Supplementary Information, Data S1

Materials and Methods

Protein preparation

The preparation of full-length AtD14, MAX2 and ShHTL7 proteins are described previously [2, 3].

YLG hydrolysis assay

The preparation of YLG and *in vitro* YLG hydrolysis assays were performed by following reported procedures [6]. To determine the K_m and k_{cat} values, the YLG hydrolysis assays were performed by incubating 1 µg of recombinant proteins (AtD14 or ShHTL7) with YLG (0.1~10 µM). The fluorescent intensity was measured by EnSpire Multimode Plate Reader (PerkinElmer) at excitation by 480 nm and detection by 520 nm. The K_m and V_{max} values were calculated by fitting assay values (fluorescence intensity) with a Michaelis-Menten plot, while the k_{cat} values were calculated from formula k_{cat} = V_{max} / [E]. For inhibition assays, β-lactones at the range between 0.004 and 640 µM were co-incubated with 1 µM or 5 µM of YLG and 1 µg of recombinant proteins (AtD14 or ShHTL7). IC₅₀ values were calculated by fitting competition assay values with a Dose-Response-Inhibition plot on GraphPad Prism (version 5.0).

LC-MS/MS analysis

Purified ShHTL7 (2 μ M) was co-incubated with 10 μ M TFQ0022 or TFQ0023 at 25°C for 20 min, then the reaction mixture was subjected to SDS-PAGE. The gel bands of ShHTL7 were excised for trypsin digestion and applied to LC-MS/MS analysis as described previously [2]. Similar approach was performed using AtD14 except that AspN and trypsin double digestion was used for this protein.

Pull-down assay

In vitro pull-down assay was performed using 20 μ g His₆-MAX2 as the bait and 12 μ g GST-AtD14 as the prey in the absence or presence of indicated chemicals. The pull-down procedure is described previously [2].

Hypocotyl elongation analysis

The hypocotyl length of wild-type *Arabidopsis* Col-0 was measured for seedlings grown on Murashige and Skoog (MS) medium supplemented with indicated chemicals, under continuous low light at 22°C for 6 days.

SL receptor labelling assay

The CaMV 35S promoter-driven *AtD14-Flag* overexpression transgenic plants were grinded in liquid nitrogen, followed by total protein extraction with extraction buffer (10 mM HEPES, 150 mM NaCl, pH 7.0). The receptor labelling and enrichment procedure was similar to that described by Weerapana et al. [16]. Briefly, the proteomes were incubated with TFQ0023 (10 μ M or 20 μ M) at room temperature for 1 h, after which proteins were denatured by heating at 95°C for 5 min. The labeled proteomes were tagged by the click reaction of the terminal alkyne in TFQ0023 with an azide-biotin, which was then subjected to enrichment on magnetic streptavidin beads. The bound proteins were released by heating and subjected to separation by SDS-PAGE. The western blot was performed using anti-Flag as the first antibody. In competitive assays, 20 μ M TFQ0022 and TFQ0023 were both added to the proteomes.

Chemical synthesis and characterization

1) General information

Reactions were monitored by Thin Layer Chromatography on plates (HSGF254) supplied by Yantai Chemicals (China). If not specially mentioned, flash column chromatography uses silica gel (200-300 mesh) supplied by Tsingtao Haiyang Chemicals (China).

NMR spectra were recorded on Brüker Advance 400 (¹H 400 MHz, ¹³C 100 MHz). TMS was used as internal standard for ¹H NMR (0.00 ppm), and solvent signal was used as reference for ¹³C NMR (CDCl₃, 77.0 ppm). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

Mass spectrometric data were obtained using Brüker Apex IV FTMS using ESI (electrospray ionization) and Waters GCT (GC-MS) using EI (electron impact ionization). Infrared spectra were recorded on a Thermo Nicolet iS5 spectrometer. Optical rotations were measured on a Perkin-Elmer 341LC digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\lambda}$ (c g/100 mL).

Analytical high performance liquid chromatography (HPLC) was performed on a Shimadzu[®] Modular HPLC equipped with a variable wavelength UV detector (deuterium lamp, 190-700 nm) using a Daicel ChiraceITM OD-H column (4.6 mm×250 mm) or Daicel ChiralpakTM AD column (4.6 mm×250 mm) and HPLC-grade isopropanol and hexanes as the eluting solvents.

Unless otherwise mentioned, all reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions. All the chemicals were purchased commercially and used without further purification. O-trimethylsilylquinidine (TMSQD), O-trimethylsilylquinine (TMSQN) and O-methylquinine (MeQN) were prepared according to the literature procedure [17, 18].

2) General procedure A for asymmetric [2+2] cycloadditions: To a solution of TMSQD or TMSQN (0.1 mmol) and LiClO₄ (0.5 mmol) in 1.0 mL of diethyl ether was added 2.0 mL of CH₂Cl₂ and the reaction mixture was cooled to −78°C. То the resulting mixture was added 0.41 mL of N, N-diisopropylethylamine (2.5 mmol) followed by the aldehyde (1.0 mmol). A solution of 2.0 mmol of acyl chloride in 0.5 mL of CH₂Cl₂ was then added within 2 h by syringe pump. The reaction mixture was stirred for 7 h then was quenched at the reaction temperature by adding 10 mL of Et₂O and the resulting mixture was filtered through silica gel eluting with Et₂O (3×20 mL). The filtrate was concentrated in vacuo and the crude product mixture was purified by flash chromatography [11].

(3R, 4S)-3-Methyl-4-phenethyloxetan-2-one (TFQ0010):

The general procedure A was followed employing 40 mg of TMS-QN (0.1 mmol), 53 mg LiClO₄ (0.5 mmol) and 132 µL of phenylpropyl aldehyde (1.0 mmol). Purification by flash chromatography (EtOAc/PE = 1/20) gave 92 mg (48%) of the title compound as a colorless oil. $[\alpha]_{D}^{25} = -47.9$ (c = 0.87, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.31 (t, J = 7.4 Hz, 2H), 7.26 – 7.16 (m, 3H), 4.56 (ddd, J = 10.0, 6.4, 4.0 Hz, 1H), 3.74 (p, J = 7.7 Hz, 1H), 2.87 (ddd, J = 14.2, 9.4, 5.2 Hz, 1H), 2.70 (dt, J = 13.8, 8.2 Hz, 1H), 2.08 (dtd, J = 14.4, 9.4, 5.2 Hz, 1H), 1.96 (dddd, J = 13.9, 9.4, 7.4, 4.0 Hz, 1H), 1.26 (d, J = 7.8 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-d) δ 172.53, 140.42, 128.66, 128.50, 126.40, 74.65, 47.24, 31.99, 31.56, 8.15; IR (neat, cm⁻¹): 3027, 2940, 1812, 1454, 839, 698; HRMS-ESI calc. for C₁₂H₁₄O₂Na [M + Na⁺]: 213.088600; Found: 213.088172.

Separation of enantiomers by Chiral HPLC [Daicel ChiracelTM OD-H column, 4.6mm× 250 mm, flow rate 1.0 ml/min, 5% ⁱPrOH, 95% hexane T_r: 11.548 min (3R, 4S) provided only one enantiomer (\geq 99% ee).

¹H NMR of compound TFQ0010

¹³C NMR of compound TFQ0010

(3S, 4R)-3-Methyl-4-phenethyloxetan-2-one (TFQ0011):

The general procedure A was followed employing 40 mg of TMS-QD (0.1 mmol), 53 mg LiClO₄ (0.5 mmol) and 132 µL of phenylpropyl aldehyde (1.0 mmol). Purification by flash chromatography (EtOAc/PE = 1/20) gave 107 mg (56%) of the title compound as a colorless oil. $[\alpha]_D^{25}$ = +43.7 (c = 0.90, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.31 (t, J = 7.3 Hz, 2H), 7.23 (dt, J = 12.5, 5.4 Hz, 3H), 4.56 (ddd, J = 10.0, 6.4, 4.0 Hz, 1H), 3.74 (p, J = 7.7 Hz, 1H), 2.87 (ddd, J = 14.2, 9.4, 5.2 Hz, 1H), 2.70 (dt, J = 13.8, 8.2 Hz, 1H), 2.08 (dtd, J = 14.4, 9.4, 5.2 Hz, 1H), 1.96 (dddd, J = 13.9, 9.5, 7.4, 4.0 Hz, 1H), 1.26 (d, J = 7.8 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-d) δ 172.53, 140.42, 128.66, 128.50, 126.40, 74.65, 47.24, 31.99, 31.56, 8.15; IR (neat, cm⁻¹): 3027, 2940, 1812, 1454, 840, 700; HRMS-ESI calc. for C₁₂H₁₄O₂Na [M + Na⁺]: 213.088600; Found: 213.088203.

Separation of enantiomers by Chiral HPLC [Daicel ChiracelTM OD-H column, 4.6 mm×250 mm, flow rate 1.0 ml/min, 5% ⁱPrOH, 95% hexane T_r: 10.954 min (3S, 4R) provided only one enantiomer (\geq 99% ee).

¹³C NMR of compound TFQ0011

(3R, 4R)-3-Methyl-4-phenyloxetan-2-one (TFQ0020):

The general procedure A was followed employing 40 mg of TMS-QN (0.1 mmol), 53 mg LiClO₄ (0.5 mmol) and 102 µL of benzaldehyde (1.0 mmol). Purification by flash chromatography (EtOAc/PE = 1/20) gave 72 mg (44%) of the title compound as a colorless oil. $[\alpha]_{D}^{25}$ = +145.9 (c = 0.63, CHCl₃); 1H NMR (400 MHz, Chloroform-d) δ 7.40 (dq, J = 14.3, 7.1 Hz, 3H), 7.30 (d, J = 7.2 Hz, 2H), 5.65 (d, J = 6.5 Hz, 1H), 4.05 (p, J = 7.6 Hz, 1H), 0.93 (d, J = 7.8 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-d) δ 172.20, 134.64, 128.67, 128.64, 125.70, 75.30, 50.22, 9.61; IR (neat, cm⁻¹):2979, 1820, 1455, 1142, 940, 731; HRMS-El calc. for C₁₀H₁₀O₂ [M⁺]: 162.06753; Found: 162.06722. Separation of the enantiomers by chiral HPLC [Daicel Chiracel[™] OD-H

column, 4.6 mm×250 mm, flow rate 1.0 ml/min, 3% ⁱPrOH, 97% hexane, T_r 9.201 min (3R, 4R) provided only one enantiomer (≥ 99% ee).

¹H NMR of compound TFQ0020

¹³C NMR of compound TFQ0020

3) General procedure B for asymmetric [2+2] cycloadditions: To a solution of Me-QN (0.1 mmol) and Lil (1.0 mmol) in 0.25 mL of diethyl ether at ambient temperature was slowly added 2.0 mL of CH_2Cl_2 . The resulting mixture was cooled to $-78^{\circ}C$ and 0.41 mL of *N*, *N*-diisopropylethylamine (2.5 mmol) was added, and then aldehyde (1.0 mmol) was added dropwise. Afterwards a solution of acyl chloride (2.0 mmol) in 0.5 mL CH_2Cl_2 was added over 2 h by syringe pump (the tip of syringe was put into the reaction mixture). The reaction mixture was stirred for 7 h at $-78^{\circ}C$. The reaction was quenched at $-78^{\circ}C$ by adding 10 mL of Et₂O and the resulting mixture was filtered through silica gel eluting with 3×20 mL of Et₂O. The filtrate was concentrated in vacuo and the crude product mixture was purified by flash chromatography [19].

(3R, 4S)-3-Ethyl-4-phenethyloxetan-2-one (TFQ0021):

The general procedure B was followed employing 34 mg of Me-QN (0.1 mmol), 134 mg Lil (1.0 mmol) and 132 µL of phenylpropyl aldehyde (1.0 mmol). Purification by flash chromatography (EtOAc/PE = 1/25) gave 16 mg (10%) of the title compound as a colorless oil. $[\alpha]_{D}^{25} = -52.5$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.32 (t, J = 7.4 Hz, 2H), 7.22 (dd, J = 11.7, 7.6 Hz, 2H), 4.55 (ddd, J = 10.1, 6.4, 3.4 Hz, 1H), 3.60 - 3.49 (m, 1H), 2.90 (ddd, J = 14.2, 9.5, 5.0 Hz, 1H), 2.77 – 2.65 (m, 1H), 2.09 (ddt, J = 14.3, 9.6, 4.8 Hz, 1H), 1.97 (dddd, J = 13.9, 10.3, 7.5, 3.4 Hz, 1H), 1.84 (ddd, J = 13.7, 8.7, 7.2 Hz, 1H), 1.67 (dq, J = 14.3, 7.4 Hz, 1H), 1.06 (t, J = 7.4 Hz, 3H); 13 C NMR (100 MHz, Chloroform-d) δ 171.93, 140.47, 128.63, 128.51, 126.35, 74.57, 54.18, 32.08, 31.62, 17.48, 12.21; IR (neat, cm⁻¹): 2969, 1816, 1454, 1133, 909, 731; HRMS-ESI calc. for C₁₃H₁₆O₂Na [M + Na⁺]: 227.104250; Found: 227.103855. Separation of the enantiomers by chiral HPLC (Daicel Chirapak[™] AD-H column, 4.6mm×250mm, flow rate 0.7 ml/min, 10% PrOH, 90% hexane, Tr 7.825 (3S, 4R) and 8.881 min (3R, 4S) provided the enantiomer ratio: (3S, 4R):(3R, 4S) = 5.2:94.8 (90% ee).

Peak	Ret. Time	Area	Area%
1	7.825 min	1195300	5.2
2	8.881 min	21931933	94.8
total		23127233	100

¹H NMR of compound TFQ0021

¹³C NMR of compound TFQ0021

(3R, 4S)- 4-Phenethyl-3-propyloxetan-2-one (TFQ0022):

The general procedure B was followed employing 34 mg of Me-QN (0.1 mmol), 134 mg Lil (1.0 mmol) and 132 μ L of phenylpropyl aldehyde (1.0 mmol). Purification by flash chromatography (EtOAc/PE = 1/25) gave 41 mg (17%) of the title compound as a colorless oil. [α]²⁵_D = -37.7 (c = 0.93, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.30 (q, J = 7.3 Hz, 2H), 7.23 (dt, J = 11.7, 5.3 Hz, 3H), 4.54 (ddd, J = 10.1, 6.4, 3.4 Hz, 1H), 3.68 – 3.54 (m, 1H), 2.89 (ddd, J = 14.1, 9.5, 5.0 Hz, 1H), 2.70 (dt, J = 13.8, 8.2 Hz, 1H), 2.07 (dtd, J = 14.3, 9.6, 5.0 Hz, 1H), 1.95 (dddd, J = 14.0, 10.6, 7.5, 3.4 Hz, 1H), 1.76 (ddt, J = 11.5, 7.7, 3.5 Hz, 1H), 1.64 – 1.46 (m, 2H), 1.46 – 1.31 (m, 1H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-d) δ 172.10, 140.52, 128.65, 128.53, 126.37, 74.56, 52.41, 32.24, 31.65, 26.01, 20.90, 13.86; IR (neat, cm⁻¹): 2960, 1813, 1454, 1134, 907, 729; HRMS-ESI calc. for C₁₄H₁₈O₂Na [M + Na⁺]: 241.119901; Found: 241.119937.

Separation of the enantiomers by chiral HPLC (Daicel ChirapakTM AD-H column, 4.6 mm×250 mm, flow rate 0.7 ml/min, 10% ⁱPrOH, 90% hexane, Tr 4.829 (3S, 4R) and 5.704 min (3R, 4S) provided the enantiomer ratio: (3S, 4R):(3R, 4S) = 29.2:70.8 (42% ee).

5.0 1.0 6.0 7.0 10.0 11.0 2.0 3.0 4.0 8.0 9.0 12.0 13.0 14.0 min 0.0

Peak	Ret. Time	Area	Area%
1	4.829 min	821553	29.2
2	5.704 min	1993392	70.8
total		2814945	100

¹H NMR of compound TFQ0022

¹³C NMR of compound TFQ0022

4) Synthesis of 4-pentynoic chloride

To a dry vial with a stirring bar was added 250 mg (2.55 mmol, 1.0 equiv.) 4-pentynoic acid and 8 mL of CH_2Cl_2 , followed by 254 uL (3.06 mmol, 1.2 equiv) oxalyl chloride. The solution was allowed to stir for 4 hours at room temperature and then was refluxed for 3 h. The solution was directly evaporated in vacuo and revealed a pungent clear, faintly yellow oil as the desired product (110 mg, 37% yield), which was put into next step immediately without further purification.

(3R, 4S)-4-phenethyl-3-(prop-2-yn-1-yl) oxetan-2-one (TFQ0023):

The general procedure B was followed employing 17 mg of Me-QN (0.05 mmol), 67 mg Lil (0.5 mmol), 66 µL of phenylpropyl aldehyde (0.5 mmol) and 110 mg of 4-pentynoic chloride. Purification by flash chromatography (EtOAc/PE = 1/25) gave 35 mg (33%) of the title compound as a colorless oil. $[\alpha]_{D}^{25} = -103.9$ (c = 0.37, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.32 (t, J = 7.4 Hz, 2H), 7.23 (t, J = 8.9 Hz, 3H), 4.63 (ddd, J = 10.0, 6.3, 3.9 Hz, 1H), 3.88 (dt, J = 11.9, 6.0 Hz, 1H), 2.93 (ddd, J = 14.1, 9.0, 5.4 Hz, 1H), 2.82 – 2.71 (m, 1H), 2.71 – 2.52 (m, 2H), 2.17 (dddt, J = 18.7, 14.3, 9.3, 5.2 Hz, 2H), 2.06 (t, J = 2.5 Hz, 1H); ¹³C NMR (125 MHz, Chloroform-d) δ 168.43, 139.18, 127.63, 127.49, 125.39, 73.45, 69.87, 50.25, 30.45, 12.75; IR (neat, cm⁻¹): 3304, 3028, 2947, 1820, 1454, 1135, 908, 730; HRMS-ESI calc. for C₁₄H₁₅O₂ [M + H⁺]: 215.10666; Found: 215.10670.

Separation of the enantiomers by chiral HPLC (Daicel ChirapakTM AD-H column, flow rate 0.7 ml/min, 10% ⁱPrOH, 90% hexane, T_r 8.7 min (3R, 4S) provided only one enantiomer (\geq 99% ee).

Peak	Ret. Time	Area	Area%
1	8.729 min	5458637	≥ 99
total		5458637	100

¹H NMR of compound TFQ0023

¹³C NMR of compound TFQ0023

Supplementary References

- 16 Weerapana E, Speers AE, and Cravatt BF. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes. *Nat Protoc* 2007; **2**: 1414-1425.
- 17 Calter MA. Catalytic, Asymmetric Dimerization of Methylketene. *J Org Chem* 1996; **61**: 8006-8007.
- 18 Richter C, Ranganath KVS, and Glorius F. Enantioselective α-Arylation of Cyclic Ketones Catalyzed by a Combination of an Unmodified Cinchona Alkaloid and a Palladium Complex. *Advanced Synthesis & Catalysis* 2012; **354**: 377-382.
- 19 Shen X, Wasmuth AS, Zhao J, Zhu C, and Nelson SG. Catalytic asymmetric assembly of stereodefined propionate units: an enantioselective total synthesis of (-)-pironetin. *J Am Chem Soc* 2006; **128**: 7438-7439.