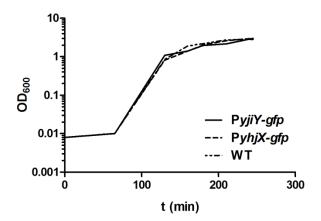
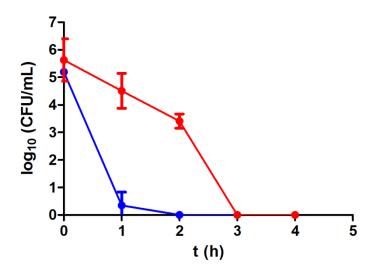
SUPPLEMENTARY MATERIAL

A single-cell view of the BtsSR/YpdAB pyruvate sensing network in *Escherichia coli* and its biological relevance


Cláudia Vilhena,^a Eugen Kaganovitch,^b Jae Yen Shin,^{a*} Alexander Grünberger,^{b*} Stefan Behr,^{a*} Ivica Kristoficova,^a Sophie Brameyer,^{a*} Dietrich Kohlheyer,^b Kirsten Jung,^a#

Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany^a; Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany^b


Running Head: Phenotypic heterogeneity in E. coli

#Address correspondence to Kirsten Jung, jung@lmu.de

*Present address: Alexander Grünberger, Multiscale Bioengineering, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld; Stefan Behr, Roche Diagnostics GmbH, Nonnenwald 2 82377 Penzberg; Jae Yen Shin, MPI of Biochemistry, Am Klopferspitz 18 82152 Martinsried; Sophie Brameyer, University College London, Gower Street, WC1E 6EA London

FIG S1 Growth of reporter strains. *E. coli* cells expressing *gfp* under the control of P_{yhjX} or P_{yjiY} and the MG1655 strain (WT, without promoter-*gfp* fusion) were grown in LB medium.

FIG S2 Determination of the minimum duration of killing (MDK) after ofloxacin treatment. E. coli cells of either WT (blue line) or mutant $\Delta btsSRypdAB$ (red line) were grown in LB-medium. At the post-exponential growth phase cells were challenged with ofloxacin (5 μ g/ml). Samples were taken and analyzed for colony forming units (CFUs). The MDK₉₉ value was taken as the time needed to kill 99% of the initial population. Experiments were performed three independent times and error bars indicate the standard deviations of the means.

	- INDUCER		+ INDUCER	
STRAINS	Cells (%) OFF ON		Cells (%) OFF ON	
WT GFP (IPTG)	92.7	7.3	3.1	96.9
btsSRypdAB GFP (IPTG)	97.8	2.2	51.0	49.0
WT GFP-DppA (Arabinose)	94.9	5.1	24.4	75.6
btsSRypdAB GFP-DppA (Arabinose)	98.1	1.9	99.4	0.6
WT LysP-mCherry (Arabinose)	97.7	2.3	33.4	66.6
btsSRypdAB LysP-mCherry (Arabinose)	98.2	1.8	98.5	1.5

TABLE S1 The BtsSR/YpdAB network promotes overproduction of proteins. *E. coli* cells of either WT or the *btsSRypdAB* mutant harboring an overproduction vector with IPTG inducible promoter for the overproduction of GFP; an arabinose inducible promoter for the overproduction of DppA-GFP and an arabinose inducible promoter for the overproduction of LysP-mCherry were grown in LB medium. Samples were taken before (- inducer) and after (+ inducer) the addition of the inducer. Flow cytometry was used to count fluorescent cells (maximum of 2000)

events), and the percentages of OFF (non-fluorescent cells) and ON cells (fluorescent cells) were calculated from the raw data. Experiments were performed three independent times and standard deviations were below 10%.