two types of green, lime green for the inhibitor bound to 
position 83, and light green for position 210), RA95.5-5 (4A2R, orange), RA95.5-8F (5AN7, in 
yellow). 



 
Figure S7 | RA Schiff base intermediate conformational dynamics for all replicas. Overlay of 10 
conformational states sampled along the MD trajectories for the RA designs: (a) RA95.0, (b) RA95.5, 
(c) RA95.5-8, (d) RA95.5-8F. The X-ray structures are also displayed in purple (RA95.0), green 
(RA95.5), orange (RA95.5-5), and yellow (RA95.5-8F). The location of the most mobile loops L1 
(residues 52-66), L6 (residues 180-190), and L7 (residues 211-215) is marked. (e) Root Mean Square 
Fluctuation (RMSF, in Å) for all RA variants along the microsecond timescale MD simulations for all 
replicas.  



 

 
Figure S8 | Root Mean Square Fluctuation (RMSF) of all residues along the MD simulations in 
the apo state. The residues included in the SPM prediction have been marked using gray spheres. 
Those SPM positions that have been mutated in Directed Evolution (DE) experiments are colored in 
purple (if included in the SPM), orange (if displaced by a few residues from the path), or green (if 
displaced 6 positions from SPM). Most DE mutations and SPM predictions are located in regions that 
exhibit moderate flexibility.  
 
 

 
Figure S9 | Representation of the MD trajectories in the apo state projected into the two most 
important principal components  (PC1, PC2) based on Calpha contacts for (a) RA95.0, (b) RA95.5, (c) 
RA95.5-5, (d) RA95.5-8, and (e) RA95.5-8F apo states. For each sub-state, the distance between the 
heteroatom of the base and the nitrogen of the catalytic lysine is represented (in Å). Those states 
exploring distances in the 2.0-4.0 Å range were colored green, i.e. they are catalytically competent, 
represented with (✔); otherwise in red (✗). PC1 (x axis) differentiates inactive states (low PC1 values, 
pink structure in b) that present long catalytic distances from those properly oriented for the catalysis 
(high PC1 values, green structure in b). An overlay of the interpolated structures along PC1, and PC2 is 
also displayed for RA95.5. 
 



 
Figure S10 | Principal component analysis (PCA) based on available X-ray structures of RA 
variants (4A29, 4A2S, 4A2R, 5AN7, 5AOU). PCA compares the available structures and finds which 
regions of the protein present the major structural differences. The most flexible regions are 
represented in red and thicker loops, and the least flexible in blue (and thinner loops). The projection of 
the MD trajectories on the generated X-ray based PC space for RA95.0 (purple), RA95.5 (green), 
RA95.5-5 (orange), RA95.5-8 (blue), and RA95.5-8F (yellow) is also shown. In contrast to Figure 3 in 
main text, these projections are not able to discriminate between active and inactive conformational 
states. 
 



 

 
Figure S11 | Representation of the correlation matrices. Along the evolutionary pathway, the 
correlation matrix has been computed for all replicas, where the X- and Y-axis represent the residues of 
the enzyme.  
 



 
Figure S12 | Representation of the SPM and H-bond analysis network along the 
evolutionary pathway for: (a) 1LBL, (b) RA95.0, (c) RA95.5, (d) RA95.5-5, (e) RA95.5-8, 
and (f) RA95.5-8F. The size of the sphere is indicative of the importance of the position, and 
black edges represent the communication path, i.e. how the different residues are connected. 
Points mutated via DE are marked in purple (if they are included in the SPM), in orange if 
they are located in adjacent positions of the SPM (in parenthesis how far in sequence from the 
closest residue included in SPM), and in green if the mutation is located at more than 5 
positions far away in sequence from the SPM. Those hydrogen bonds that have been observed 
at least half of the simulation time are represented in sticks: in blue those hydrogen bonds that 
occur between backbone atoms, in red those contacts between backbone and side-chain 
positions, and finally in yellow hydrogen bonds between side-chains. The weight of the stick 
indicates how frequent the hydrogen bond is observed.    



 
Figure S13 | Representation of the SPM and PCA along the evolutionary pathway for: (a) 
1LBL, (b) RA95.0, (c) RA95.5, (d) RA95.5-5, and (e) RA95.5-8. The size of the sphere is 
indicative of the importance of the position, and black edges represent the communication 
path, i.e. how the different residues are connected. Thus point mutated via DE are marked in 
purple (if they are included in the SPM), in orange if they are located in adjacent positions of 
the SPM (in parenthesis how far in sequence from the closest residue included in SPM), and 
in green if the mutation is located at more than 5 positions far away in sequence from the 
SPM. An overlay of the interpolated structures along PC1 differentiates inactive states (low 
PC1 values, pink structure that present long catalytic distances from those properly oriented 
for the catalysis (high PC1 values, light blue structure).  
 
 
 



 
Figure S14 | Representation of the Shortest Path Map residue connections along the 
evolutionary pathway, generated from the 3,000 ns of MD trajectories accumulated for each 
enzyme in the apo state. Directed evolution (DE) mutations have been marked in purple (if 
included in the path), and orange (if displaced by less than 4 positions from the path). 
Interestingly, the SPM of the original scaffold 1LBL already contains all 23 DE mutations, 
highlighting that the highly active RA95.5-8F variant could have been generated much more 
efficiently had the SPM tool been applied. Catalytic residues, which are always included in 
the SPM, are marked in blue.  



 
Figure S15 | Projection of the MD trajectories in the Schiff base intermediate into the two most 
important principal components  (PC1, PC2) based on Calpha contacts for: a) RA95.5-8F with 
Tyr180 deprotonated, b) RA95.5-8F with Tyr51 deprotonated, c) RA95.5-8F variant with 
position 180 mutated back to Phenylalanine (Tyr180Phe, i.e. Tyr51 is the base), d) RA95.5-8F 
variant with position 51 mutated to Phenylalanine (Tyr51Phe, i.e. Tyr180 is the base). For each 
sub-state, the mean distance between the heteroatom of the base and the oxygen of the Schiff base β-
alcohol is represented together with the standard deviation (in Å). Those states exploring distances in 
the 2.0-4.0 Å range were colored green, i.e. they are catalytically competent, represented with (✔); 
otherwise in red (✗). The catalytically active conformation observed for RA95.5-8F and Y51F, Y180F 
variants is displayed in e). 
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