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Major changes to the Rosetta energy function since 2000 
 
The all-atom Rosetta energy function for proteins has undergone significant upgrades since the original 
implementation in 2000. These changes range from improved atomic parameters and models of 
hydrogen bonding to smoothing routines that eliminate errors during minimization. An overview of these 
advances is listed in Table S1.  
 
Table S1: Major changes to the Rosetta Energy Function since 2000 

Energy Term Adjustment Ref.  
Lennard-Jones Soften repulsive potential 

Atomic radii matched to crystal structures  
Shifted LJ Potential 
Extra soft repulsive potential 
Make derivatives continuous 
New well-depth parameters 
Incorporation of hydrogens in the fa_atr calculation 

Kuhlman et al. 20001 
Kuhlman et al. 20032 
Tsai et al. 20033 
Meiler & Baker, 20064 
Scheffler 2006, Unpublished 
Park et al. 20165 

Solvation Implementation of Lazaridis-Karplus Model 
Make derivatives continuous 
Anisotropic Solvation Model 
New atomic volume 𝜆 and ∆Gfree parameters 

Kuhlman et al. 20006 
Sheffler 2006, Unpublished 
Yanover et al. 20117 
Park et al. 20165 

Electrostatics Knowledge-based Pair term 
Coulomb electrostatics for ligand interactions 
Coulomb electrostatics for nucleic acids 
Coulomb electrostatics for proteins 
Sigmoid dielectric model 
Avoidance of dipole splitting for local interactions 
New partial charges  

Kuhlman et al. 20006 
Meiler & Baker, 20064 
Yanover et al. 20117 
O’Meara et al. 20158 
Park et al. 20165 

Hydrogen Bonding Orientation-dependent hydrogen bond potential 
Favoring H-bonds in the sp2 plane 
No H-bond environment dependence 
Weights on hydrogen bond donors and acceptors 

Kortemme et al. 20039 
O’Meara et al. 20158 
Park et al. 20165 
 

Dunbrack 
Rotamers 

Add 2002 backbone-dependent rotamer library 
Replace 2002 version with the 2010 smoothed 
rotamer library 

Dunbrack et al. 200210 
Shapovalov et al. 201111 
Leaver-Fay et al. 201312 

Ramachandran & 
p_aa_pp 

Interpolation with bicubic splines 
Correction for pre-proline backbone torsions 

Leaver-Fay et al. 201312 
Park et al. 20165 

Side-chain specific Penalty for Tyr hydroxyl hydrogen leaving aromatic 
plane 

O’Meara et al. 20158 

Design reference 
energy 

Refit reference energies with OptE 
Refit reference energies with DualOptE 

Leaver-Fay et al. 201112 
O’Meara et al. 20158 
Park et al. 20165 
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Table S2: Rosetta revisions corresponding to major energy function updates 
Version Rosetta Revisiona Public Versionb 

Score12 pre-#55611 Pre-Rosetta 3.5 
Talaris2013 #55611 Rosetta 3.5 
Talaris2014 #58602 v2016.13-dev58602 
REF2015 #59248 v2017.05-dev59248 
a Internal code revision number available to member institutions of the Rosetta Commons.  
b Download the public Rosetta release from http://www.rosettacommons.org. 

Data for calibrating Rosetta energies to kcal/mol 
  
The parameters and weights in REF2015 were recently fit5 such that Rosetta simulations reproduce high-
resolution protein structural data and thermodynamic data for small molecules from Jorgensen et al.13 
Thus, the Rosetta energy is now expressed in kcal/mol. In support, Figure S1 compares experimental 
data and Rosetta predictions of density, heat of vaporization (∆Hvap) and heat capacity (Cp(l)) for 
seventeen molecules: ethane, propane, isobutene, cyclohexane, benzene, toluene, phenol, methanol, 
ethanol, 2-propanol, tert-Butyl alcohol, methane thiol, ethane thiol, dimethyl sulfide, acetamide, N-
methylamide, N-methylformamide, dimethyl ether, ethanol and propanone.  
 

 
Figure S1: Comparison of Rosetta simulations with experimental thermodynamic data 
Comparison between Rosetta predictions and experimental thermodynamic measurements for seventeen small 
molecules (A) Density (B) Heat Capacity and (C) Heat of vaporization. 
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Additional energy function details 
 
Parameters for the Lennard-Jones and Lazaridis-Karplus energies 
 
New experiments and numerical methods to optimize the energy function have led to updated atomic-
parameters used by the Lennard-Jones14,15 and Lazaridis-Karplus16 potentials. The updated parameters 
are in the following Rosetta database files:  
 
Table S3: Location of Rosetta atom type parameters 
Parameter Database File 
Radii, 𝛥𝐺free, 𝜖 chemical/atom_type_sets/fa_standard/atom_properties.txt 

Partial charges chemical/residue_type_sets/residue_types/l-caa/*.params 
lk_ball weights chemical/atom_type_sets/fa_standard/extras/lk_ball_wtd.txt 

hbond parameters scoring/score_functions/hbonds/* 

rama scoring/score_functions/rama/* 

p_aa_pp scoring/score_functions/P_AA_pp/* 

omega scoring/score_functions/omega/* 

fa_dun rotamer/* 

 
Tables S4-S6 present a comparison between selected atomic parameters between the original source 
publication and the values in Rosetta energy functions, Talaris2014 and REF2015. 
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Table S4: Atomic radii values from the Neria et al. force field, Talaris2014, and REF2015 
Atom Type Neria et al.17 

Radius (Å)  
Talaris2014  
Radius (Å) 

REF20155 
Radius (Å) 

CAbb 2.3650 2.0000 2.0112 
CH1 2.3650 2.0000 2.0112 
CH2 2.2350 2.0000 2.0112 
CH3 2.1650 2.0000 2.0112 
CNH2 -- 2.0000 1.9922 
COO 2.1000 2.0000 1.9649 
CObb -- 2.0000 1.9649 
aroC 2.1000 2.0000 1.9859 
NH2O -- 1.7500 1.7632 
Narg 1.6000 1.7500 1.7632 
Nbb 1.6000 1.7500 1.7632 
Nhis 1.6000 1.7500 1.7632 
Nlys 1.6000 1.7500 1.7632 
Npro 1.6000 1.7500 1.7632 
Ntrp 1.6000 1.7500 1.7632 
OCbb 1.6000 1.5500 1.5268 
OH 1.6000 1.5500 1.5354 
ONH2 -- 1.5500 1.5760 
OOC -- 1.5500 1.4492 
S 0.0430 1.9000 2.0171 
HNbb -- 1.0000 0.8773 
Hapo -- 1.2000 1.4634 
Haro -- 1.2000 1.3778 
Hpol 0.8000 1.0000 0.8773 
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Table S5: Well-depth parameters from the Neria et al. force field, Talaris2014, and REF2015 
Atom Type Neria et al.17 

𝝐 (kcal/mol) 
Talaris2014  
𝝐 (kcal/mol) 

REF20155 
𝝐 (kcal/mol) 

CAbb 0.0486 0.0486 0.0626 
CH1 0.0486 0.0486 0.0626 
CH2 0.1142 0.1142 0.0626 
CH3 0.1811 0.1811 0.0626 
CNH2 -- 0.1200 0.0626 
COO 0.1200 0.1200 0.0946 
CObb -- 0.1400 0.1418 
aroC 0.1200 0.1200 0.1418 
NH2O -- 0.2834 0.0688 
Narg 0.2384 0.2834 0.1617 
Nbb 0.2384 0.2834 0.1617 
Nhis 0.2384 0.2834 0.1617 
Nlys 0.2384 0.2834 0.1617 
Npro 0.2384 0.2834 0.1617 
Ntrp 0.2384 0.2834 0.1617 
OCbb  0.1591 0.1617 
OH 0.1591 0.1591 0.1617 
ONH2 -- 0.1591 0.1424 
OOC -- 0.2100 0.1619 
S 0.0430 0.1600 0.1829 
SH1 -- -- 0.0999 
HNbb -- 0.0500 0.4560 
HS -- -- 0.4560 
Hapo -- 0.0500 0.0050 
Haro -- 0.0500 0.0508 
Hpol -- 0.0500 0.0218 
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Table S6: ∆Gfree parameters from Lazaridis & Karplus, Talaris2014 and REF2015 
Atom Type Lazarids-Karplus16  

∆𝑮free (kcal/mol) 
Talaris2014,  

∆𝑮free  (kcal/mol) 
REF20155 

∆𝑮𝐟𝐫𝐞𝐞	(kcal/mol) 
CAbb -0.2500 1.0000 2.5338 
CH0 -0.2500 -0.2500 1.4093 
CH1 -0.2500 -0.2500 -3.5384 
CH2 0.5200 0.5200 -1.8547 
CH3 1.5000 1.5000 7.2929 
CNH2 -- 0.0000 3.0770 
COO 0.1200 -1.4000 -3.3326 
CObb -- 1.0000 3.1042 
aroC 0.8000 0.0800 1.7979 
NH2O -- -7.8000 -8.1016 
Narg -10.0000 -10.0000 -8.9684 
Nbb -7.8000 -5.0000 -9.9695 
Nhis -4.0000 -4.0000 -9.7396 
Nlys -20.000 -20.000 -20.865 
Npro -1.5500 -1.5500 -0.9846 
Ntrp -8.9000 -8.9000 -8.4131 
OCbb -10.0000 -5.0000 -8.0068 
OH -6.7000 -6.7000 -8.1335 
ONH2 -- -5.8500 -6.5916 
OOC -- -10.0000 -9.2398 
S -4.1000 -4.1000 -1.7072 
SH1 -2.7000 -- 3.2916 
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Analytical form of the hydrogen bonding potential 
 
To avoid expensive table lookups, the hydrogen bonding potential (Eq. 21-22 in the main text) is given 
by component energies with simple analytical forms. For completeness, we detail these analytical forms 
below. The first two components, 𝐸hbond67 𝑑67  and 𝐸hbond679 𝜃679  are polynomial functions, 𝑓poly(𝑃, 𝑥) where 
the polynomial 𝑃 depends on the atom type of the acceptor and donor, and the order 𝑛 varies from 6 to 
10 (Eq. S1). The forms of 𝐸hbond67 𝑑67  and 𝐸hbond679 𝜃679  are given by Eq. S2-3.  
 

𝑓poly 𝑃, 𝑥 = 𝐶F + 𝐶H𝑥 + 𝐶I𝑥I + ⋯+ 𝐶KLH𝑥KLH + 𝐶K𝑥K (S1) 
 

𝐸hbond67 𝑑67 = 𝐹67 ∙ 𝑓poly(𝑃, 𝑑67)  (S2) 
 

𝐸hbond679 𝜃679 = 𝐹679 ∙ 𝑓poly(𝑃(𝜃679))   (S3) 
 
The third component, 𝐸hbond

OPO76 𝜌, 𝜙OPO76	, 𝜃O76 , is dependent on the hybridization of the acceptor, 𝜌. For 
sp2 hybridized acceptors, the potential is given as a combination of cosine and polynomial functions (Eq. 
S4-5) controlled by a cosine switch function (Eq. S6). The functional forms are also shown in Fig. S2.  
 

𝐹 𝜙 =
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I
cos 3(𝜋 − 𝜙) + SLH
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\
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Z
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I
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𝐻 𝜙 = cde If aH

I
 (S6) 

 
For sp3 hybridized acceptors, the potential is modeled as a composition of sine and cosine functions. If 
the acceptor is attached to a ring, the potential is modeled with a simple cosine function. The overall 
energy is given in Eq. S7.  
 

𝐸hbond
OPO76 𝜌, 𝜙OPO76	, 𝜃O76 = 	

𝐻 𝜙OPO76 𝐹 𝜙OPO76 + 1 − 𝐻 𝜙OPO76 𝐺 𝜙OPO76 𝜌	~	spI

𝑓poly cos 𝜃O76 + H
i
1 + cos 𝜙OPO76 	 𝜌	~	spZ

𝑓poly cos 𝜃O76 𝜌	~	ring

 (S7) 
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Figure S2: Analytic form of the hydrogen bonding BA𝝌 potential for sp2 hybridized acceptors  
(A) Plot of the function 𝐹 𝜃  that models the energy of the BAH angle for an in-plane acceptor (B) Plot of the function 
𝐺 𝜃  that models the energy of the BAH angle for an out-of-plane acceptor. (C) Switch function 𝐻 𝜃  that controls 
contributions from 𝐹 𝜃  and 𝐺 𝜃  at a specified value of the BA𝜒 torsion, 𝜙. 
 
Analytical form of the disulfide bonding potential 
 
Like the hydrogen bonding potential, the component disulfide bonding energies are defined by analytical 
forms. As defined by Eq. 23 in the main text, the disulfide is computed given four component energies. 
First, the sulfur-sulfur distance energy 𝐸dslfnn 𝑑nn  is defined by Eq. S8 given the sulfur-sulfur distance, 𝑑, 
mean distance 𝑑oo, standard deviation 𝜎oo, and fitting parameters 𝛼Sdslf,	𝜖\ and 𝑤nn. 
 

𝐸dslf
nn 𝑑nn = 𝑤nn

SLSss
tss

I
+ ln erf 𝛼Sdslf

SLSss
tdslf
uu + 𝜖\ 		  (S8) 

 
Next, the energy of the angle formed by a 𝐶v and two sulfur atoms 𝐸dslfwnn 𝜃wnn  is defined by Eq. S9 given 
the angle 𝜃 and von Mises parameters 𝐴wnn, 𝑤wnn, 𝜅wnn, and 𝜇wnn. 
 

𝐸dslf
w{nn 𝜃wnn = 𝑤wnn	 – ln 𝐴wnn − 𝜅wnn	cos 𝜃 − 𝜇wnn   (S9) 

 
The energy of the torsion formed by 𝐶vH, 𝐶vI and the two sulfur atoms 𝐸dslf

w{nnw{ 𝜙wnnw  is defined by Eq. 
S10 given the torsion angle 𝜙 and the von Mises parameters 𝐴},w{nnw{, 𝜅},w{nnw{, 𝜇},w{nnw{ and ϵ�.  
 

𝐸dslf
w{nnw{ 𝜙wnnw = 𝑤w{nnw{ ln exp 𝐴},w{nnw{ + 𝜅},w{nnw{	cos 𝜙 − 𝜇},w{nnw{}�I + 		 ϵ�  (S10) 

 
Finally, the energy of the torsion formed by 𝐶�, 𝐶v and the two adjacent sulfur atoms 𝐸dslf

w�w{n,n 𝜃wwnn  is 
defined by Eq. S11 given the torsion angle 𝜙 and the von Mises fitting parameters 𝐴},w�w{nn, 𝜅},w�w{nn, 
𝜇},w�w{nn and ϵ�.  
 

𝐸dslf
w�w{n,n 𝜃wwnn = −𝑤w�w{nn ln exp 𝐴},w�w{nn + 𝜅},w�w{nn	cos 𝜃 − 𝜇},w�w{nn��Z + 		 ϵ�  (S11) 
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Statistical potentials: Interpolation of energies rather than probabilities 
 
The Rosetta energy function uses probabilities from the Dunbrack backbone-dependent rotamer 
library18 to derive torsional energies 𝐸 using the inverted Boltzmann relation the probability 𝑃 (Eq. S12):  
 

𝐸 = −𝑘𝑇 ln 𝑃  (S12) 
 
Prior to 2012, the probabilities for the 𝜙, 𝜓-dependent terms were stored on a 10° x 10° grid used for 
energy calculations. These probabilities were calculated using bilinear interpolation and then converted 
to energies using Eq. S12 and the derivatives were calculated by linearly interpolating 1/𝑃 and 𝑑𝑃/𝑑𝑥 
to compute 𝑑 − log 𝑃 𝑑𝑥 = −(1/𝑃)	𝑑𝑃/𝑑𝑥 with 𝑥 = 𝜙 or	𝜓. This method resulted in large inaccuracies 
because 𝑃 can vary by orders of magnitude over very short ranges of 𝜙 and	𝜓. In addition, the linearly 
interpolated derivatives are constant between grid points, so that gradient-based minimization results 
in moving structures to the nearest grid point where the derivative changes sign. Therefore, it is more 
accurate to provide 𝑃 and 𝐸 = − ln 𝑃 at each grid point and then interpolate the energies using bicubic 
interpolation.  
 
Here we demonstrate why interpolating energies is better than interpolating the probabilities. Figure S3 
compares the different interpolation strategies for a toy problem: a one-dimensional probability 
distribution with a discrete rotamer modeled with the following von Mises function (Eq. S13). Here, the 
location constant 𝜇 = 180˚, the concentration constant 𝜅 = 20, 𝑥 = 𝜙 or	𝜓 and 𝐼F(𝜅) is the modified 
Bessel function of order zero needed to normalize the distribution. 
 

𝑃 𝑥 = ��� �Lcde �L�
IY��(�)

   (S13) 
 
First, Figure S3A shows the probability distribution, 𝑃 and its linear interpolation based on the 10° x 10° 
grid. Here, the difference between the curves demonstrate the effect of approximating 𝑃 by linear 
interpolation. This effect would be more severe for steeper functions such as the Ramachandran 
probability density function. Figure S3B compares the 𝐸 = − ln 𝑃 calculation with two approaches to 
interpolating the function: interpolate 𝑃 and then compute the energies versus compute the energies at 
the grid points and then interpolate. The second scenario clearly mitigates several errors which can be 
further improved using cubic rather than linear interpolation. Like the first panel, the benefits of cubic 
interpolation are clearer with steeper functions.  
 
Figures S3C and S3D demonstrate that the effects of interpolating energies are more pronounced for 
the derivatives of 𝑃 and 𝐸 respectively. Previously, Rosetta computed the derivative of 𝑃 as 𝑑𝑃/𝑑𝑥 =
[𝑃(𝑥 + 10) − 𝑃(𝑥)]/10 (Fig. S3C). The linear interpolation of this derivative includes noticeable artifacts. 
Figure S3D shows the four energy derivative curves: (1) the exact analytical expression 𝑑𝐸/𝑑𝑥 =
−(1/𝑃)	𝑑𝑃/𝑑𝑥 where 𝑃 is interpolated and 𝑑𝑃/𝑑𝑥 is the step function shown in Fig. S3C (2) 𝑑𝐸/𝑑𝑥 =
−(1/𝑃)	𝑑𝑃/𝑑𝑥 where 𝑃 and 𝑑𝑃/𝑑𝑥 are interpolated from the grid values, (3) 𝑑𝐸/𝑑𝑥 = −(1/𝑃)	𝑑𝑃/𝑑𝑥 
where both 𝑃 and 𝑑𝑃/𝑑𝑥 are interpolated from the grid values and (4) calculation of 𝐸 and 𝑑𝐸/𝑑𝑥 on the 
grid followed by interpolation of 𝑑𝐸/𝑑𝑥	 in between the grid points. The linear interpolation of 
𝑑𝐸/𝑑𝑥	provides the closest match to the analytical expression. The current Rosetta energy function 
interpolates energies rather than probabilities: both 𝑃 and 𝐸 are stored in database files, 𝑑𝐸/𝑑𝑥 is 
calculated on the grid points, and then 𝑃, 𝐸 and 𝑑𝐸/𝑑𝑥 are computed by bicubic spline interpolation. 
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Figure S3. Approximating the energy and energy derivatives for torsional potentials 
Comparison between the old and new approach of approximating the energy and energy derivatives using a toy 
example in one dimension. (A) Exact analytical expression of the probability distribution P(X) (black) compared to 
approximation of the grid (green). (B) Exact energy expression, -log p(x) (black) compared to interpolated 
probabilities (green) and interpolation on the grid (red). (C) Probability first-order derivatives: analytical expression 
(black), derivative approximation with no interpolation (blue), and derivative with linear interpolation (green). (D) 
Energy derivatives: exact (black), calculation as a step function (blue), calculation by linear interpolation (green), 
calculation from grid values (red).  
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Methods for energy-based analysis examples 
 
∆∆G of Mutation. The coordinate file for 1kgj was downloaded from the Protein Data Bank19 and cleaned 
to remove any non-canonical amino acids. The PDB was refined with fast relax constrained to native 
coordinates using Cartesian-space refinement and the REF2015 energy function using the following 
command line:  
 
relax.linuxgccrelease –s 1kgj.pdb –use_input_sc \ 
–constrain_relax_to_start_coords –ignore_unrecognized_res –nstruct 1000 \ 
–relax:coord_constrain_to_sidechains –relax:ram_constraints false \ 
–relax:Cartesian –relax:min_type lbfgs_armijo_nonmonotone 
 
After refinement, the lowest scoring model was used to generate five structures of the native conformation 
and five structures of the T193V mutated conformation using a Cartesian version of Rosetta’s ddg 
protocol.20 
 
cartesian_ddg.linuxgccrelease –s 1kgj_refined_lowest.pdb –ddg:mut_file \ 
$MUT_FILE –ddg:iterations 5 –optimization:default-max_cycles 200 –bbnbr 1 \ 
–relax:min_type lbfgs_armijo_nonmonotone –fa_max_dis 9.0 
 
The energies were averaged for each ensemble of five structures. The ∆∆G was then calculated as the 
difference between the average energy of the mutated ensemble and the average energy of the native 
ensemble.  
 
To determine which specific interactions underlie the observed differences in solvation, we first needed 
to identify which residue-pair interactions contribute most to the change in solvation energy. Because the 
mutation is taking place at residue 193, we can safely restrict our search to residue-pair interactions 
involving residue 193. Now, we use the PyRosetta21 tool print_residue_pair_energies() to 
obtain a list of all residue pair interactions involving residue 193. Inspecting the output in 
native_residue_pair_interactions.csv and mutant_residue_pair_interactions.csv 
we can find a list of significant pair energy changes between residue 193 and other surrounding residues.    
 
PyRosetta tools can also be used to analyze atom-pair interactions that contribute most strongly to the 
critical residue-pair interactions. The scoring machinery in Rosetta treats a residue (protein amino acid, 
sugar monosaccharide, nucleic acid base) as the simplest unit for calculating pairwise energies. All two 
body energy terms must define residue_pair_energy() to calculate the pairwise energy between 
two residues. For energies such as hydrogen bonding this is necessary because scoring an individual 
hydrogen bond using the distance and orientation dependent potential described in the main text requires 
knowledge of not only the donor hydrogen and the acceptor atoms but also the acceptor and donor base 
atoms to calculate an energy. However, for other terms in the Rosetta score function (such as Lennard 
Jones attraction/repulsion, implicit solvation, and electrostatics) the residue_pair_energy() method 
simply sums up all of the pairwise interactions between all atoms in each of the residues. These atom 
pair energies are not normally reported by the scoring function, however in some situations they can 
assist in pinpointing which specific atom pair interactions are influencing the residue pair energy most 
strongly. 
 
The PyRosetta toolkit provides two tools for analyzing specific atom pair energies. First, the 
etable_atom_pair_energies() method takes two residues (res1, res2) and atom indices 
specifying one atom on each residue (atom_index_1, atom_index_2) and calculates atom pair 
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energies for Lennard Jones attractive/repulsive, implicit solvation, and electrostatics using a specified 
score function (sfxn). 
 
The second tool, print_atom_pair_energy_table(), is designed to output energies for all pairwise 
atom pair interactions between two specified residues. For ease of viewing this tool outputs the pairwise 
energies as a table formatted in a .csv file. The tool takes a score_type and score function (sfxn) as 
inputs in addition to two specified residues (res1, res2) and a specified output_filename. 
 
Docking. The coordinate file for 1ztx was downloaded from the Protein Data Bank and cleaned to remove 
any non-canonical amino acids. The structure was first refined to remove significant clashes in the 
structure using the following command line:  
 
relax.linuxgccrelease -s 1ztx_unbound.pdb -relax:ramp_constriants false \ 
-relax:constrain_relax_to_start_coords -ex1 -ex2 -use_input_sc -flip_HNQ \ 
-no_optH false 
 
Next, the structure was prepacked and then docked using the procedure described in Chaudhury et al.22 
using the REF2015 energy function.  
 
docking_prepack_protocollinux -s 1ztx_relaxed.pdb -partners LH_G \ 
-dock_rtmin -docking:sc_min 
 
docking_protocol.linuxgccrelease –s 1ztx_unbound_prepacked.pdb –native \ 
1ztx_native.pdb -ignore_unrecognized_res -ex1 -ex2aro -dock_pert 3 8 \ 
-partners LH_G -nstruct 1000 
 
Finally, the interface scores were extracted from the output score file for analysis.  
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Energy terms for biomolecules other than proteins 
 
An active research area is the development of energy functions compatible for biomolecules other than 
proteins containing the 20 canonical amino acids. So far, this has involved two approaches: (1) 
generalizing terms to score non-l amino acids and (2) developing new terms to accommodate other 
biomolecules. Below, we provide details of the main non-protein energy functions currently being 
developed in Rosetta.  
 
Generalizing the Existing Energy Terms 
 
The physically-derived terms in the Rosetta energy function capture forces that are general to all 
biomolecules. Therefore, these terms were generalized to be compatible will D-amino acids, nucleic 
acids, carbohydrates, and other biomolecules.  
 
Table S7: Summary of energy term compatibility with other biomolecules 
Term Can score 
fa_atr All molecules 
fa_rep All molecules 
fa_intra_rep All molecules 
fa_sol All molecules 
lk_ball All molecules 
fa_inra_sol All molecules 
fa_elec All molecules 
hbond_sr_bb All molecules 
hbond_lr_bb All molecules 
hbond_bb_sc All molecules 
hbond_sc All molecules 
dslf_fa13 L-, D-, and mixed D/L disulfide bonds between cysteine or cysteine-like 

residues (e.g., homocysteine, penacillamine) 
rama_prepro Glycine, canonical L-amino acids, their D-counterparts, and similar 

alpha-amino acids that can use canonical rama tables. 
p_aa_pp Glycine, canonical L-amino acids, their D-counterparts, and similar 

alpha-amino acids that can use canonical rama tables. 
omega All α-amino acids, or β-amino acids. 
fa_dun All polymer building blocks. 
pro_close L- and D-proline. 
yhh_planarity L- and D-tyrosine. 
ref Glycine, canonical L-amino acids, and their D-counterparts. 

 
Compatibility with D-amino acids 
 
To make the energy terms compatible with D-amino acids, several modifications were made to the 
torsional terms.23 First, the 𝜙, 𝜓 values were inverted in the rama_prepro, omega, and p_aa_p terms 
to accommodate the chirality of the backbone. Accordingly, the derivatives were inverted to ensure that 
mirror-image structures energy-minimize identically. Second, the fa_dun score term was modified to 
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invert main chain and side-chain torsional values.  Special amino acid-specific score terms, such as 
pro_close and yhh_planarity, were updated to recognize D-proline and D-tyrosine, respectively.  
The dslf_fa13 term was symmetrized to ensure that mirror-image conformations of mixed D/L 
disulfides score identically. Finally, the ref term was altered to ensure that D-amino acids have a 
reference energy penalty or bonus identical to that of their L-counterparts. All other score terms were 
compatible with arbitrary molecules without modification. 
 
Energy terms for non-canonical amino acids 
 
Toward the goal of designing proteins with non-canonical amino acids, Renfrew et al. implemented an 
energy function with terms derived from molecular mechanics. This energy function, called mm_std, 
removes the terms that depend on residue identity (i.e. rama_prepro, p_aa_pp, omega, and fa_dun) 
and replaces them with terms that capture the internal and torsional energy preferences: 
mm_lj_intra_rep, mm_lj_intra_atr, and mm_twist. The ref term is replaced by either a term 
that explicitly models the unfolded state, (unfolded), or a pair of terms that capture the change in 
energy experienced by an atom of a specific type going from an unfolded to folded environment 
(split_unfolded_1b and split_unfolded_2b). These terms were developed toward the goal of 
designing proteins containing non-canonical alpha-amino acid residues. It has also been used to model 
oligo-oxypiperizines (OOPs),24 hydrogen bond surrogates (HBS), oligo-peptoids,25 and hybrid molecules.  
 
Intra-residue van der Waals interactions are calculated between atom pairs from the same residue 
using a Lennard-Jones 6-12 potential. Like fa_rep and fa_atr, the potential is divided between 
attractive (mm_lj_intra_atr) and repulsive (mm_lj_intra_rep) components that can be weighted 
separately. The two terms have the same functional form as the inter-reside terms (Eq. 3 and 4 in the 
main text) but with the following differences. The summed atomic radii, 𝜎��, and the geometric mean of 
atomic well-depths, 𝜖��, are based on the CHARMM 2426 parameters. The terms are applied to all atom 
pairs in a residue with a bond separation of 3 or more. Some atom-type pairs have different parameters 
when separated by 3 bonds (and involved in a proper torsion) and when separated by 4 of more bonds, 
but no connectivity weight is applied. Both attractive and repulsive energies are calculated for hydrogens. 
The attractive potential is not smoothed and consequently is evaluated to 8 Å. 
 
The torsional term, called mm_twist (Eq. S14), is a molecular mechanics torsion term. It is evaluated 
for all atom quads involved in proper torsions. To match the intra-residue van der Waals term the 
parameters for 𝐾� and 𝑛 come from CHARMM 24. A given set of 4 atoms types may have multiple 𝐾� 
and 𝑛 parameters that are summed in a Fourier series to more accurately describe the rotation about the 
central bond of the torsion.  
 

𝐸twist = 𝐾� 1 − cos 𝑛𝜃�  (S14) 
 
Explicit Unfolded State Energy (EUSE) represents the unfolded energy of the protein and compensates 
for the difficultly in packing large side chains (Eq. S15). The ref term is fit during the weight optimization 
protocol which is only trained on protein data and therefore incompatible with non-protein residues. The 
EUSE is the sum over each residue and each term in the energy function where 𝑈 AA�, 𝑡 	is the unfolded 
reference value of residue type, AA�, of residue, 𝑟, and energy term 𝑡. The unfolded reference values are 
the Boltzmann weighted average energies of the central residue of 5-mer fragments of high quality protein 
structures. The central residue of each fragment was mutated to the residue of choice, repacked and 
scored and the Boltzmann weighted average for each energy term, 𝑡, for each residue type is stored. For 
peptoids, only XXGPX fragments were used to mimic an oligo-peptoid environment.27 
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𝐸unfolded = 𝑊¤𝑈(𝐴𝐴�, 𝑡)¤�  (S15) 

 
Two-Component Reference Energy (TCRE) is a reference energy that compensates for some of the 
shortcomings of the EUSE; primarily the dependence of the EUSE on short peptide fragments which 
limits the types of oligomer chemistry to those that contain an a-amino acid backbone (e.g. OOPs, HBS, 
peptoids; Eq. S16). The one-body component is the sum over each residue and each one-body energy 
term in the energy function where 𝑅1B AA�, 𝑡1b 	is the one-body reference value of the residue type, AA�, 
of residue, 𝑟, and one-body scoring term 𝑡1𝑏. The one-body reference values are the unweighted 𝑡1𝑏 
energies for each energy term, taken from lowest energy conformation of that residue type in the context 
of a didpeptide model system. The two-body component is the sum over each atom and each two-body 
energy term in the energy function where 𝑅2B 𝑇�, 𝑡2b  is the two-body reference value for atom type, 𝑇�, 
of atom, 𝑖, and two-body energy term 𝑡2𝑏. The two-body reference values are the median 𝑡2𝑏 energy of 
an atom of type 𝑇� in the context of a folded protein. 
 

𝐸TCRE = 𝑊¤1b𝑅1B AA�, 𝑡1b¤H­�

one-body

+ 𝑊¤2b𝑅2B 𝑇�, 𝑡2b¤I­�

two-body

 (S16) 
 
Reference values were determined using structures from the Top8000 database.28 The effect is to 
produce a single reference value for a residue type just like the ref and unfolded terms. The term is a 
measure of the difference between the base energy of inherent to a peptide sequence and the average 
interaction that sequence would make with itself when folded. Currently 𝑊¤H­ and 𝑊¤H­ are set to the 
weight of that term in the energy function but could be modified. 
 
Energy terms for carbohydrates 
 
To model realistic carbohydrate geometries, Rosetta implements the sugar_bb term which rewards 
preferred glycosidic torsion angles.29 The sugar_bb term is a mixture of functions specific to glycosidic 
torsions and linkage types. For most torsion/linkage types, Rosetta uses the CHarbohydrate-Intrinsic 
(CHI) energy functions developed from quantum mechanical calculations with isomers of O-linked 
tetrahydropyran oligomers.30,31 The data were fit to Gaussian functions and matched with statistical data. 
Together, they are used to compute the energy, given as a function of some torsion angle x in degrees, 
magnitude of the Gaussian distribution a, midpoint of the distribution b, the intercept of the distribution d, 
and a constant c which is twice the square width of the distribution (Eq. S17).  
 

𝐸sugar_bb = 𝑑 + 𝑎�𝑒L �L­³ P ´³�  (S17) 
 
For ω torsions, the energy is instead modeled using a series of parabolic functions with coefficients fit to 
statistical data and centered around the ideal staggered and Gauche conformations. This energy is 
defined as a function of the torsion angle x (in degrees), a constant to define the parabola width, k, the 
vertex of the parabola θ, and the energy difference relative to the minimum b (Eq. S18). This function 
approximates the so-called Gauche effect. 
 

𝐸sugar_bb = 𝑘 𝑥 − 𝜃 I + 𝑏 (S18) 
 

The sugar_bb score per residue is the sum of each function for each glycosidic torsion in the residue. 
Table S8 lists the functional form for each torsion and linkage type. (The functions assume that D-sugars 
are in the 4C1 chair conformation and that L-sugars are in the 1C4 chair conformation.) 
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Table S8: Functional form of the sugar backbone energy for each torsion and linkage type 
Angle Ax./eq. designation Stereoisomer Exocyclic Range Functional form 

φ 

axial (α) D — −180°–
180° 

Gaussian 

eqiuatorial (β) D — −180°–
180° 

Gaussian 

axial (α) L — −180°–
180° 

Gaussian, x=−φ 

equatorial (β) L — −180°–
180° 

Gaussian, x=−φ 

ψ 

ax. (parent at odd O) D (parent) no 0–360° Gaussian 
eq. (parent at odd O) D (parent) no 0–360° Gaussian 
ax. (parent at even O) D (parent) no 0–360° Gaussian 
eq. (parent at even O) D (parent) no 0–360° Gaussian 
ax. (parent at odd O) L (parent) no 0–360° Gaussian, 360°−ψ 
eq. (parent at odd O) L (parent) no 0–360° Gaussian, 360°−ψ 
ax. (parent at even O) L (parent) no 0–360° Gaussian, 360°−ψ 
eq. (parent at even O) L (parent) no 0–360° Gaussian, 360°−ψ 
axial (α) D yes 0–360° Gaussian 
equatorial (β) D yes 0–360° Gaussian 
axial (α) L yes 0–360° Gaussian, 360°−ψ 
equatorial (β) L yes 0–360° Gaussian, 360°−ψ 

ω 

axial (parent O4) D (parent) yes 0–120° parabolic 
axial (parent O4) D (parent) yes 120°–240° parabolic 
axial (parent O4) D (parent) yes 240°–360° parabolic 
eq. (parent O4) D (parent) yes 0–120° parabolic 
eq. (parent O4) D (parent) yes 120°–240° parabolic 
eq. (parent O4) D (parent) yes 240°–360° parabolic 
axial (parent O4) L (parent) yes 0–360° parabolic, 360°−ω 
axial (parent O4) L (parent) yes 120°–240° parabolic, 360°−ω 
axial (parent O4) L (parent) yes 240°–360° parabolic, 360°−ω 
eq. (parent O4) L (parent) yes 0–120° parabolic, 360°−ω 
eq. (parent O4) L (parent) yes 120°–240° parabolic, 360°−ω 
eq. (parent O4) L (parent) yes 240°–360° parabolic, 360°−ω 
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Energy terms for nucleic acids 
 
The Rosetta energy function captures van der Waals and electrostatic forces general to all biomolecules. 
However, these terms do not capture rules specific to the geometry and pairing of nucleic acid bases. 
Therefore, Das and coworkers have implemented terms to explicitly capture these rules.  
 
Electrostatics. The standard Rosetta electrostatic potential (fa_elec) disfavors Watson-Crick base 
pairs due to repulsion between the fixed positive charges on the hydrogen atoms in close proximity in G-
C and A-U pairs. To alleviate this problem, Rosetta uses two modified terms to evaluate electrostatics 
involving RNA bases. First, electrostatic interactions between phosphate atoms are evaluated using the 
standard fa_elec potential (Eq. 10 in the main text), via a term called fa_elec_rna_phos_phos. 
Second, electrostatic interactions between RNA bases are captured using the stack_elec term.32 This 
term scales the fa_elec potential as a function of the angle (𝜅�) between the normal to the plane of the 
base (𝑧�) and the vector 𝑑�,� between base heavy atoms 𝑖 and 𝑗 in residues 𝑟H and 𝑟I, respectively (Figure 
S4). The equation for stack_elec is given by Eq. S19.  
 

𝐸stack_elec = 𝑓(�,��̧ ¹�P 𝜅�, 𝜅�)𝐸fa_elec   (S19) 
 
The scaling function 𝑓(𝜅�, 𝜅�) suppresses the electrostatic energy to zero when the bases are coplanar 
and maintains the full value of the energy when the bases are stacked (Eq. S20; Fig. S4B).  
 

𝑓 𝜅�, 𝜅� = 𝑐𝑜𝑠I 𝜅� + 𝑐𝑜𝑠I 𝜅�  (S20) 
 

 
Figure S4. Electrostatic and stacking energies for RNA.  
(A) fa_stack and stack_elec are scaled as a function of the angle, κi, between the normal to the base, 𝑧�, and 
the distance vector between atoms 𝑖 and 𝑗. (B) The scaling function takes the form 𝑓 𝜅� = cosI(𝜅𝑖), such that the 
weight is equal to 1.0 when the bases are stacked and 0 when they are coplanar. (C) The fa_stack energy for 
stacked bases (when 𝑓 𝜅� = 1.0). 
 
Base stacking. 𝜋 − 𝜋 stacking interactions are not explicitly captured by fa_atr; thus, Rosetta includes 
an additional stacking bonus term, called fa_stack.33 The fa_stack term applies a constant bonus for 
base atoms less than 4 Å from each other to reward neighboring stacked bases.  Like the stack_elec 
term, fa_stack also depends on the angle (𝜅�) between the normal to the plane of the base (𝑧�) and the 
distance vector from atoms i to j (𝑑�,�), such that stacked, but not coplanar bases receive this bonus (Eq. 
S19: Fig. 4C). The potential is smoothed to zero between 4 Å and 6 Å using a smoothing function given 
in Eq. S21-S23.  
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𝐸fa_stack = 𝑓 𝜅�, 𝜅� 𝑔 𝑑�,��,��̧ ¹�P   (S21) 
 

𝑔 |𝑑�,�| =
−0.2,																																				|𝑑�,�| ≤ 4.0
−0.2ℎ(|𝑑�,�|)									4.0 < |𝑑�,�| < 6.0
0.0,																																					|𝑑�,�| ≥ 6.0

 (S22) 

 

ℎ 𝑑�,� = 	−0.2 2 S³,Ä Li
I

Z
− 3 S³,Ä Li

I

I
+ 1  (S23) 

 
RNA torsions. Like carbohydrates and non-canonical amino acids, nucleic acids require a separate term 
to evaluate specific torsional energies. For RNA, the rna_torsion term evaluates the energies for the 
nucleic acid backbone and side chain torsions: α, β, γ, δ, ε, ζ, ν1, ν2, χ, O2’. The torsional energies are 
computed as a function of the frequency of some general torsion A found in RNA structures in the PDB 
(Eq. S24, Fig. S5).  
 

𝐸rna_torsion = −ln	(𝑃 𝐴} )}   (S24) 
 
To accommodate special cases, separate potentials were derived for each of the δ, ε, ν1, ν2, χ, O2’ 
torsions depending on whether the sugar pucker is 2’-endo or 3’-endo. Additionally, a separate χ potential 
was derived for purines and pyrimidines. For ζ, there are three separate potentials depending on whether 
the α torsion of the following residue is gauche–, trans, or gauche+. Additionally, a set of four harmonic 
restraints, together comprising rna_sugar_close, are applied to ensure that the RNA sugar ring 
remains closed: a bond distance restraint between atoms O4’ and C1’, and three angle restraints for the 
O4’-C1’-C2’, C4’-O4’-C1’, and O4’-C1’-first base atom angles. 
 
Solvation. The full atom RNA potential contains an orientation-dependent desolvation penalty for polar 
atoms (geom_sol). The penalty is equal to the sum of the values of the orientation-dependent Rosetta 
hydrogen bonding energies for virtual water molecules placed at the positions of each occluding atom. 
The form of this term is given by Eq. S25.  
 

𝐸geom_sol = 𝐸hbond(𝑟��,��̧ ¹�P − 𝑣�)   (S25) 
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Figure S5. Torsion potentials for RNA  
RNA torsional potential for (A) α, (B) β, (C) γ, (D) δ, (E) ε, (F) ζ when the α torsion of the following residue is 
gauche– (orange), trans (cyan), or gauche+ (purple) (G) χ for purines (lighter red and blue) and pyrimidines (darker 
red and blue), (H) ν1, (I) ν2. Potentials when the sugar pucker is C2’-endo are shown in red and C3’-endo shown in 
blue. 
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