Plant-endophytes interaction influences the secondary metabolism in *Echinacea purpurea* (L.) Moench: an *in vitro* model.

Valentina Maggini^{1,2,3}, Marinella De Leo⁴, Alessio Mengoni¹, Eugenia Rosaria Gallo^{2,3}, Elisangela Miceli¹, Rose Vanessa Bandeira Reidel⁴, Sauro Biffi⁵, Luisa Pistelli⁴, Renato Fani¹, Fabio Firenzuoli³ and Patrizia Bogani¹

¹Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; ²Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; ³Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; ⁴Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; ⁵Botanical Garden Casola Valsenio, Via del Corso 6, 48010 Ravenna, Italy **Supplementary Table 3**. Spectral (UV and ESI-MS/MS) and chromatographic data (retention time, t_R) of alkamides 1-15 detected in *n*-hexane extracts of *E. purpurea* not-infected stem/leaves (SL) and roots (R), used as control, and SL and R infected by *E. purpurea* SL endophytes. MS/MS data are obtained from the fragmentation of the [M+H]⁺ precursor ions. The peaks are related to those reported in Supplementary Figs. 2 and 3. Compound numbers are referred to alkamides listed in Table 1.

Peak	Compound	$t_{\rm R}$	М	[M+H] ⁺	[M+Na] ⁺	[2M+H] ⁺	[2M+Na] ⁺	MS/MS	MS/MS ions	λ _{max}	Reference
	1 1/ 2	(min)	220	220	252	450	401	base peak	(<i>m/z</i>)	(nm)	24
Α	I and /or 2	18.7	229	230	252	459	481	131	1/4°, 157°, 146, 129°, 116, 91	260	26
В	3 and /or 4	22.8	243	244	266	487	509	131	216, 174 ^e , 157 ^a , 129 ^f , 117, 91	260	29
С	NI	23.7	263	264	286	527	549	246	222, 175, 147, 105, 93	260	NR
	-	262					525	2021	105h 150 155°		
D	5	26.3	257	258	280	515	537	202"	185°, 159, 157°, 143, 131, 117, 91	260	29
	6 (only in leaves)	26.7	245	246	268	491	513	147	190 ^a , 173 ^b , 145, 131 ^e , 119, 105, 91	260	26
Е	NI	28.3	265	266	288	531	553		-	260	NR
F	NI	30.1	245	246	268	491	513		221, 203, 190, 175, 173, 147, 119, 105, 91	260	NR
G	7 and/or 8	32.5	247	248	270	495	518	149	192 ^a , 175 ^b , 147 ^e , 142, 93, 74	260	26
Н	NI	33.9	267	268	290	535	557	-	-	260	NR
I	NI	34.7	285	286	308	571	593	230	213, 195, 185, 171, 145, 131, 117, 95	250	NR
J	NI	35.4	278	279	301	557	579	204	234, 223, 203, 181, 163, 149, 135, 95	260	NR
К	9 or 10	36.4	261	262	284	525	545	149	234, 204, 192 ^c , 181, 175 ^d , 156, 147 ^f , 133, 121, 107, 93	250	28
L	11	36.8	249	250	272	499	521	167	194 ^a , 177 ^b , 149 ^e , 135, 121, 109, 95	275	26
М	NI	39.0	275	276	298	551	573	177	220, 203, 175, 135, 121, 95		NR
N	12	41.6	251	252	274	503	525	179 ^b	196 ^a , 161, 137, 151 ^e , 119, 95,79	260	26
0	13 or 14	23.5	243	244	266	487	509	145	216, 202, 188 ^a , 171 ^b , 143 ^e , 129, 117, 105, 91	260	29
Р	15	27.7	257	258	280	515	537	145	230, 188 ^c , 171 ^d , 143 ^f 117, 105, 91	260	29

^aFragment $[M+H-56]^+$ originated by the loss of the isobutyl group attached to the nitrogen; ^bfragment $[M+H-73]^+$ due to the loss of the isobutyl amine; ^cfragment $[M+H-70]^+$ due to the loss of the 2-methylbutyl group attached to the nitrogen; ^dfragment [M+H-87]⁺ corresponding to the loss of the 2-methylbutyl amine; ^efragment [M+H-101]⁺ due to the loss of the amide portion from an isobutylamide; fragment [M+H-115]⁺ originated by the loss of the amide portion from a 2methylbutylamide. NR: not reported; NI: not identified. Alkamides not previously reported (peaks C, E, F, H, I, J and M) are ascribable to the alkamide class due to the characteristic absorbance at 260 nm and typical ESI-MS and MS/MS spectra Indeed, masses of alkamide ions are detected with ESI-MS in the positive mode, originating protonated $[M+H]^+$ and sodiated molecules [M+Na]⁺. Protonated [2M+H]⁺ and sodiated dimers [2M+Na]⁺ were also commonly observed. Alkamides occurring in *E. purpurea* had structures containing ethylenic and/or acetylenic bonds and an amide portion, constituted by an isobutylamide or a 2-methylbutylamide moiety², displaying a high absorbance at 260 nm. These alkamides were structurally similar and many of them were isomers difficult to separate. Electrospray ionization techniques combined with multi-stage tandem spectrometry (MSⁿ) had the advantage of discriminating isobutylamides and 2-methylbutylamides²⁵. Furthermore, isomeric alkamides could be distinguished by MS^n fragmentation patterns²⁸. For isobutylamides the MS/MS spectra of deprotonated molecules (compounds 1/2, 5-8, 11, 12, and 13/14) showed fragments corresponding to the loss of 56 u for the isobutyl group and 73 u for the isobutyl amine. Fragments corresponding to the loss of 70 u (for the 2-methylbutyl group) and 87 u (2-methylbutyl amine) could be observed for 2methylbutylamides (compounds 3/4, 9/10, and 15). In addition, diagnostic fragments corresponding to the alkyl chains due to the cleavage of the amide portions were detected (101 u for isobutylamides and 115 u for 2methylbutylamides)^{26,29}