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LUNG HEALTH STUDY DATA

The data from the Lung Health Study were download from the database for Genotype and Phenotypes (db-

GaP; https://www.ncbi.nlm.nih.gov/gap) that was designed to share data from studies that have examined

genotype–phenotype associations in humans. Instructions for applying for dbGaP data can be found at

https://www.ncbi.nlm.nih.gov/books/NBK5294/, and instructions for downloading and extracting data can

be found at https://www.ncbi.nlm.nih.gov/books/NBK5291/.

SEQUENTIAL OFFSETTED REGRESSIONS ANALYSES

Under the proposed auxiliary variable sampling designs, the sample is not representative of the target

population; rather, it is representative of a pseudo–population that is enriched with values Yij = 1 and with

values of Vi = 1 under exposure and auxiliary variable sampling designs. For a given design, we denote

the mean of this pseudo–population with µs
ij = E(Yij | Xij , Si = 1) = Pr(Yij = 1|Xij , Si = 1), where

superscript s signifies ’sample’ to emphasize that, in general, µs
ij 6= µp

ij . We interpret the pseudo–mean µs
ij

as simply the mean of Yij that would be obtained, on average, in a naive analysis of data from this design,

i.e., an analysis that ignores the enhanced sampling design. As such, in most circumstances, if we conduct

the proposed design and analyze the data as if it was collected from a simple random sample, we are likely

to obtain biased parameter estimates.

Here, we briefly outline an analysis procedure described more completely in reference [1]. The procedure

yields valid analyses under the proposed designs in the sense that estimates of (�0,�1,�v) are approximately

unbiased, as are standard errors of those estimates; hypothesis tests and confidence intervals are also therefore

correct. Our algorithm is based on a sequence of two o↵setted logistic regression analyses. The first regression

estimates the relationship of auxiliary variable Zi to response Yij and covariate Xij data. The results from

this model are then used as an o↵set in the outcome model that captures the relationship between the

response and covariate data. We now detail both models.

Auxiliary Variable Model

Because the sampling procedure involves a known quantity, we may rely on a well–known result from

case–control studies. Namely, the prospective, population model is preserved under case–control sampling

with logistic regression analysis of binary response data, with the exception that the intercept is shifted by a
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known constant, i.e., the log transformed ratio of sampling probabilities for cases versus controls. Exploiting

this fact for the auxiliary sampling variable Zi, we let �p
ij(yij ,Xij) = Pr(Zi = 1 | Yij = yij ,Xij , Vi) in the

population, and �s
ij(yij ,Xij) = Pr(Zi = 1 | Yij = yij ,Xij , Vi, Si = 1) in the sample. By applying Bayes’

Theorem, the odds model for Zi in the sample is given by

�s
ij(yij ,Xij)

1� �s
ij(yij ,Xij)

=
�p
ij(yij ,Xij)

1� �p
ij(yij ,Xij)

⇡(1, Vi)

⇡(0, Vi)
, (1)

where yij 2 {0, 1}.

We assume �p
ij(yij ,Xij) can be approximated with a logistic regression model in Yij , W 1,ij , and Yij ·

W 2,ij , where W 1,ij and W 2,ij are subsets of (X 0
ij , Vi)0. We may then fit an o↵setted logistic regression

model to the biased sample in order to estimate parameters in the sampling variable population model �p
ij .

Estimates from this intermediate model are used to identify the o↵set in the second, outcome model discussed

next. It is important to note thatW 1,ij andW 2,ij must be su�ciently rich to include all important predictors

of Zi contained in (X 0
ij , Vi)0 for this approach to be valid.

Outcome Model

Similar to the auxiliary variable model, the population and sample odds for the primary outcome model

can be related to one another by applying Bayes’ theorem

µs
ij

1� µs
ij

=
µp
ij

1� µp
ij

· ⇢ij(1,Xij)

⇢ij(0,Xij)
(2)

where ⇢ij(yij ,Xij) = Pr(Si = 1 | Yij = yij ,Xij , Vi). Using the estimated sampling variable model (b�p
ij),

along with the known sampling probabilities, ⇡(Zi, Vi), we estimate ⇢ij(yij ,Xij , Vi) as

b⇢ij(yij ,Xij , Vi) = ⇡(0, Vi){1� b�p
ij(yij ,Xij)}+ ⇡(1, Vi)b�p

ij(yij ,Xij). (3)

We may then use the log transformed ratio b⇢ij(yij ,Xij , Vi)/b⇢ij(y,Xij , Vi) as an o↵set in the logistic regres-

sion mode of Yij on (X 0
ij , Vi)0 in sampled subjects. Because the o↵set is estimated with uncertainty, standard

errors are not straightforward, but can be obtained in steps described in [1, 2]. In certain situations, one may

use non–independence working covariance weighting to gain e�ciency for parameters estimated in µp
ij . We

note, however, that the associated working covariance parameters ↵ do not represent population parameters

and should not be interpreted as such.
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Summary of Sequential O↵setted Regressions

The following summarizes steps for parameter estimation using the sequential o↵setted regressions ap-

proach for longitudinal logistic regression analyses.

1. Using log{⇡(1, Vi)/⇡(0, Vi)} as an o↵set, estimate parameters for �p
ij using o↵setted logistic regression.

2. Combining the known sampling probabilities ⇡(0, Vi) and ⇡(1, Vi) with estimates b�p
ij , use equation (3)

to calculate b⇢ij(yij ,Xij) for all i and j.

3. Using log{b⇢ij(1,Xij)/b⇢ij(0,Xij)} as an o↵set, estimate parameters for µp
ij with a logistic regression

model using GEE.
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eFigure 1: Relative Variance across 250 replicates for the COPD–free outcome when sampling 500 sub-

jects. We show RV = dV arRS(b�)/dV arAV S:SOR(b�) for a number of data features. Black diamonds denote the

analyses presented in Table 3 and grey diamonds show the result of perturbing one data, analysis or design

feature. Panels show the impact on relative variance of response prevalence (A), strength of the Z ⇠ Y

relationship (B), amount of response dependence (C), richness of the auxiliary variable model for Z (D), and

asthma exposure and auxiliary variable sampling (E).

eFigure 2: Relative Variance across 250 replicates for the severe COPD outcome when sampling 500

subjects. We show RV = dV arRS(b�)/dV arAV S:SOR(b�) for a number of data features. Black diamonds denote

the analyses presented in Table 3 and grey diamonds show the result of perturbing one data, analysis or

design feature. Panels show the impact on relative variance of response prevalence (A), strength of the

Z ⇠ Y relationship (B), amount of response dependence (C), richness of the auxiliary variable model for Z

(D), and asthma exposure and auxiliary variable sampling (E).
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