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Supplementary Methods
Derivation of the sQ and the tQ models
The dynamics of a simple noninhibitory enzyme kinetics can be described with the following ordinary differential equations
based on mass action kinetics:

Ṡ = −k f SE + kbC, (S1)
Ċ = k f SE− kbC− kcatC, (S2)
Ṗ = kcatC, (S3)

where the total enzyme concentration (ET ≡C+E) and the total substrate and product concentration (ST ≡ S+C+P) are
conserved. One popular way to reduce the model is the standard QSSA (sQSSA) under the assumption that C rapidly equilibrates
to its QSS. The QSS can be derived by solving Ċ = 0 in Eq. S2:

C(S) =
ET S

KM +S
,

where KM = (kb + kcat)/k f is the Michaelis-Menten constant. As the QSS is determined by the states of S, by substituting the
QSS to (Eqs. S1 and S3), C can be eliminated from the system and thus the following reduced model can be derived:

Ṡ = −kcat
ET S

KM +S
,

Ṗ = kcat
ET S

KM +S
.

Under the validity condition of this model (Eq. 3), S+P≈ ST and thus the model can be further simplified as the following sQ
model:

Ṗ = kcat
ET (ST −P)
KM +ST −P

.

Another way to reduce the model is based on the total QSSA, where the total substrate T ≡ S+C instead of S is used to
derive the QSS of C by solving k f (T −C)E− kbC− kcatC = 0:

C(T ) =
ET +KM +T −

√
(ET +KM +T )2−4ET T

2
.



Using this and the conservation ST = T +P, the tQ model can be derived:

Ṗ = kcat
ET +KM +ST −P−

√
(ET +KM +ST −P)2−4ET (ST −P)

2
.

Description of the Bayesian inference approach
If the complete trajectory of the product process {P(t)}T

t=0 is observed and thus both the types and the timings of transitions
are known up to a fixed time point T , the trajectory is a realization of the Markov process with exponential holding times
for which the complete likelihood function can be explicitly written out1. Specifically, the increment of product molecules
and the timing of an increment follow the Poisson process and explicitly exponential distribution1, 2 or gamma distribution
with homogeneous propensity function3, respectively. We extend this idea to derive the approximate likelihood function when
available data are not complete. To this end, we consider the data P = (P0,P1,P2, . . . ,Pm) over [0,T ] = [t0, tm] with the initial
value P0 = 0, where Pi is the scaled number of product molecules observed at time point ti (see below for the detail about the
scaling of data). During the observed time interval between ti−1 and ti, an increment of molecules ni = Pi−Pi−1 approximately
follows the Poisson process with a rate parameter of λi[ti− ti−1], in which λi is the propensity function (Tables S2 and S3).
Thus the timing of the increments approximately follows the gamma distribution with the shape parameter ni and the rate
parameter λi. We used this idea to derive the following likelihood function for the parameters kcat and KM:

L(kcat ,KM|P, t1, t2, . . . , tm) ∝

m

∏
i=1

λ
ni
i [ti− ti−1]

ni−1 exp{−λi[ti− ti−1]}, (S4)

where, λi is given by

λi = kcat
ET (ST −Pi−1)

KM +ST −Pi−1
, for the sQ model (S5)

or

λi = kcat
ET +KM +ST −Pi−1−

√
(ET +KM +ST −Pi−1)2−4ET (ST −Pi−1)

2
, for the tQ model. (S6)

Because the supports of both parameters kcat and KM are positive, for the sake of MCMC (Markov Chain Monte Carlo)
inference, we assign a gamma distribution as a prior for each parameter2:

π(kcat) ∝ kap−1
cat exp(−bpkcat), (S7)

and

π(KM) ∝ KaM−1
M exp(−bMKM), (S8)

where shape and rate parameters are chosen so that the prior mean is the true value and prior variance is ten times larger than
the prior mean. Using these gamma priors (Eqs. S7 and S8) and the likelihood function (Eq. S4), the posterior distribution for
two parameters is proportionate to

π(kcat ,KM|t1, t2, . . . , tm,P) ∝

m

∏
i=1

λ
ni
i [ti− ti−1]

ni−1 exp{−λi[ti− ti−1]}× kap−1
cat exp(−bpkcat)×KaM−1

M exp(−bMKM).

The following Gibbs-sampler procedure draws samples from the above posterior distribution.

Step 1. Initialize a value of kcat and KM .

Step 2. Sample kcat from the conditional posterior, gamma distribution, given the current KM .

Step 3. Sample KM from the conditional posterior distribution, given the current kcat via the Metropolis-Hastings algorithm
described below.

Step 4. Repeat steps 2–3 until convergence occurs.
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To derive the conditional posterior distribution of kcat given KM , we use the fact that the propensity function λi (Eqs. S5
and S6) is the product of kcat and a function gi(Pi,KM), which is independent of kcat :

λi = kcat ×gi(Pi,KM),

where

gi(Pi,KM) =
ET (ST −Pi−1)

KM +ST −Pi−1
, for the sQ model (S9)

or

gi(Pi,KM) =
ET +KM +ST −Pi−1−

√
(ET +KM +ST −Pi−1)2−4ET (ST −Pi−1)

2
, for the tQ model. (S10)

Therefore, the conditional distribution of kcat given KM has a form of gamma distribution

π(kcat |KM, t1, t2, . . . , tm,P) ∝ bapos
pos kapos−1

cat exp(−bposkcat), (S11)

where apos = ap +∑
m
i=1 ni and bpos = bp +∑

m
i=1 gi(Pi,KM)[ti− ti−1].

On the other hand, the conditional distribution of KM given kcat has a complicated form according to

π(KM|kcat , t1, t2, . . . , tm,P) ∝ KaM−1
M

m

∏
i=1

gi(Pi,KM)ni exp{−kcat ∑
i

gi(Pi,KM)[ti− ti−1]−bMKM}, (S12)

where gi(Pi,KM) is given by Eqs. S9 and S10. To draw a sample from this conditional distribution, it is necessary to apply
the intermediate Metropolis-Hastings step within the Gibbs sampler using the truncated normal distribution as the proposal
distribution. The following algorithm performs the Metropolis-Hasting step at the (l +1)th iteration given the current (i.e. lth)
KM value.

Step 1. Draw K∗M from the proposal distribution j(K∗M|K
(l)
M ) = f (K∗M|K

(l)
M ,cV ), where f (·) is the positive (i.e., truncated at zero)

normal distribution with mean K(l)
M (i.e. the value of KM at the previous iteration) and with the variance cV . Here V is the

minus inverse of the second derivative of the conditional posterior (Eq. S12) at K(l)
M and c is a tuning constant.

Step 2. Calculate the acceptance ratio

A =
π(K∗M|kcat , t1, t2, . . . , tm,P) f (K(l)

M |K∗M,cV )F(K(l)
M )

π(K(l)
M |kcat , t1, t2, . . . , tm,P) f (K∗M|K

(l)
M ,cV )F(K∗M)

,

where F(x) is cdf of f (·).

Step 3. Set

K(l+1)
M =

{
K∗M with probability min(A,1)

K(l)
M otherwise

The tuning constant is set so that the acceptance ratio of the Metropolis-Hastings algorithm is about 44%, which is selected
according to a criterion in4.

MCMC sampling
We applied the proposed MCMC procedure under the Bayesian approach to the simulated timecourse data (Fig. S1). For each
data set, we ran 105,000 iterations. After dropping the first 5,000 iterations for burning set, we took every 100 iterations of
the remaining 100,000 iterations to obtained 1,000 approximately independent samples. As 100 datasets are used, in total we
obtain the 100,000 posterior samples.

The posterior samples for the two-parameter estimation (Fig. 3) are obtained as described above. The posterior samples for
the single parameter (Fig. 2) are obtained after a simple modification: when kcat is sampled from conditional gamma posterior
(Eq. S11), KM is fixed as its true value and vice versa. In the MCMC procedure for joint estimation of two parameters using
combined data from different experiments (Figs. 5-6), the likelihood function is modified as follows. Assume that two data
sets D1 = {P1, t1,0, t1,1, . . . , t1,m} and D2 = {P2, t2,0, t2,1, . . . , t2,m} generated under two different conditions (e.g. low ET and
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high ET with fixed ST ) are used together. If the likelihood functions for D1 and D2 as L1(kcat ,KM|D1) and L2(kcat ,KM|D2)
respectively, then the likelihood for the combined data becomes

L(kcat ,KM|D1,D2) = L1(kcat ,KM|D1)×L2(kcat ,KM|D2). (S13)

Using this modified likelihood function under the same prior gamma distributions as before, the posterior distribution is
obtained by applying the MCMC method for the joint parameter estimation as described above.

Scaling of data
As discussed above, the increment of molecules of P approximately follows the Poisson process with the rate parameter being
the propensity function Eqs. S5 and S6. Therefore, the likelihood function based on the timings ti− ti−1 approximately follows
the gamma distribution with its shape parameter, which depends on the scaling of the data. Under the assumption of the Poisson
process for the increment of Pi, the more accurate approximation of the likelihood is obtained when the number of molecules of
the substrate is comparable to the total number of observed time points (m). Thus, throughout the work Pi are scaled so that Pm
becomes the number of data sets (m) and thus ET , ST , and KM are also scaled accordingly.

Sensitivity analysis and convergence checking
We performed the sensitivity analysis of the MCMC inference with respect to the prior distribution by varying prior mean
and variance. The inferences are robust against changes in priors except for the lack of identifiability described in the Results
section. A convergence test was performed for the joint parameter estimation from the combined data set (Fig. 7c-e). We
calculated potential scale reduction factors5 for the two parameters kcat and KM . The potential scale reduction factors are below
1.1 when the iteration number is 2,500. The Fig. S7 is the trace plot for convergence checking. We can see that the posterior
sample quickly converges from five overdispersed starting points after about 300 iterations.
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Reactions Propensity functions

S+E
k f−→C k f

Ω
XSXE

C
kb−→ S+E kbXC

C kcat−−→ P+E kcatXC

Table S1. Reactions and propensity functions of the original full model. k f = 0.017nM−1s−1, kb = 0.03s−1,
kcat = 0.0016s−1. Ω is the size of volume, and Xi is the number of molecules of species i.

Reactions Propensity functions
kcat−−→ P

kcat XET (XST −XP)

XST −XP+KMΩ

Table S2. Reactions and propensity functions of the sQ model. KM = kb+kcat
k f

. Ω is the size of volume, and Xi is the number
of molecules of species i.

Reactions Propensity functions
kcat−−→ P kcat

XET +KMΩ+XST −XP−
√

(XET +KMΩ+XST −XP)2−4XET (XST −XP)

2

Table S3. Reactions and propensity functions of the tQ model. KM = kb+kcat
k f

. Ω is the size of volume, and Xi is the number of
molecules of species i.
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Figure S1. Simulated data sets. To obtain data sets for parameter estimation, 102 stochastic simulations of the original full
model (Table S1) were performed for each condition: ST = 0.2,2, or 80nM and ET = 0.2,2, or 40nM. Here, S(0) = ST ,
C(0) = 0, and P(0) = 0 following a typical in vitro experiment protocol. Ω is chosen so that the number of initial substrate
molecules becomes 80 and thus similar level of fluctuation is generated for all conditions.
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Figure S2. Schematic diagram for the Bayesian inference process estimating kcat and KM from the product progress curves.
While kcat can be directly sampled from the conditional gamma distribution (Eq. S11), Metropolis-Hastings algorithm is used
to sample KM . See Supplementary Methods for the details.
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Figure S3. Box plots of Bayesian estimates of kcat and KM based on either the sQ model (left and blue) or the tQ model (right
and red). (a, c) Box plots of the 102 posterior mean estimates of kcat and KM from 102 data sets (Fig. S1). Here, green triangles
represent the true values of parameters. The estimates of kcat and KM obtained with the sQ model are inaccurate when ET is
large. While the estimates of kcat and KM obtained with the tQ model show little error, the confidence level of KM estimates
decreases as either ET or ST increases. (b, d) Box plots of 102 relative coefficient of variations (CVs) of the posterior
distributions from 102 data sets (Fig. S1). Here, posterior CVs are normalized with prior CVs. When the tQ model is used, as
ET or ST increases, so that KM is negligible in the propensity function of the tQ model (Eq. 6), the relative CV increases,
indicating the loss of identifiability.
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Figure S4. The estimation of a single parameter (kcat or KM) with the sQ and tQ models with an informative Gamma prior.
The distributions of 105 posterior samples obtained with either the sQ or the tQ model for different condition (ST = 0.2,2, or
80nM and ET = 0.2,2, or 40nM). For each condition, 102 stochastic simulations with the full model were used as data sets
(Fig. S1). Here, more informative priors are used than those in Fig. 2: gamma priors whose means are true values and variances
are twice the prior mean. Despite the informative prior, estimates obtained with the sQ model still show considerable errors
when ET is large. Here, green triangles represents the true value of the parameters.
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Figure S5. Box plots of Bayesian estimates of kcat and KM inferred from combined data with low and high ET using either
the sQ model (left and blue) or the tQ model (right and red) (a, c) Box plots representing the 102 posterior mean estimates of
kcat and KM from the combined 102 data sets: 102 data sets from low ET and 102 data sets from high ET (Fig. S1). Here,
ST = 0.2,2, or 80nM. Green triangles represent the true values of parameters. The estimates of kcat and KM obtained with the
sQ model have considerable errors. On the other hand, those obtained with the tQ model show little error with the confidence
level similar to that of the single-parameter estimation (Figs. 2 and S3). (b, d) Box plots representing 102 relative CVs of the
posterior distributions from the combined 102 data sets. Here, posterior CVs are normalized with prior CVs. When the tQ
model is used, the relative CVs become similar to those of the single-parameter estimation (Fig. S3).
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Figure S6. Box plots of Bayesian estimates of kcat and KM inferred from combined data with low and high ST using either the
sQ model (left and blue) or the tQ model (right and red) (a, c) Box plots representing the 102 posterior mean estimates of kcat
and KM from the combined 102 data sets: 102 data sets from low ST and 102 data sets from high ST (Fig. S1). Here,
ET = 0.2,2, or 40nM. Green triangles represent the true values of parameters. The estimates of kcat and KM obtained with the
sQ model have a larger error as ET increases. On the other hand, those obtained with the tQ model show little error with the
confidence level similar to that of the single-parameter estimation (Figs. 2 and S3). (B) Box plots of 102 relative CVs of the
posterior distributions from the combined 102 data sets. Here, posterior CVs are normalized with prior CVs. When the tQ
model is used, the relative CV becomes similar to that of the single-parameter estimation (Fig. S3).
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Figure S7. Trace plots of five independence posterior sample sequences of MCMC simulation used in Fig 7c. For
chymotrypsin (a), urase (b), and fumarase (c), all sequences with overdispersed starting points quickly converge. Here,
combined data of low ET and high ET is used (see Fig 7c for details).
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