

Figure S1. MKK5-MPK3/6 cascade negatively regulates *CBF* gene expression. Related to Figure 2 and 3.

(A) *CBF3-LUC* alone or together with other plasmids was transfected to wild-type protoplasts. The luciferase activity was examined 16 h after transfection. For each transfection, *ZmUBQ::GUS* was also co-transfected, and the activity of GUS was assessed and used as the internal control. Asterisks indicate statistically significant differences (**P < 0.01, Student's *t*-test).

(B-E) The seedlings of wild-type, *MKK5^{DD}*, *MKK5^{DD}/ICE1 pro::ICE1-YFP* were pretreated with Dex for 9 h and then subjected to low temperature treatment for 3 h. Transcript accumulation of *ICE1* and *CBF* genes was assessed by qRT-PCR, and *ACTIN8* was used as the internal control.

Data are means \pm SD (n=3). Different letters represent statistically significant differences (P < 0.05, one-way ANOVA).

Figure S2. YDA is not required for the cold-induced activation of MPK3 and MPK6. Related to Figure 1.

(A) The seedlings of wild-type and *yda* mutants were treated with low temperature for 0, 15, and 30 min. The immunoblotting assays were performed using anti-pTEpY, anti-MPK6, and anti-Actin.

(B-D) The 12-day-old seedlings of wild-type and *yda* were treated with 4°C for 2 h. Transcript accumulation of *CBF* genes was assessed by qRT-PCR, and *ACTIN8* was used as the internal control.

Data are means \pm SD (n=3). Asterisks indicate statistically significant differences (**P < 0.01, Student's *t*-test).

Figure S3. *mekk1* single mutant and *mkk1 mkk2* double mutant are hypersensitive to freezing. Related to Figure 4.

(A-C) The seedlings of *mekk1* (A), *mkk1 mkk2* (B), *mkk1*, and *mkk2* (C) were treated with low temperature (4°C). The transcript accumulation of *CBF* genes was assessed by qRT-PCR, and *ACTIN8* was used as the internal control.

(D-F) The survival rates of freezing-treated *mekk1* (D), *mkk1 mkk2* (E), *mkk1*, and *mkk2* (F) seedlings after 5 days of recovery at 23°C.

(G-H) The 12-day-old seedlings of wild-type and *mekk1* (G) or *mkk1 mkk2* (H) mutants were treated with low temperature for 0, 15, and 30 min. The immunoblotting assays were performed using anti-pTEpY, anti-MPK3, anti-MPK6, and anti-Actin.

Data in (A)-(F) are means \pm SD (n=3). Asterisks indicate statistically significant differences (*P < 0.05, **P < 0.01, Student's *t*-test).

Figure S4. The phosphorylation of ICE1 in vivo. Related to Figure 5.

(A) The wild-type seedlings were treated with or without low temperature (4°C) for 30 min. The total proteins were extracted and applied for quantitative phosphoproteomics analysis. The relative phosphorylation level of ICE1 was assessed.

(B) The phosphorylation of the Ser403 residue of ICE1. Phosphoproteomics was performed for wild-type seedlings and the phosphorylation residues of the ICE1 protein were analyzed.

Figure S5. MPK4 is not able to phosphorylate ICE1. Related to Figure 5.

MPK4 was immunoprecipitated from wild-type seedlings incubated at 23°C or at 4°C for 1 h. The purified MPK4 was used for immunoprecipitation-kinase assay using ICE1 or MBP as a substrate.

Figure S6. MPK3 and MPK6 interact with ICE1. Related to Figure 5 and 6.

The split luciferase complementation assay was applied to test the interaction between MPK3/6 and ICE1. The indicated constructs were transiently expressed in *Nicotiana benthamiana* using *Agrobacterium tumefaciens*-mediated method. Before taking images, the plants were treated with or without low temperature (4°C) for 1 h. Three biological replicates were conducted, and similar results were obtained.

Figure S7. The phosphorylation sites of Ser94, Thr366, and Ser403 are required for the degradation of ICE1. Related to Figure 6.

(A) The seedlings of *MKK5^{DD}/35S::GFP-ICE1* were treated with or without MG132 before they were incubated with Dex. The total proteins were extracted and immunoblotting assays were performed using anti-GFP and anti-Actin.

(B-F) The seedlings of each transgenic plant were treated with Dex or low temperature (4°C). The total proteins were extracted and immunoblotting assays were performed using anti-GFP, anti-pTEpY, and anti-Actin. The band intensity was evaluated using ImageJ software. All experiments were repeated three times with similar results.

corore und arter cora decament. Reflaced to righte ri							
Туре	Gene ID	Gene name	Phosphorylation site	Cold/Con*	p-value		
MAPKKK	AT4G08500	MEKK1	S62	1.59	6.09E-03		
	AT1G63700	YDA	S720	1.35	1.07E-01		
	AT1G63700	YDA	S794	1.92	1.01E-02		
MAPKK	AT4G29810	MKK2	S65	1.78	2.61E-03		
МАРК	AT3G45640	MPK3	Y198	2.35	7.27E-03		
	AT4G01370	MPK4	T201	2.41	2.47E-03		
	AT4G01370	MPK4	Y203	2.50	2.71E-03		
	AT2G43790	MPK6	T221	2.75	3.12E-03		
	AT2G43790	MPK6	Y223	2.75	3.22E-03		
	AT1G18150	MPK8	S539	0.46	2.58E-03		
	AT3G18040	MPK9	Y187	1.23	5.28E-01		
	AT1G73670	MPK15	S511	0.58	5.16E-03		
	AT1G73670	MPK15	Y254	0.58	2.43E-02		
	AT5G19010	MPK16	Y189	0.73	5.94E-02		
	AT2G01450	MPK17	S397	1.04	5.97E-01		
	AT1G53510	MPK18	Y189	1.00	9.95E-01		
	AT3G14720	MPK19	Y189	1.33	3.14E-01		
	AT2G42880	MPK20	Y189	0.81	1.95E-01		

Table S1. Comparison of the phosphorylation levels of the selected MAPK pathway components before and after cold treatment. Related to Figure 1.

^{*}The proteins from the control and cold-treated wild-type seedlings were extracted for quantitative phosphoproteomics analysis. The phosphosites that were detected in all three biological replicates of samples were selected for quantitative analysis. The peak intensity of each identified phosphosite was calculated. The fold change between cold-treated and mock-treated samples was determined by dividing the average values of three biological replicates between the two samples.

Primer name	Sequence	Usage
CBF1 RT-LP	GGAGACAATGTTTGGGATGC	Quantitative real-time PCR
CBF1 RT-RP	TTAGTAACTCCAAAGCGACACG	Quantitative real-time PCR
CBF2 RT-LP	TGACGTGTCCTTATGGAGCTA	Quantitative real-time PCR
CBF2 RT-RP	CTGCACTCAAAAACATTTGCA	Quantitative real-time PCR
CBF3 RT-LP	GATGACGACGTATCGTTATGGA	Quantitative real-time PCR
CBF3 RT-RP	TACACTCGTTTCTCAGTTTTACAAAC	Quantitative real-time PCR
ICE1 RT-LP	TGCCTGCTAAGAATCTGATGGC	Quantitative real-time PCR
ICE1 RT-RP	AGATCCAGGAGGAGTTGACTCA	Quantitative real-time PCR
Actin RT-LP	ATGACTCAGATCATGTTTGAGACC	Quantitative real-time PCR
Actin RT-RP	TCAGTAAGGTCACGACCAGCAA	Quantitative real-time PCR
CRLK1 RT-LP	GTAGCAGCTTTTGCTTACAAATGCA	semi-quantitative RT-PCR
CRLK1 RT-RP	TTCTGACTCCTCCACTATCGGA	semi-quantitative RT-PCR
CRLK2 RT-LP	GCATACCTAGATATAACTACAAGG	semi-quantitative RT-PCR
CRLK2 RT-RP	CTGTCAAGTTCACAAGATTCC	semi-quantitative RT-PCR
LB1.3	ATTTTGCCGATTTCGGAAC	Genotyping
LB1 (SAIL)	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC	Genotyping
SALK 052557 LP	AATCGGAACCTCGAGATGAAG	Genotyping
SALK_052557 RP	TTCACTCAAATCCTGACCCTG	Genotyping
SALK 151594 LP	ATTTTTGTCAACAATGGCCTG	Genotyping
SALK 151594 RP	TCTGCCTTTTCACGGAATATG	Genotyping
SALK 127507 LP	CTCTGGCTCATCGCTTATGTC	Genotyping
SALK 127507 BP		Genotyping
SALK_127507 KI		Genotyping
SALK_027645 DD		Genotyping
SALK_027043 KF	TTCTTTTCCCAAATGGATTCC	Genotyping
SAIL_511_H01 PP	GTTAAAGCCATCCCTGACTCC	Genotyping
SALL_J11_101 KI	TTGCTCTGAATACACAGCAGC	Genotyping
SALK_056245 LI	GTCTTAGAGATCAGCGGGGGAC	Genotyping
SALK_030243 KI		Genotyping
SALK_016240 LI		Genotyping
SALK_010240 KI	TTTATGGACGAGGTCCTCATG	Genotyping
SALK 103505 RP	CCTTGTCCTAGAACGGTTGTG	Genotyping
SALK 105078 LP	GAGCAGCTGTAGGACGATTTG	Genotyping
SALK 105078 RP	TCTCGCAGGAAATTTCAGTTC	Genotyping
DILIK_105070 R	GGGGACAAGTTTGTACAAAAAGCAGGCTTCGCGATTAGA	Plasmid construction
ICE1 g LP	GTAAATCCGAGT	Transgenic plants
	GGGGACCACTTTGTACAAGAAAGCTGGGTCGATCATACCA	Plasmid construction
ICE1 g RP	GCATACCCTGC	Transgenic plants
		Plasmid construction
ICE1 proto LP	CGCGGATCCATGAACAGCGACGGTGTTTGGCT	Protoplast
ICE1 DD		Plasmid construction
ICE1 proto RP	TTGCGGCCGCTCAAACCAAACCAGCGTAACCTG	Protoplast
		Plasmid construction
ICEI GST LP	CUGGAATICATGAACAGUGAUGGIGITIGGUI	In vitro kinase assay
		Plasmid construction
ICEI GST RP	TIGCGGCCGCTCAAACCAAACCAGCGTAACCTG	In vitro kinase assay
ICE1 S94A LP	CTATTGATTCTTCTTCTTGTGCTCCTTCTCAAGCTTTTAG TCTT	Point mutation
ICE1 S94A RP	AAGACTAAAAGCTTGAGAAGGAGGAGCACAAGAAGAAGAAGAA TCAATAG	Point mutation
ICE1 S203A LP	TCCGTTGGAGTTGGAAGGTTTTGGTGCTCCTGCTAATGGT	Point mutation
ICE1 S203A RP	ACCATTAGCAGGAGCACCAAAACCTTCCAACTCCAACGGA	Point mutation
ICE1 T366A LP	CACAATGAACTTGAGTCAGCTCCTCCTGGATCTTTGC	Point mutation
ICE1 T366A RP	GCAAAGATCCAGGAGGAGCTGACTCAAGTTCATTGTG	Point mutation
ICE1 T382A LP	AAGCTTCCATCCGTTGGCACCTACACCGCAAAC	Point mutation

Table S2. Primers used in this study. Related to STAR methods.

ICE1 T382A RP	GTTTGCGGTGTAGGTGCCAACGGATGGAAGCTT	Point mutation
ICE1 T384A LP	CCATCCGTTGACACCTGCACCGCAAACTCTTTC	Point mutation
ICE1 T384A RP	GAAAGAGTTTGCGGTGCAGGTGTCAACGGATGG	Point mutation
ICE1 S403A LP	GTTGTGTCCCTCTTCTTTACCAGCTCCTAAAGGCCAGCAA	Point mutation
ICE1 S403A RP	TTGCTGGCCTTTAGGAGCTGGTAAAGAAGAGGGACACAAC	Point mutation
MDV2 I D		Plasmid construction
MPK5 LP	COCOUNTICATUAACACCOOCOOTOOCCAA	Kinase and protoplast assay
MDV2 DD		Plasmid construction
MPK5 KP	ITOCOOCCOCCTAACCOTATOTTOOATTOAOT	Kinase and protoplast assay
MDVCLD		Plasmid construction
MPK0 LP	COCOGATCCATOGACOGTOGTICAGOTCAAC	Kinase and protoplast assay
MDV C DD		Plasmid construction
MPK0 KP	ITOCOCCOCCTATIOCIOATATICTOGATIO	Kinase and protoplast assay
MDVAID		Plasmid construction
MPK4 LP	COCODATICIATOTICOCODADADITOTITICO	Protoplast assay
MDKADD	TTCCCCCCCCCCACACTCACCCCCCACTC	Plasmid construction
MIFK4 KP	ITOCOUCCUCTCACACIDAOTCITOAODATTO	Protoplast assay
MDV2 LUC LD	GGGGACAAGTTTGTACAAAAAGCAGGCTTCGAAGGA	Plasmid construction
MI KJ-LUC LI	GATAGAACCATGAACACCGGCGGTGGCCAAT	Split-LUC assay
MPK3_LUC PP	GGGGACCACTTTGTACAAGAAAGCTGGGTCACCGTATG	Plasmid construction
MI KJ-LUC KI	TTGGATTGAGTGCT	Split-LUC assay
MDK6 LUC LD	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAG	Plasmid construction
MI KO-LUC LI	ATAGAACCATGGACGGTGGTTCAGGTCAAC	Split-LUC assay
MPK6-LUC PP	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTGCTGATA	Plasmid construction
MI KO-LOC KI	TTCTGGATTGAAAGC	Split-LUC assay
	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAG	Plasmid construction
ICEI-LOC LI	ATAGAACCATGGGTCTTGACGGAAACAATG	Split-LUC assay
	GGGGACCACTTTGTACAAGAAAGCTGGGTCGATCATACC	Plasmid construction
ICEI-LUC KF	AGCATACCCTGCT	Split-LUC assay