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Supplemental Methods 

Human Studies 

The design of this pilot study (Figure 1) combined longitudinal assessments over four months (activity, 

light exposure, sleep times, and communication) with additional deep phenotyping over 48 hours 

(ambulatory blood pressure monitoring, biospecimen collections for multiomics biology, and food 

intake). The 48 hour assessments were conducted twice, two weeks apart, timed at around the 

midpoint of the four-month data collection. Given that acute alcohol ingestion dampens biological 

rhythms in humans 1,2, volunteers were asked to abstain from alcohol for both 48-hour sessions 

beginning 24 hours beforehand. Caffeine and high fat foods were permissible. Healthy, male volunteers 

were enrolled after protocol approval by the Institutional Review Board which included an institutional 

security and privacy information impact assessment (SPIA) and registration (clinicaltrials.gov 

NCT02249793). All study procedures and associated risks were explained verbally and in writing prior to 

obtaining consent from the study volunteers. They were non-smokers and abstained from the use of 

vitamins, non-steroidal anti-inflammatory drugs (NSAIDs including aspirin) and illicit drugs as assessed 

by cotinine (Craig Medical, Vista, CA),  platelet aggregometry 3 and a urine drug screen (RDI, Poteau, 

OK), respectively, for at least two weeks before enrollment and at the start of each 48 hour session. 

After enrollment and authorization (WeP Project Agreement), the Munich ChronoType Questionnaire 

(MCTQ) was administered online 4. Health status and safety was assessed by routine medical history, 

physical exam, and laboratory work (hematology, biochemistry, and urinalysis) at the time of screening 

and again on completion of the study. Vital signs were recorded and queries for adverse events were 

made at each clinical visit. Aside from general health, the main inclusion criterion was to own a 

smartphone running an Android operating system, version 2.3 or higher. The main exclusion criteria 

comprised travel across time zones and irregular work hours, e.g. night shifts. To assess the function of 

the renin–angiotensin–aldosterone system (RAAS) and kidney, biospecimens were taken twice, once 

during each 48 hour session, to measure urinary electrolytes and aldosterone, cortisol, renin activity, 

creatinine clearance, GFR, and BUN.   

 

Biospecimens 

Plasma, serum, saliva, oral and rectal swabs were collected at 0, 12, 24, 36, and 48 hours in each session. 

Biospecimens were stored at -80◦C until analysis. 
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Ambulatory Blood Pressure Monitoring 

The blood pressure cuff for standard adults (24 to 32 cm) was placed on the non-dominant arm. Blood 

pressure was measured every 15 minutes in the daytime (0600h-2200h) and every 30 minutes during 

the nighttime (2200h-0600h) continuously over each of the two 48 hour sessions using the Spacelabs 

Model 90207 (Spacelabs Medical, Issequah, WA) 5,6. Raw data were exported in TXR file format from the 

Spacelab 92506 ABP Report Management System. Subject paper diaries collected self-reported awake 

and asleep times. 

 

Actigraphy 

A triaxial actigraph device (wActiSleep-BT, ActiGraph, Pensacola, FL) was placed on the non-dominant 

wrist of the subject. Subjects were advised to wear the actigraph continuously for the duration of four 

months. Devices were initialized with start date and time using atomic server time, no pre-defined stop 

date/time, at 60 Hz sampling rate for the three accelerometer axes, enabled for delay modus, steps, lux, 

inclinometer, and sleep while active. Raw data were exported in AGD and GT3X file format in one 

second epochs using ActiLife software (version 6, ActiGraph, Pensacola, FL). Each subject’s AGD files 

were merged and reintegrated for analysis at epochs of 60 seconds. The raw data output is count 7 for 

each accelerometer, which is transformed into vector magnitude as a composite measure according to 

the  where V is the vertical axis count (axis 1), H is the horizontal axis count (axis 2) and 

P is the perpendicular axis count (axis 3). These data are reported, based on the 60 second epochs, in 

units of [counts • min-1].  

The proprietary actigraph software (ActiLife 6.0) was used to calculate device wear time (Actigraphy 

Wear Time Validation) with the Troiano technique 8 developed for detection of non-wear periods from 

the representative 2003-2004 NHANES dataset.   

Both ActiLife (v6.0) built-in algorithms Cole-Kripke 9 and Sadeh 10 were used for sleep scoring, which 

labels individual epochs as either sleep or non-sleep. Here, manual corrections of sleep period 

identification were not conducted. In the subsequent step, the "Detect Sleep Periods" feature, based on 

the Tudor-Locke auto sleep period detection algorithm 11, calculated bedtimes defined as Time in Bed 

(TIB) and Time Out of Bed (TOB).   
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The Actigraph data of our study participants were compared against the NHANES cohort for counts, 

energy expenditure, gender, age, weight, height and BMI using the NHANES module in the ActiLife (v6.0) 

software. 

 

Light Sensor 

The actigraph (wActiSleep-BT, ActiGraph, Pensacola, FL) is equipped with a light sensor.  Ambient light 

intensities were recorded in lux at 60 Hz frequency over the four months wear time. Raw data were 

reintegrated at 60 seconds epochs by the ActiLife software (version 6, ActiGraph, Pensacola, FL) and 

reported in units of [lux • min-1] for this study. Average light intensities were calculated for each subject 

using the sleep survey to annotate each data point as ‘awake’ or ‘sleeping’. Available data collected 

during the 4 month observational period, integrated at 1 minute epochs, were then averaged within 

each subject for the conditions ‘awake’ and ‘sleeping’. 

 

Microbiomics 

For the separate pilot study, stool samples were collected as a pilot during an interventional study in 

healthy volunteers (clinicaltrials.gov registration number: NCT00682318) studying i) the interaction 

between marine lipids and ethanol on lipid peroxidation, and ii) the formation of putative pro-resolving 

lipid mediators 12,13. Twelve healthy volunteers, 7 women, 30.8±11.6 years of age, collected one stool 

sample per week over the course of 8 weeks. Date and time of each bowel movement was logged.  

 

For the present study, regular sterile and individually packaged flocked swabs, with plastic applicators 

(FLOQSwabs™, Copan, Murrieta, CA) were used to collect microbiota samples. The swabs to collect the 

oral microbiota from the left and right inside of the cheek were collected by one single investigator 

(C.S.), while the swabs to collect the rectal microbiota were performed by different CTRC nurses on call 

with a witness present in the room during biospecimen collection. Samples were stored at -80°C until 

analysis. Also for the present study, saliva was submitted to microbiomics analysis.  

 

For analysis, DNA was extracted from each stool sample, followed by PCR amplification using 16S 

primers (27f/357R) and 454/Roche pyrosequencing, as described previously 14,15.  Samples were included 



Page 5 of 58 
 

in the analysis if a minimum of 1000 sequences were recovered. Bioinformatics analysis was carried out 

with the QIIME software pipeline 16. The 16S sequence reads were clustered at 97% similarity using 

UCLUST 17. Representative sequences from each cluster were aligned to 16S reference sequences with 

PyNAST 18, and a phylogenetic tree was inferred with FastTree 19. Taxonomic assignments were 

generated using the default method in QIIME, which compares the top three sequence matches in the 

Greengenes reference database 20. 

 

Plasma and Saliva Metabolomics 

Na-heparin plasma and saliva samples (100 μl) from both 48 hour sessions, n=60, were submitted for 

analysis. The following standards and their concentrations were spiked into each sample: 13C6 Citrate, 

7.5ug/mL; 13C4 Fumarate, 2.5ug/mL; 13C5 15N1 Glutamate, 2.5ug/mL; 13C6 Arginine, 1ug/mL; 13C3 

Lactate, 2.5ug/mL; 13C6 Glucose, 7.5ug/mL; Lysine d4, 2.5ug/mL. For the sample preparation, 200μl of 

methanol and 100μl of chloroform were added to 50μL of plasma and samples were then sonicated for 

15 minutes. 100μl of chloroform and distilled H2O were then added and samples were subsequently 

centrifuged for 7 minutes at 13,000 rpm at 4°C. 200μl was pipetted from the upper aqueous layer of 

each sample into a new 5as accom tube. Samples were evaporated for 2-24hrs in a speedvac and stored 

at -80°C until analysis.  

LC-MS/MS was performed on a Waters Acquity UPLC coupled to a Waters TQD mass spectrometer 

(Waters Corporation, Milford, MA, USA). Liquid chromatography conditions and mass spectrometer 

parameters were based on methods described by Yuan et al.21, with chromatographic separation of 

metabolites performed using a Waters BEH Amide (100mm x 2.1mm x 2.5µm) column. Data processing 

was accomplished using Waters TargetLynx software (version 4.1). 

A series of quality control steps was designed to account for individual feature drift in the MS platform, 

that is features were only retained in the analysis if the coefficient of variation in a pooled sample < 30% 

across the dataset. 

Proteomics 

Aliquots of 80 mL plasma samples collected in EDTA during the first 48 hour session, n=30, were 

submitted to protein analysis using the SomaLogic discovery platform 22. The SOMAscan™ assay was 

performed in-house at the Penn Translational Core Laboratories and sent for analysis to SomaLogic, Inc, 

Boulder, CO. This assay quantifies proteins over eight logs in abundance covering the femtomolar to 
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micromolar range with 96.5% of all proteins showing a coefficient of variation (CV) < 20%. Briefly, each 

individual protein concentration is transformed into a corresponding  SOMAmer reagent (Slow Off-rate 

Modified Aptamer) concentration, which is then quantified by standard DNA techniques 23.  

 

Gene Expression 

Whole blood (2.5 ml per collection) was collected and stored in PAXgene blood RNA tubes (PreAnalytiX 

GmbH, Hombrechtikon, Switzerland) at -80°C until use. Total RNA from blood sample tubes collected 

during session 1 was extracted according to the manufacturer's instruction. 0.4μg RNA was reverse 

transcribed to cDNA using random hexamer and MultiScribeTM Reverse Transcriptase (Applied 

Biosystems). The cDNAs were then used as templates for TaqMan gene expression assay using the 

ViiATM 7 Real-Time PCR System (Applied Biosystems). Gene expression is reported as relative mRNA level 

where gene targets of interest were normalized to GAPDH and ACTB (β-Actin). Primers targeted the 

following genes: DBP (D site of albumin promoter (albumin D-box) binding protein, Entrez Gene ID 

1628), ARNTL (aryl hydrocarbon receptor nuclear translocator-like protein 1, Entrez Gene ID 405), 

NR1D1 (nuclear receptor subfamily 1, group D, member 1, Entrez Gene ID 9572), PER2 (period circadian 

clock 2, UniGene ID: Hs.58756), and PTGS2 (prostaglandin-endoperoxide synthase 2 [commonly referred 

to as cyclooxygenase-2], Entrez Gene ID 5743, Hs.PT.53a.21519633. House-keeping genes were GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase, Entrez Gene ID 2597, Hs.PT.53a.26759668), and ACTB 

(beta-actin, Entrez Gene ID 60, Hs.PT.53a.21116011.g). DBP, ARNTL, PER2, and NR1D1 primers were 

obtained from Thermo Fisher Scientific, Carlsbad, CA. PTGS2, GAPDH and ACTB primers were obtained 

from IDT Integrated and Technologies, Coralville, IA. 

 

Smartphone user data 

The HIPAA-compliant Ginger.io platform consisted of a mobile phone application and a web dashboard 

which allowed the researcher to monitor user activity in near real time. The application gathered 

communication and mobility data through a background process and transmitted data encrypted to 

firewall protected linux-based servers with access control lists. Study participants used the Android 

smartphone they owned at the time of study inclusion. Upon invitation users installed the mobile 

application and logged in with a password provided to them. This initiated the data collection process. 

The data were stored securely on the mobile device temporarily and sent at regular intervals using the 
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World Wide Web. In the case that a connection was not available or if a transmission was not successful, 

the data continued to be stored on the device until the next transmission attempt was successful. In 

detail, the data collected through the device included call and sms logs including call/sms time, call 

duration, sms length, and phone number, as well as location information and device usage. Importantly, 

private information such as actual content of voice calls or sms messages or emails was never accessed, 

read, recorded, or transmitted. The data were encrypted and transmitted to the server over a secure 

128‐bit SSL 3.0 connection using the HTTPS protocol. For this purpose, unique keys were generated 

dynamically for every API request through a unique identifier and client secret that was embedded 

inside the application for which access was denied by any user or application.   

 

Ginger.io Linux‐based servers are protected using a firewall and access control lists (ACLs), and access is 

restricted to Ginger.io employees and contractors. Superuser activity and researcher activity on the 

server is logged for security and auditing. The servers are regularly updated and patched with latest 

security updates to ensure that there are no known threats. These servers host the database where the 

data is stored. Linux‐based servers and access to the servers are restricted to a few users responsible for 

maintaining and testing the database. For additional security, all the data that has personally identifiable 

information about the participant (such as e-mail) are stored in a separate database from the one that 

has user and study data. The passively collected data from the phones as well as the actively-reported 

survey information is stored in the second database. Phone numbers and other such private information 

stored in this database are anonymized by hashing over the identifiers so that there is no threat to 

privacy because the data are not human-readable at this point. During the close out visit of each 

participant, the Ginger.io application was removed under supervision of study personnel and data 

recording was discontinued via the dashboard application. The data safety and privacy measures put in 

place by Ginger.io were reviewed and accepted per Security and Privacy Information Impact Assessment 

(SPIA) by an Information Security Officer appointed by the Penn Medicine Academic Computing 

Services.  The SPIA formed an obligatory part for the review by the Institutional Review Board. 
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Sleep survey 

A sleep survey was administered daily via the Ginger.io app at 08:00 hours EDT consisting of the 

questions i) “What time did you fall asleep last night?” and ii) “What time did you wake up?” Answers 

were given using a time dial function in 12-hour notation with am/pm suffix. 

 

Comparison of Subjective and Objective Sleep Data 

We assembled lists of sleep and wakefulness onset times derived from the actigraphy data (using the 

Cole-Kripke or Sadeh algorithm embedded in ActiLife), and the self-reported sleep survey. Next, we 

manually aligned the sleep periods from the actigraphy data with the sleep survey. We discarded sleep 

periods that were present in only one of the data types, and merged fragmented sleep periods derived 

from the actigraphy data to better reflect the true sleep and wakefulness onset times. Having aligned 

the sleep periods in this way, we calculated the difference in sleep and wakefulness onset times 

between the self-reported sleep survey, and the actigraphy-derived results from each of the two 

algorithms. A one-sample t-test on the differences in sleep/wake times between the two data types was 

executed to discern differences between self-reported and activity algorithm-base sleep-wake times. 

 

Nutritional Assessments 

Remote Food Photography 

Intake of food and beverages was collected with the SmartIntake© smartphone app, a validated Remote 

Food Photography Method® (RFPM) 24,25. Subjects placed a reference card next to their food/beverage 

and captured images at 45 degrees of their food/beverage selection and plate waste. If available, 

subjects scanned the barcode or entered the Price Look-up (PLU) number to identify foods or beverages 

in the image. Additional food/beverage descriptors were provided by text or voice message which was 

automatically tagged to the food image. These data and food/beverage images were wirelessly sent by 

the mobile app to the server-based Food Photography Application©, which was used to manage the data 

collection process and analyze the food images to estimate energy and nutrient intake. To facilitate data 

quality and completeness, the SmartIntake© app included Ecological Momentary Assessment (EMA) 26 

methodology to remind participants to capture images of the foods and beverages that they consume. 

These reminders were text messages that are scheduled for delivery at the personalized meal times of 

the participants. The responses to EMAs were tracked in near real-time, which allowed the research 
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team to identify quickly when data collection problems occurred. In such cases, (which did not occur in 

the present study), a back-up method can be used (e.g., a food record or food recall conducted by 

phone). The SmartIntake© app sends participants food/beverage images and accompanying food 

identifier data (e.g., barcodes, PLU numbers, food descriptions) to a server located at the Pennington 

Biomedical Research Center where bionutritionists analyze the images to estimate food/beverage intake 

based on the Food Photography Application© program. This allows the operator to identify a match for 

each food from the Food and Nutrient Database for Dietary Studies 5.0 27 and other sources, such as 

manufacturer’s information and Nutrition Fact Panels, to calculate energy and nutrient intake. 

Additionally, the operator uses the program to estimate portion size by visually comparing participants’ 

food images to images of foods with a known portion size,i.e., standard portion images. This process 

relies on existing and validated methodology 24,25,28,29. The standard portion images are contained in a 

searchable archive that includes over 8,000 standard portion images. This process results in estimates of 

food/beverage selected and plate waste, which is used to calculate food intake by difference.  

 

Diet Recall and Food Record 

The 24-hour hour diet recall interview was conducted by a bionutrionist using Nutrition Data 

System for Research (NDSR), version 2014, a computer-based software application developed at 

the University of Minnesota Nutrition Coordinating Center (NCC) that facilitates the collection 

of recalls in a standardized fashion 30. Dietary intake data gathered by interview is governed by a 

multiple-pass interview approach 31. Five distinct passes provide multiple opportunities for the 

participant to recall food intake. The first pass involves obtaining from the participant a listing of 

all foods and beverages consumed in the previous 24 hours. This listing is reviewed with the 

participant for completeness and correctness (second pass). The interviewer then collects detailed 

information about each reported food and beverage, including the amount consumed and method 

of preparation (third pass). In the optional fourth pass, the interviewer then probes for commonly 

forgotten foods. Finally, the detailed information is reviewed for completeness and correctness 

(fifth pass). Dietary supplement use was assessed in conjunction with collection of 24-hour 

dietary recalls using the Dietary Supplement Assessment Module included in NDSR 32. Use of 

all types of dietary supplements and non-prescription antacids were queried in the module.  
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Participants were asked to record their food intake for three consecutive days covering two 

weekdays and one weekend day. The 3-day food records were quantified by the bionutritionist 

using NDSR, version 2014. 

The NCC Food and Nutrient Database serves as the source of food composition information in 

NDSR 33. This database includes over 18,000 foods including 7,000 brand name products. 

Ingredient choices and preparation methods provide more than 160,000 food variants. Values for 

163 nutrient, nutrient ratios and other food components are generated from the database. The 

USDA Nutrient Data Laboratory is the primary source of nutrient values and nutrient 

composition. These values are supplemented by food manufacturers' information and data 

available in the scientific literature 34. Standardized, published imputation procedures are applied 

to minimize missing values 35. 

Data Management 

Study data were collected and managed using REDCap electronic data capture tools hosted at the 

University of Pennsylvania. REDCap (Research Electronic Data Capture) 36 is a secure, web-based 

application designed to support data capture for research studies, providing an intuitive interface for 

validated data entry, audit trails for tracking data manipulation and export procedures, automated 

export procedures for seamless data downloads to common statistical packages, and procedures for 

importing data from external sources. 

 

Data Integration and Visualization 

The dplyr (v0.4.3), tidyr (v0.3.1), and lubridate (v1.3.3) packages in R (v3.2.2) were used to manage and 

integrate study data. For data visualization, the ggplot2 (v2.0.0), scales (v0.3.0), and gridExtra (v2.0.0) 

packages in R were utilized. Raw data, except blood pressure and heart rate data were square root 

transformed to allow visualization at scale. To generate the circular plots, the CircOS software package 

(v0.69) was adapted to represent an entire day as a single circular chromosome, where each position 

along this chromosome corresponds to a single minute in the 24-hour day (total of 1440 minutes). 
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Standard Statistical Analyses 

Throughout this manuscript, we reported means and standard deviations, if not otherwise noted. We 

used Wilcoxon paired rank tests to check for significant differences in metabolite and protein abundance 

between the morning and evening time points. Briefly, we identified each abundance measurement as 

either morning (0, 24, 48) or evening (12, 36) depending upon its collection time. Next, for each 

protein/metabolite we calculated the mean morning abundance and evening abundance within each 

subject. Then, we compared these morning and evening means across all subjects using a Wilcoxon 

paired rank test (implemented in the wilcox.test R function). Within each dataset (ie. plasma proteins, 

plasma metabolites, and saliva metabolites), we corrected the p-values returned by the Wilcox tests for 

multiple-testing using the Benjamin-Hochberg method (implemented in the p.adjust R function). To 

assess differences between the sample groups for the microbiome data, we used a multivariate 

permutational ANOVA (PERMANOVA) test 37 based on pairwise UniFrac distance between samples 38,39. 

Subject ID, AM/PM, session 1/2, and left/right side served as independent variables in the test. To 

control for repeated measures within subjects, we permuted labels for AM/PM, session 1/2, and 

right/left side only within subjects when computing p-values. Given the resolution of 12 hour intervals 

for the multi-omics data over the course of 48 hour sessions, we explored and determined that further 

statistical examination including cross-correlations is not feasible. We found that correlations were 

unstable with this number of data points especially in the context of multiple testing.  

 

Permutation Test 

To address the question of whether patterns of time-of-day fluctuations observed in the metabolome 

and proteome occur more often than by chance, we employed a permutation analysis. First, we defined 

two distinct patterns, i.e. M-pattern corresponding to low-high for morning versus evening abundances, 

and W-pattern displaying high- low abundances for mornings and evenings. Let N be the number of M or 

W patterns in the data. We then permuted the time points so as to mix up at least one even time point 

with one odd time point.  For each such permutation we counted the number of M and W patterns.  Let 

A be this number averaged over all permutations.  If there are meaningful M and W patterns in the data 

then N should be higher than A. To test this hypothesis we calculated a permutation p-value as the ratio 

of the number of permutations where there were more M and W patterns than in the unpermuted data 

to the total number of permutations. 
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Pathway and Network analysis 

To pilot the assessment of transomic linkages, we submitted the plasma and saliva metabolome as well 

as the plasma proteome data to the Ingenuity Pathway Analysis (IPA, Redwood City, CA). For each 

combination of metabolite source (plasma or saliva), plasma proteins, session (where available), and 

time point, we calculated the mean abundance of each metabolite/protein across all subjects and 

ordered each list of metabolites/proteins by these mean abundances. Next, we took the top half of each 

list and analyzed the resulting metabolites or proteins using IPA’s metabolomics analysis suite or 

expression analysis suite, respectively. This yielded enrichment p-values for the most enriched disease 

categories among the list of top metabolites/proteins at each time point, in each session, from either 

plasma or saliva. For those disease categories enriched in only a subset of the data, we entered an 

enrichment p-value of 1 for all time/session/source combinations where the disease category was 

absent (ie. showed no enrichment). 

For each time point of the proteomic/metabolite data, we then used Fisher’s method to combine 

enrichment p-values between sessions 1 and 2, where available. We next analyzed these temporal 

patterns in disease category enrichment for evidence of a time-of-day (morning/evening)-dependent 

effect. Briefly, we used the same permutation methodology to test for enrichment of M and W patterns 

described above, except in this case we used the Fisher-combined disease category enrichment p-

values, rather than molecule abundances. We used STITCH v4.0 (http://stitch.embl.de/) to plot 

protein/metabolite interaction maps for the enriched metabolites in the disease categories showing 

significant time-of-day differences.   

 

Circadian Multiresolution Analyses 

To identify circadian oscillations as well as signal changes over time, we performed a multiresolution 

analysis (MRA) of all data derived from the ActiGraph device and the Ginger.io platform. This MRA was 

based on wavelet transformations and was developed by Price et al. 40. For the following analyses, we 

square root transformed the activity and communication data, since they are count data. To begin, we 

separated the raw data into a set number of component details and a smooth using the mra(w1, 

wf=”mb8”, J=5, method=”modwt”) function in the R waveslim package, where ‘w1’ is the square root of 

the raw communication data with missing values replaced using linear interpolation, and the ‘J=5’ 

http://stitch.embl.de/
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parameter specifies the maximum level of wavelet details to generate, five levels in this case. We used 

the “MB(8) from MBDT family of wavelets” 41  as the mother wavelet, where “MB(8)” means using a 

minimum bandwidth of 8; the “MBDT family” refers to a set of minimum-bandwidth, discrete-time 

orthonormal wavelets 41. 

For data binned into one-hour increments, i.e. the smartphone-derived data, the circadian signal is 

contained in D4. Therefore, to retrieve the circadian component of the signal we generated five levels of 

wavelets, up to D5. For data binned into one-minute increments, i.e. the actigraph-derived data, the 

circadian signal is contained in D10. Here, we generated eleven levels of wavelets, up to D11.  

 

After extracting the circadian signal from a dataset, we next produced three metrics: instantaneous 

amplitude, instantaneous period and instantaneous phase. The first step is to identify the times at which 

the roots, minima, and maxima occur in the circadian signal. Roots indicate the times at which the 

circadian signal crosses the x-axis (circadian signal = 0), and the minima and maxima correspond to the 

troughs and peaks of the circadian signal, respectively. For data with lower sampling resolutions (≥ 30 

minutes) we estimated the exact times for these points using linear interpolation. In many cases, this 

allowed us to calculate instantaneous parameters these interpolated times, rather than the sampled 

times. For example, if we used interpolation to estimate a peak in circadian signal at 15.3 hours, but we 

sampled at one-hour resolution, we want values for the instantaneous parameters at 15 and 16 hours. 

In order to achieve this, we performed a second interpolation step to estimate the instantaneous 

parameter values at the time points we original sampled. For data with higher sampling resolutions (≤ 4 

minutes), the times of these points (roots, minima, maxima) are determined directly from the sampled 

times, without any interpolation. 

 

Instantaneous amplitude is the absolute difference in circadian signal between a maximum and its 

preceding minimum (or vice versa). We calculated the amplitude by stepping through each maximum 

and minimum. If a maximum occurred at time 24:00 and a minimum at time 12:00, we calculated the 

amplitude as abs(circadian signal at 24:00 – circadian signal at 12:00). If the next minimum occurred at 

time 36:00, then the next amplitude is abs(circadian signal at 36:00 – circadian signal at 24:00). 
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Instantaneous period is the length of the period for each complete cycle in the circadian signal. After 

determining the times for roots, minima, and maxima of the circadian signal, we stepped through each 

full cycle (i.e. peak-root-trough-root-peak, trough-root-peak-root-trough, or root-peak/trough-root-

trough/peak-root), and calculated the difference in time between the end of the cycle and its beginning. 

If a peak occurred at time 23:00, and the next peak occurred at time 47:00, the instantaneous period for 

this cycle is 47:00 – 23:00 = 24:00. 

 

Instantaneous phase relates the phase of a signal to a particular time. We assigned the maxima, first 

root, minima, and second root to the following values in order: 0π, 0.5π, 1π, and 1.5π, respectively. 

These transformed values define phase values with respect to sinusoidal curves. The time at which the 

instantaneous phase is equal to 0 corresponds to the peak in circadian signal, since the peak in a cosine 

occurs at 0 or 2π. Again, we used linear interpolation to determine the phase values for the sample 

times between the roots, minima, and maxima. 

Cosinor Analysis 

In addition, we used the cosinor method (reviewed in 42,43) to fit cosine curves to several of the data 

types for each subject (i.e. activity, aggregate communication, blood pressure, heart rate, light exposure, 

and mobility) limited just to the two 48-hour deep phenotyping sessions (Session 1 and 2). These fits 

yielded MESOR, amplitude, and phase values for each combination of subject, data type, and session. 

Variance Correlation Analysis 

To examine the relationships between the various datasets we collected, we performed the following 

analysis. 

Preprocess the data 

For this analysis we used all of the communication, activity, cardiac measurement, and dietary intake 

data, and aggregated them at one-hour intervals. We integrated the datasets using hourly aggregates 

because communication was recorded at a one-hour resolution, while all of the other data were 

collected at finer resolutions. To produce an hourly summary for activity data and cardiac 

measurements, we calculated the mean of each measure for a given subject for each one-hour interval. 

For the dietary data, we summed the total consumption of each nutrient for a given subject for each 

one-hour interval. We removed the Unreturned Calls measure from the communication set due to the 

high prevalence of missing values. We also removed rows that included missing measurements. Note, 
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the cardiac measurements and dietary intake data were only collected during two 48 hour visits, while 

the other datasets were collected over several months. For this reason, when analyzing the cardiac data 

we took the subset of the other datasets that include only the time index and subject combinations 

present in all of the data (i.e. limiting the analysis of all data types just to those 48 hour periods). 

 

After processing, each row in the integrated dataset included the hour-aggregated measures of all 

variables for a given subject at a given hourly time index, as defined by the hours after the epoch 2014-

10-21, 00:00. This dataset included every hour/subject combination present in both the activity and 

communication datasets. As we intended to perform linear regression, we plotted the distribution of 

each variable. To improve normality as a condition of linear regression, we transformed the Axis1, Axis2, 

Axis3, Steps, Luminosity, Activity Vector Magnitude, Mobility, Mobility Radius, Metabolic Rate, Energy 

Expenditure, and all Circadian Signal variables using a log(x+1) transformation, and applied a square root 

transformation to the Interaction Diversity, and all of the dietary data. 

 

Statistical analysis of the variance explained between outputs 

To evaluate the linear relationships between every pairwise combination of variables in the integrated 

dataset prepared above, we calculated the linear regression coefficient of determination (R2), for each 

pair of variables, using the lm function in the R statistical language. We then constructed a heat map of 

the proportion of variance in each variable (e.g. mobility, luminosity, systolic blood pressure) explained 

by every other variable. We performed calculations and produced heatmaps for data from all four 

months of collection for communication, activity and environment variables. We also used the subsets 

that contained the biometric visits to produce a heatmap that included these variables along with the 

blood pressure, heart rate, and dietary intake variables. In addition to the R2 values, we also examined 

the p-values produced by the linear regression analysis. We produced heatmaps for the p-values as well, 

but only displayed data for those p-values that remained significant following a Bonferroni correction. 

 

Principal Components Analysis 

To visualize variance effects in the multi-omics data, we used principal components analysis (PCA). 

Briefly, we prepared data matrices for each of the multi-omic datasets for all subjects and clinic visits by 

imputing (for any missing data points) and normalizing into unit variance before PCA fitting. The initial 
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PCA fitting and plotting guided outlier removal if necessary (for example HCR009-12hr-Visit 1 for 

proteomics), which we followed by refitting. We then used PCA scores as latent variables for correlation 

analysis with the other data types. For dietary intake, we broke data from each clinic visit into chunks, at 

the midpoint between sampling times, yielding a total of ten chunks per visit. We then summed the 

macronutrient intake within each chunk. For all PCA, we used Python’s scikit-learn module (version 

0.17.1). 

 

Contribution of Time and Subject to Variability in Measurements 

Standard methods of classical statistics were used to assess the contribution of time and subject 

(separately) to variability in the various datasets. For these analyses the same datasets were used as the 

variance correlation analysis, and the same pre-processing steps were performed. Additionally, the 

proteomics, metabolomics, and microbiome datasets were used in these analyses. The model is 

formalized as follows. First, observations were grouped by clock hour (0-23) or time of day (morning, 

evening) when assessing time; or by subject when assessing inter-subject differences. The contribution 

of the grouping variable (time or subject) to variance was computed as the following sum of squared 

differences: 

 

 
 

where i is a value of the grouping variable (i = hour for time or subject number for subject), n is the 

number of values for the grouping variable (e.g. n=6 for subject; n=24 for clock hour),  is the mean 

measurement for the ith value of the grouping variable (e.g. average of all blood pressure measurements 

from hour three), and  is the mean measurement value across all of the data. Note, the SSgroup is 

equivalent to the lack of fit sum of squares of the data to a horizontal regression line 44. The greater the 

effect time or subject has on the variability in the data, the greater SSgroup will be. Next, the total 

variability was calculated as the following sum of squared differences: 
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where j here refers to a specific measurement (e.g. bp measurement from subject one, at hour three, on 

day two), m is the total number of measurements,  is the value of the jth measurement, and  is again 

the mean across all of the data. Lastly, the grouping variable’s contribution to the total variance is 

captured in the following ratio: 

 

 
 

This is analogous to the R2 calculation performed in linear regression modeling, where the values of the 

grouping variable serve as discrete values of the predictor variable. In this case, we used the mean 

values across the ith value of the grouping variable as the fitted value of the regression curve, in order to 

account for a non-linear relation between variables.  This was possible because the predictor variables 

are discrete and there are replicate observations of the outcome variables at each value of the predictor 

variables.  The above calculation was then repeated for each type of data: blood pressure 

measurements, abundance levels of individual proteins/metabolites, actimetry, etc. 

 

Open Source Data Sharing  

De-identified raw and aggregate data will be shared via Zenodo, https://zenodo.org/, a free option for 

hosting large datasets (“Big Data”) in a citeable form. Zenodo is hosted by CERN (Conseil Européen pour 

la Recherche Nucléaire), the European Organization for Nuclear Research in Geneva, Switzerland, which 

is backed by significant financial resources, retains data for the lifetime of the repository (currently 

secured until at least 2037), defines that all uploaded content remains the property of the parties prior 

to submission, allows all data formats, and keeps data files in multiple replicas in a distributed file 

system.  

https://zenodo.org/
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Supplemental Results 

Human Subjects and Safety 

A cohort of eight healthy volunteers was enrolled in this study. Six volunteers completed the study, all 

males, 32.3±3.6 years of age, BMI 25.2±3.4 kg/m2, Table S 1), while two dropped out (inclusion criteria 

were not met). Subjects screened negative for vitamin intake except as follows: one subject, HCR003, 

recorded oral intake of an over-the-counter multivitamin formulation during an episode of "scratchy 

throat" (Airborne Effervescent Tablets containing among others 1000 mg vitamin C; dose of 1 tablet/day 

over 3 days) which did not coincide with either of the two 48-hour sessions of deep phenotyping. 

Subjects screened negative in urine tests for drugs and cotinine (a nicotine metabolite) as well as by a 

platelet aggregation assay administered to assess compliance during screening at the beginning of each 

48 hour session. The safety laboratory assessments of blood count and blood chemistry at screening and 

the exit visit were normal in the chart review. Serious adverse events did not occur. A total of nine 

adverse events were recorded; all were mild in severity and resolved. Per the Munich Chronotype 

Questionnaire (MCTQ), 3/6 subjects were rated as normal chronotype, 2/6 as slight late, and 1/6 as 

slight early. 5/6 subjects pursue regular work starting and ending the work day on average at 

08:36±00:33 and ending 17:54±02:33, thus spending 9.3±2.8 hours at work. One subject, HCR003, 

indicated both regular work hours (09:00 to 16:00) and shiftwork in the MCTQ, however, during study 

enrollment shiftwork was not reported and rhythms of activity counts, ambient light intensity and self-

reported sleep times reflected a daytime work schedule. 4/6 subjects spend 15 minutes each way 

walking or biking to work, while one subject commutes for 30 minutes each way in a vehicle. One 

subject did not provide information. In the chart review, laboratory tests assessing kidney function were 

within the normal range for both sessions 1 and 2. (Table S 2, and Table S 3). 

Data Volume, Handling and Integrity 

Per clinical study protocol, the collection of approximately 7.5 billion samples was anticipated via 

remote sensing, while around 6,000 clinical samples were planned to be collected. Processing of remote 

sensing data, that is, re-integration of activity and ambient light intensity data to larger 60-second 

epochs as described below, reduced this data set to about 2.1 million data points, while analysis of 

clinical samples increased this data set to about 106,000 data points. Thus, ~2.2 million data points were 

used for both visualization and further bioinformatics analysis including efforts to integrate these 

multidimensional datasets.  
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Ambulatory Blood Pressure Monitoring 

Blood pressure shows a strong diurnal rhythm in this cohort of healthy participants. The mean systolic 

and diastolic blood pressure during waking hours was 126.1±10.6 mmHg and 78.5±9.1 mmHg, 

respectively, which dropped at night to 106.8±11.6 mmHg and 58.8±10.2 mmHg, respectively. This 

nocturnal dip lowered systolic and diastolic blood pressure by 20.7±3.9 and 20.7±3.3 mmHg, 

respectively. A mean ratio SBPasleep/SBPawake of 0.85 classifies this as a dipping phenotype as the ratio falls 

into the category of >0.8 but ≤0.9 45,46. The largest nocturnal dip of 24.2±2.7 bpm was observed for 

HCR009 (from 80.1±11.8 to 59.1±14.6 bpm), while the smallest nocturnal dip of 13.1±7.7 bpm was 

evident for HCR003 (66.8±12.1 to 54.4±7.9 bpm). Mean arterial pressure (MAP) dropped by 19.4±3.2 

mmHg, while pulse pressure (PP) remained stable during wake and sleep hours. Diurnal patterning is 

also discernible for heart rate readings as shown in Figure 2 and Table S 4 and Table S 5. Heart rate 

reached on average 74.0±13.0 bpm during wake times in session 1 and 2, dropping by 16.5±6.6 bpm to 

58.8±11.9 bpm during self-reported sleep times. (Table S 4, Table S 5).  

Activity 

Wrist actigraphy collected high resolution data for the duration of four months. Wear time was high 

(96%, 94.8%, 95%, 96.6%, 97.5%, and 86.5% for HCR001, HCR003, HCR004, HCR006, HCR008 and 

HCR009, respectively. The vector magnitude data we report here is well within the range of physical 

activity intensities found in people over a broad age range 47. On average, activity of the six participants 

amounted to 1904.0 (range: 0-55757.7) counts • min-1 during wake time, falling to 307.2 (range: 0-

29642.7) counts • min-1 during self-reported sleep times (Table S 6). Note that maximum nocturnal 

activity counts are confounded by wake time activity due to a small number of erroneous self-reported 

sleep times (detailed below). Highest daytime activity counts of 2233.9 (range: 0-37935.8) counts • min-1 

were achieved by HCR001, while 1599.2 (range: 0-16080.0) counts • min-1 for HCR006 was the lowest 

observed. This was inverse for the self-reported sleep times; 176.9 (range: 0- 26259.6) counts • min-1 for 

HCR001 was the lowest, while 427.4 (range: 0-12667.9) counts • min-1 for HCR006 was the highest 

observed in this cohort. This pattern showed consistency in this cohort. Ranking highest to lowest mean 

activity during daytime ordered the subjects as HCR001, HCR008, HCR003, HCR009, HCR004, and 

HCR006; ranking highest to lowest mean activity during self-reported sleep reversed this order to 

HCR006, HCR004, HCR009, HCR008, HCR003, and HCR001. Activity counts during sleep might indicate 

periods of wakefulness 48. 
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The comparison of the six male participants to the NHANES cohort suggest that our study subjects i) 

differed in their activity profile (more percent counts for sedentary, moderate, vigorous and very 

vigorous, less for light, and equal percent counts for the category lifestyle); ii) displayed higher energy 

expenditure; iii) within narrow defined age brackets; iv) while following the distribution of BMI. 

 

Ambient Light Intensity 

Ambient light intensities over the course of four months averaged in this cohort to 42.3 (range:0-6500) 

lux • min-1 during wake hours and 2.7 (range: 0-5853; maximum confounded by daytime light due to a 

small number of erroneous self-reported sleep times as detailed below) lux • min-1 during sleep hours. 

The daytime level of illumination corresponds to intensities reported for indoor environments during 

overcast days 49, which are expected in Philadelphia for the winter months of October through March. 

Nighttime illumination reached levels corresponding to moonshine 50. A note to consider is that intensity 

readings might be confounded during winter months by long sleeves covering the light sensor on the 

wrist-worn device. A substantial higher mean light intensity were evident for HCR001 during wake 

hours, 119.3 (range 0-6500) lux • min-1, compared to the remainder of the cohort. These high values 

coincided with the times when HCR001 was exposed to sunny environments when traveling to Latin 

America.  

 

Microbiome 

In a separate pilot study, 12 healthy volunteers collected weekly stool samples over a period of eight 

weeks.  The relative abundances of the phylum Bacteroidetes suggests two peaks during the course of a 

24-hour day, one in the morning (circa 06:00-08:00), and one in the evening (circa 20:00-22:00) despite 

the observed variability. The relative abundances of the phylum Firmicutes ran inversely to 

Bacteroidetes, as these phyla are the two most abundant bacterial communities in the human gut. 

These data framed the hypothesis that the human microbiome varies with time of day (Figure S 6). 

In the present study, time-of-day dependent differences in the relative abundances of several genera 

were most pronounced in the buccal mucosa, less so in saliva and rectal mucosa.  The abundance of 

Streptococcus increased in buccal mucosa from 37.5±9.8% abundance in the morning to 63.9±13.0 % in 

the evening compared to 23.2±6.5% and 27.6±11.3%, when sampled in saliva. Veillonella showed an 

inverse pattern, decreasing from 7.9±3.1% to 2.6±1.4% in buccal mucosa and 13.2±5.1% to 8.7±4.1% in 
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saliva. In the rectal mucosa, Peptoniphilus decreased from 4.6±4.2% to 2.1±2.0%; while 

Ruminococcaceae grew from 5.2±5.1% to 6.9±5.2. 

 

To assess community-level differences in the microbiota, we carried out a PERMANOVA analysis 37 of 

unweighted UniFrac distances 38 for the buccal mucosa samples, using subject ID, morning/evening 

sampling, first/second 48-hour session and left/right cheek side as variables. Subject ID accounted for 

the highest degree of variability, R2 of 0.183, p=0.001; which was followed by morning/evening, R2 of 

0.035, p=0.007. Session (R2 of 0.025, p=0.064) and cheek body side (R2 of 0.014, p=0.837) added a low 

degree of variability. This pattern was consistent for the weighted UniFrac distance analysis 39. Subject ID 

accounted for the highest degree of variability, R2 of 0.329, p=0.001, followed by morning/evening, R2 of 

0.29, p=0.001. Session (R2 of 0.025, p=0.06) and cheek body side (R2 of 0.009, p=0.3) added a low degree 

of variability. 

 

The rectal flora revealed a similar pattern in the PERMANOVA analysis. In the unweighted UniFrac 

distance analysis, most of the variability was attributable to subject ID, R2 of 0.246, p=0.001; followed by 

morning/evening, R2 of 0.018, p=0.002, and then by session, R2 of 0.018, p=0.005. This was consistent 

for the weighted analysis: subject ID (R2 of 0.417, p=0.001), followed by morning/evening (R2 of 0.031, 

p=0.002), and session (R2 of 0.025, p=0.015). 

 

Between-session and time-of-day differences were also discernable in the UniFrac distances of the 

salivary microbiome. In the PERMANOVA test of unweighted UniFrac distances, using subject ID, 

morning/evening sampling, and first/second 48-hour session as variables, subject ID accounted for the 

highest degree of variability, R2 of 0.324, p=0.001; which was followed by session, R2 of 0.019, p=0.004; 

and morning/evening, R2 of 0.017, p=0.009. Interestingly, the between-session effect was not observed 

for the weighted UniFrac distance analysis, R2 of 0.010, p=0.281. Again, subject ID accounted for the 

highest degree of variability, R2 of 0.521, p=0.001; while the variability attributable to morning/evening, 

R2 of 0.039, p=0.002 was higher compared to the unweighted analysis. Please see Figure S 7. 
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Metabolomics 

In these screens a total of 166 and 250 features were identified in plasma and saliva samples, 

respectively. This includes features for which corresponding metabolites could not be identified; a 

respective total of 41 (24.7%) and 59 (23.6%) unknown features. These features, identified by their mass 

transitions, were included in data visualization and analysis.  

Cortisol showed the expected diurnal variance, being higher in plasma at 1.3±0.4 in the morning than 

0.8±0.2 [normalized intensities] in the evening for this cohort of n=6. The averaged time series data (for 

both sessions) demonstrates this: values were 1.4±0.5 in the morning of day 1 (0h), 0.8±0.3 in the 

evening of day 1 (12h), 1.2±0.2 in the morning of day 2 (24h), 0.8±0.2 in the evening of day 2 (36h), 

followed by 1.2±0.3 in the morning of day 3 (48h).  In comparison, cortisol levels in saliva show much 

higher variability. The difference in means, however, is consistent with a diurnal pattern for the 

averaged morning versus evening values, a respective 0.9±0.9 versus 0.6±1.3. The temporal differences 

in the metabolites suggested by visual inspection failed to attain significance in the basic Wilcoxon 

paired rank test including Benjamini‐Hochberg correction. However, the number of time-of-day 

fluctuations following M or W patterns was significantly higher in the unpermuted salivatory 

metabolome dataset (n=121 for the first 48h-session, p=0.009; n=82 for the second 48h-session, 

p=0.009) compared to the average number of M and W patterns over all permutations (n=53 for the first 

48h-session; n=49.2 for the second 48h-session). This was also observed for the plasma metabolome 

during the second 48h-session (n=94 M and W patterns in unpermuted data, n=60 average number, 

p=0.009) albeit not for the first 48h-session (n=89 M and W patterns in unpermuted data, n=58 average 

number, p=0.1215). 

 

Visual inspection suggests that several other features showed time-of-day dependent differences in 

plasma and saliva with the following patterns: i) strong time-of-day dependent differences are in-phase 

for all subjects and sessions, for example, for biphosphoglycerates (intermediate in glycolysis) in saliva; 

ii) time-of-day dependent differences are in-phase for some subjects across both sessions, for example, 

myo-inositol (glucose isomer with insulin-sensitizing effects) in plasma for HCR001, HCR006 and HCR009, 

while other subjects show dampened or opposing patterns (HCR003, HCR004, and HCR008); iii) time-of-

day dependent differences are in antiphase for session 1 versus session 2, for example, imidazoleacetic 

acid (histamine oxidation product) in plasma of subject HCR008; and iv) global patterns between 
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subjects, for example, dampened time-of-day dependent differences for the salivary metabolites for 

HCR009 compared to HCR008. 

 

Proteomics 

Quantitative multiplex proteomic SomaLogic analysis identified 1141 proteins enriched for 

cardiovascular diseases, diabetes mellitus and other disease entities. Time-of-day dependent differences 

in protein concentrations, quantified as relative fluorescent units (RFU), were observed with a high 

degree of variability between morning and evening, for example, VEGFC (Vascular Endothelial Growth 

Factor C) showed 552.7±85.7 in the morning versus 678.1±262.2 in the evening; HAMP (Hepcidin) 

3974.1±1636.0 versus 6614.7±2109.8; MB (myoglobin) 934.9±204.0 versus 706.7±141.8; or 

HSP90AA1/HSP90AB1 (heat shock protein HSP 90-alpha) 15290.5±5032.9 versus 23619.6±21052.8. 

Temporal differences in the proteins as suggested by visual inspection failed to attain significance in the 

Wilcoxon paired rank test including a Benjamini‐Hochberg correction. Furthermore, the number of time-

of-day fluctuations following M or W patterns was not significantly higher in the unpermuted plasma 

proteome dataset (n=450 for the first 48h-session, p=0.5607) compared to the average number of M 

and W patterns over all permutations (n= 567 for the first 48h-session). 

 

Pilot Network Mapping of Metabolites and Proteins 

To search for temporal patterns at the regulatory network level, we used Ingenuity Pathway Analysis 

(IPA) to determine which disease categories and pathways showed enrichment in our protein and 

metabolite data at each time point. We saw the number of disease categories with time-of-day 

fluctuations in IPA enrichment following M or W patterns was significantly higher in unpermuted plasma 

and saliva metabolome datasets (n=340 for plasma, p=0.028; n=344 for saliva, p=0.009), compared to 

the average number of M and W patterns over all permutations (n=116.6 for plasma; n=121.9 for saliva). 

For the plasma and saliva metabolome datasets, we identified the disease categories showing the 

greatest differences in enrichment between the morning (0h, 24h, 48h) and evening (12h, 36h) time 

points. These disease categories were abdominal neoplasm, malignant solid tumor, and chronic 

inflammatory disorders. For the protein dataset, we also observed a higher number of pathways with 

IPA enrichment following M and W patterns in unpermuted data (n=251, p=0.009), compared to the 

average across all permutations (n=120.9).  The proteins tended to enrich more for functional 
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categories, rather than disease annotations. Notably, several categories related to cancer and 

inflammation, e.g. metastatic colorectal cancer and inflammatory bowel disease, were identified. Please 

see Figure S 5. 

Gene Expression 

The relative expression of selected molecular clock genes showed some differences between morning 

and evening in whole blood cells. ARNTL (BMAL1), when normalized to GAPDH, is on average expressed 

more highly in the evening, 23.3±13.5, than in the morning, 17.9±9.4, n=6. This pattern is evident also in 

the averaged time series data; 19.1±10.2 in the morning of day 1 (0h) versus 23.4±13.4 in the evening of 

day 1 (12h), followed by 18.0±10.4 in the morning of day 2 (24h) and 23.2±14.2 in the evening of day 2 

(36h), and 16.7±8.3 in the morning of day 3 (48h). In the subject-level time series data HCR001, HCR004, 

HCR006 and HCR009 show this most convincingly for session 2 but not for session 1. HCR003 and 

HCR008 show high variability. Interestingly, these patterns are less evident for ARNTL when normalized 

to ACTB (ACTIN), where relative expressions in the morning, 5.2±2.0, correspond to the evening, 

5.8±2.5. 

Notably, average expression of the reference (housekeeping) genes GAPDH and ACTB did not differ 

significantly between morning, 20.5±0.7 and 18.8±0.8, respectively, and evening 20.6±0.7 and 18.7±0.8, 

respectively. However, individual time series data show variable time-of-day and between-session 

differences for both actin and GAPDH. Stable temporal expression of actin is notable for HCR004, 

HCR006, and HCR008. 

NR1D1, normalized to GAPDH, was lower in the morning, 37.7±20.3, compared to evening, 45.6±24.1; 

however, a much smaller difference was evident when the data were normalized to ACTB, 10.9±3.4 

versus 11.5±3.8. This pattern was also evident for DBP. When DBP expression was normalized to 

GAPDH, the morning, 86.9±54.0, was lower compared to the evening, 95.3±55.7, but  not different when 

normalized to ACTB, 24.6±8.5 in the morning versus 23.8±8.2 in the evening.    

Time-of-day dependent differences in PER2 expression, normalized to ACTB, can be discerned for 

HCR003 and HCR004, but are less clear for the remaining subjects, so that the group means are not 

significantly different between morning and evening.   
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Social Sensing 

The mobile app Ginger.io collected social sensing data from smartphones operating on Android OS. The 

continuous data stream was at times disrupted due to software conflicts between Ginger.io and other 

smartphone applications. These disruptions commonly resulted from phone updates that interfered 

with the Ginger.io app settings.  These events were usually noted and resolved in a timely fashion by the 

researcher’s access to the Ginger.io dashboard. However, this caused stretches of missing data ranging 

from several hours to several days, most prominent for HCR008 in late December 2014. For subject 

HCR001, data were not received during travel outside the US in late November and December 2014 

(staying within Eastern Standard Time ±1 hour). HCR009 intentionally did not provide user data in late 

December 2014 and early January 2015. The pattern of missing data is visualized in Figure S 1. 

This cohort of six participants placed and received a total of 1774 calls and sent and received 10,794 text 

messages over the course of four months, averaging to 295.7±268.4 calls and 1799.0±1712.3 text 

messages, each. A total of 64,924 location signals were collected from the smartphone’s GPS unit, an 

average of 10,820.7±3368.0 signals per participant.  

 

In the four months of observation, study participants on average used text messages (16.0, range: 0-166 

text messages) more frequently than phone calls (2.7, range: 0-48 calls) to communicate during wake 

times. Communication during self-reported sleep times was minimal (0.1, range: 0-10 calls and 0.8, 

range: 0-75 text messages). Aggregate communication was 18.7 (range: 0-166) calls and text messages 

during the wake hours of one day and 0.9 (range: 0-84) during self-reported sleep hours of one night. 

We found three types of aggregate communication among the six subjects. Four participants preferred 

text messages over phone calls (HCR001, HCR004, HCR006, and HCR009); one participant preferred 

phone calls (HCR003); and one (HCR008) used both phone calls and text messages with similar 

frequency. This level of communication was on average achieved by interacting with 7.2 (range: 0-71) 

persons during the wake hours of one day. This interaction diversity ranged from 1.7 (range: 0-8) 

persons for HCR003 to 23.7 (range: 1-71) persons for HCR009 during the wake hours of one day.  

 

Participants were recruited from local communities; hence mobility was low with 1.6 (range: 0-30.6) 

miles during the wake hours of one day (0.2, range: 0-6.7 miles recorded during self-reported sleep 

times). The mobility radius amounted to 6.8 (range: 0-193.4 miles during the wake hours of one day 
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(and 0.2, range: 0-19.3 miles during self-reported sleep). The highest daytime mobility of 2.2 (range: 0-

30.6) miles was achieved by HCR001; lowest of 1.1 (range: 0-5.8) miles by HCR003. Daytime mobility 

radius was highest for HCR003 (11.3, range: 0-193.4 miles), and lowest for HCR004 (4.6, range: 0-79.2 

miles). 

 

The average call duration during the four months of remote sensing was 820.4 (range: 0-16590 seconds 

(or 13.7, range: 0-276.5 minutes) during the wake hours of one day; and the average length of a text 

message amounted to 868.0 (range: 0-14840 characters. The number of unreturned calls was on 

average 0.4 (range: 0-8); and the number of calls unanswered, i.e. “missed interaction”, was 0.6 (range: 

0-9). (Table S 6) 

 

Sleep Survey 

Participants were administered an average of 117.8±3.5 surveys during the study enrollment of four 

months. These were answered in 100% of cases by subjects HCR003, HCR004 and HCR006. High 

response rates were also achieved by HCR001 (95.7%), HCR009 (81.0%), and HCR008 (71.9%). The self-

reported in-bed times started on average at 00:54±2.5 hours and ended at 08:33±2.1 hours, resulting in 

sleep duration of 7.6±2.9 h per night. Onset of sleep ranged from 22:50±2.7 hours (HCR008) to 

02:11±2.7 hours (HCR006). The average sleep phase lasted until 07:11±2.2 hours (HCR008) as the 

earliest to 10:22±1.8 hours (HCR006) as the latest observed in this cohort.  

 

Screening the self-reported sleep times for potential erroneous time intervals, misdialing ‘am’ and ‘pm’ 

for the US American 12-hour clock on the smartphone survey, resulted in 25 calls for abnormal sleep 

periods. This corresponds to 3.9% of surveys answered by the cohort of n=6 over the 4 months of 

administration, spanning from 0.8% (1 abnormal sleep period) for HCR3 to 7.3% (6 abnormal sleep 

periods) in HCR008. These abnormal sleep periods have to be considered as contributors to the 

incidence of communication, albeit low, during self-reported sleep (see above).   
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Subjective versus Objective Sleep-Wake Times 

Overall, subjective and objective In-Bed-Times (sleep times) and Out-of-bed times (wake times) were in 

agreement for the Cole-Kripke and Sadeh data, respectively, in our cohort of six volunteers. However, 

the In-Bed-Times from the Sadeh data were estimated about 30 minutes later than the self-reported 

sleep times (-27.3, 95% confidence interval -40.4 to -14.2, p=4.7E-05, n=616 observations), and the Out-

of-bed times from the Cole-Kripke data about 20 minutes later (-21.2, 95% confidence interval -29.6 to -

12.8, p=8.9E-07, n=628 observations). Please see Figure S 8. 

 

On the subject-level, subjective and objective data are mostly in agreement for HCR001 and HCR008. In 

detail, in-bed times were estimated about half an hour earlier from the Cole-Kripke data than from the 

survey data (28.4 min, 95% confidence interval 12.1 to 44.4, p<0.0007, n=108) for HCR001. Out-of bed 

times were estimated about half an hour earlier from the Sadeh data than from the survey data (33.9 

min, 95% confidence interval: 5.9 to 61.8, p=0.018, n=80) for HCR008. For HCR003 and HCR006, 

actigraphy data defined sleep or wake times were later compared to the self-reported data ranging from 

about 20 to 50 minutes and 60 to 150 minutes, respectively, reaching statistically significant differences. 

In HCR004, the out-of bed times from the Cole-Kripke data were estimated to be about 40 minutes later 

than survey data (-39.7, 95% confidence interval -55.6 to -23.7, p=2.84E-06, n=111), while the Sadeh 

data estimated the out-of bed times about 40 minutes earlier (42.5, 95% confidence interval 19.3 to 

65.6, p=0.0004, n=105).  

 

Nutritional Assessments 

The dietary food intake was assessed per 3-day food records and 24-hour recalls as well as logged via 

remote food photography during each of the 48 hour sessions. Only two out of the six subjects were 

sufficiently compliant to provide the 3-day food record, five subjects were available for the 24-hour 

dietary recall interview, and all six subjects used the SmartIntake mobile app regularly to document 

meals and beverages.  

Based on the remote food photography method (RFPM), energy intake shows highly variable diurnal 

patterns among the participants of this cohort. While HCR001 adheres to regular times for breakfast, 

lunch and dinner with no additional food intake in between, other participants, foremost HCR008, do 

show clustering around typical food intake times, but also report frequent energy intake during times 
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between major meals. Consequently, variable patterns of self-reported intake of consumed food weight, 

protein, total fat, carbohydrates, caffeine/theobromine, total sugars, total dietary fiber, saturated fat, 

monounsaturated fat, and polyunsaturated fat are evident over the course of 24 hours, corroborating 

the fluctuating eating patterns in Western society 51. 

RFPM including its ecological momentary assessment (EMA) approach achieves estimates on energy 

intake comparable to the gold standard of doubly labeled water 24, a particular advantage over other 

self-reported dietary assessment tools known to underreport energy intake 52. In our study, we see this 

for the cases where data from the 24-hour recall and RFPM were collected for identical days. Energy 

intake estimated from the 24-hour recall was 29.6±10.4% lower than from RFPM. In detail, HCR004 

consumed 1795.2 kcal (24-hour recall) versus 2567.5 kcal (RFPM) on his first day of the 1st 48h-Session; 

HCR009 consumed 1492.8 kcal (24-hour recall) 2478.0 kcal (RFPM) on his first day of the 1st 48h-Session; 

and HCR009 consumed 1978.5 kcal (24-hour recall) versus 2440.0 kcal (RFPM) on his first day of the 2nd 

48h-Session. 

Acrophase Alignment 

We conducted a phase analysis using the cosinor method across the different output variables. We used 

the recent publication by Roveda E et al. 53 to infer chronotypes for our participants from the actigraphy 

data using the proposed cutpoints compared to the MCTQ-derived chronotypes (Table S 7). 

The graph in Figure S 9 visualizes how the acrophase computed from actigraphy data compares to the 

acrophases computed for communication, light exposure, mobility, blood pressure and heart rate. 

Notably, acrophases from these outputs are closely in-phase (second session of HCR008 and HCR009 in 

particular) or are more dispersed (first session of HCR003 in particular).   
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Legends Supplemental Figures 

Figure S 1. Data Integrity 

The top part (A) illustrates the integrity of each individual participant’s data set collected over four 

months (October 2014 to March 2015) shown color-coded for activity, aggregate communication, 

mobility and sleep survey. The bottom (B) displays the integrity of data collected over the two 48-hour 

sessions which is color-coded for blood pressure/heart rate, metabolomics, proteomics, and 

microbiomics. White areas indicate missing data. Note that proteomics were intentionally run for the 

first 48-hour session only. 

Figure S 2. Long-term Remote Sensing – Subject HCR001 

(a) Vertical panels display the following data for subject HCR001: activity [square root of vector 

magnitude], aggregate communication [square root of the sum of counts of phone calls and text 

messages], interaction [square root of counts•min-1], light intensity [square root of lux•min-1], mobility 

[square root of miles] and mobility radius [square root of miles] sampled over approximately four 

months. Each row depicts one week, starting on a Monday. Self-reported sleep times are marked as grey 

bars.  

(b) During the 4-month interval of remote sensing subject HCR001 travelled to destinations in Latin 

America. This explains the higher mean light exposure compared to the winter months in Philadelphia, 

PA. 

Figure S 3. Nutritional Assessments 

Time-of-day dependent intake of a) consumed food weight, b) protein, c) total fat, d) carbohydrates, e) 

caffeine/theobromine, f) total sugars, g) total dietary fiber, h) saturated fat, i) monounsaturated fat, and 

j) polyunsaturated fat for all subjects during session 1 (outer circle) and session 2 (inner circle). The data 

in each session track display nutrient intake for two full days of each session. 24-hour clock times are 

listed around the edge of the plots, with “00” corresponding to midnight, and “12” corresponding to 

noon. Dots are color-coded by subject and indicate the level of nutrient intake at the corresponding 

clock time. Sleep spans are also color-coded by subject and are indicated using the bars below each of 

the corresponding session. 
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Figure S 4. Multiomics Principle Component Analysis 

The principle component analysis plots show the metabolomic-proteomic-microbiomic signatures color-

coded for each participant. These plots were generated from data collected during the first 48hrs 

session. 

Figure S 5. Networks 

These plots visualize the networks as defined by the Ingenuity Pathway Analysis. S5a: abdominal 

neoplasm, plasma; S5b: chronic inflammatory disorder, plasma; S5c: abdominal neoplasm, saliva; S5d: 

malignant solid tumor, saliva. Red lines indicate metabolite-metabolite interactions, blue lines indicated 

protein-protein interactions, and green lines indicated metabolite-protein interactions. The thickness of 

the lines is determined by the amount of evidence for the interaction present in the STITCH databases 

(http://stitch.embl.de/); thicker lines indicate greater confidence. 

Figure S 6. Time-of-Day Differences in Microbial Abundances (separate pilot study)  

The relative abundance of the phyla bacteroidetes (top) and firmicutes (bottom), the two most 

abundant bacterial communities in the human gut, are displayed over a 24 hour time course (abscissa  

displayed using military hours). Each dot represents the time and abundance of a single stool sample 

with the central tendency indicated by a polynomial fit in red. 

Figure S 7. Microbiomics UniFrac Distances 

Time-of-day dependent differences (morning in red; evening in blue) are shown for unweighted (left) 

and weighted (right) UniFrac distances as principal coordinate analysis (PCoA) for swab samples 

collected from the buccal (top) and rectal (bottom) mucosa as well as for saliva (center) for session 1 

(circles) and session 2 (triangles). Note the missing data for buccal and rectal microbiota for two subjects 

(HCR003 and HCR006). 

Figure S 8. Comparison of Subjective and Objective Sleep-Wake Times 

Time difference between sleep survey and Actigraph-derived sleep-wake data displayed for both sleep 

scoring algorithms Cole-Kripke (top) and Sadeh (bottom) graphed versus number of sleep periods. A 

positive time difference on the abscissa indicates that the actigraphy data defined sleep or wake times 

are earlier than the times collected from the sleep survey (see insert on the right).  

Figure S 9. Acrophase Alignment 

Comparison of acrophases for behavioral, environmental and cardiovascular outputs [activity, aggregate 
communication, diastolic blood pressure, heart rate, mean arterial pressure, systolic blood pressure, 
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light exposure, mobility and mobility radius] within each subject and 48-hour session 1 and 2. 
Acrophases in clock time (h, abscissa) were calculated per session from the two daily cycles covered by 
48-hour observation time. 
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Figure S 2a – Long-term Remote Sensing – Subject HCR001

 
 



Page 34 of 58 
 

Figure S 2b – Light Exposure HCR001
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Figure S 3 – Nutritional Assessments
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Figure S 3 – Nutritional Assessments - continued
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Figure S 4 – Principal Components for Metabolome, Proteome and 
Microbiome , first 48-hour session
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Figure S 6 – Comparison of Subjective and Objective Sleep-Wake Times
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Figure S 7 – Time-of-Day Differences in Microbial Abundances (first study)
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Figure S 8 – Microbiomics UniFrac Distances
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Supplemental Tables 

Table S 1 – Demographics 

Subject ID# Gender 
Age [years] BMI [kg/m2] 

Ethnicity Race 
at the time of study enrollment 

HCR001 M 32 20.0 Non-Hispanic Caucasian 

HCR003 M 26 24.8 Non-Hispanic Asian 

HCR004 M 31 25.5 Non-Hispanic Caucasian 

HCR006 M 35 26.6 Non-Hispanic Caucasian 

HCR008 M 35 30.2 Non-Hispanic Caucasian 

HCR009 M 35 23.9 Non-Hispanic Caucasian 

Mean±SD  32.3±3.6 25.2±3.4   
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Table S 2 - Adverse Events 

ID Adverse Event Severity* Action Taken Outcome 

HCR001 Left eye redness Mild None Resolved 

HCR003 "Scratchy" throat Mild None Resolved 

HCR004 Blurry vision, left eye Mild None Resolved 

HCR004 Fever Mild None Resolved 

HCR004 GI symptoms Mild None Resolved 

HCR006 Cold symptoms Mild None Resolved 

HCR009 Headache Mild None Resolved 

HCR009 Headache Mild None Resolved 

HCR009 Light headed post blood draw Mild None Resolved 

*Criteria for severity: normal, mild, moderate, severe, life-threatening. 
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Table S 3 - Munich ChronoType Questionnaire (MCTQ) 

ID Chronotype* Sleep Debt* Time in 

bed# 

[HH:mm) 

Sleep 

latency# 

[m] 

Sleep 

end# 

[HH:mm) 

Light 

exposure 

[h/d] 

Time in 

bed# 

[HH:mm) 

Sleep 

latency# 

[m] 

Sleep 

end# 

[HH:mm) 

Light 

exposure 

[h/d] 

workdays work-free days 

HCR001 Normal Up to 30 minutes 

on free days 

23:00 5 07.30 

w/o 

alarm 

1 00:00 5 08:00 

w/o 

alarm 

1 

HCR003 Normal Up to 30 minutes 

on work days 

00:00 30 07:00 

w/ alarm 

1 01:00 60 09:00 

w/o 

alarm 

4 

HCR004 Slight late Up to 30 minutes 

on work days 

01:00 

 

15 08:00 

w/ alarm 

0.75 01:30 

 

15 09:30 

w/o 

alarm 

3.5 

HCR006 Slight late Not computable 23:30 15 09:30 

w/ alarm 

2 00:30 15 10:30 

w/ alarm 

2 
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HCR008 Slight early Up to 30 minutes 

on work days 

22:00 5 06:00 

w/ alarm 

0.75 11:00 10 08:00 

w/o 

alarm 

2.5 

HCR009 Normal Up to 30 minutes 

on work days 

23:50 10 06.30 

w/ alarm 

1 01:00 10 08:00 

w/o 

alarm 

2 

*Computed; # Self-reported; ‘w/’ with; ‘w/o’ without 

 

ID 

Regular 

Work (Y/N) Work Start Work End 

Work 

Duration Flexibility 

Commute to 

(min) 

Commute 

from (min) Transport Mode 

Shiftwork 

(Y/N) 

HCR001 yes 09:00 17:00 8 very flexible 15 15 walk/bike/etc no 

HCR003 yes 09:00 16:00 7 very flexible 15 15 walk/bike/etc yes 

HCR004 yes 09:00 18:30 9.5 little flexible 15 15 walk/bike/etc no 

HCR006 no not answered not answered not answered n/a not answered not answered n/a no 

HCR008 yes 08:00 16:00 8 little flexible 30 30 travel in a vehicle no 

HCR009 yes 08:00 22:00 14 very flexible 15 15 walk/bike/etc no 
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Table S 4 - Ambulatory Blood Pressure Monitoring, Session 1 & Session 2 

Subject 

Blood 

Pressure 

[mmHg] 

Mean, 

awake 

SD, 

awake 

Mean, 

asleep 

SD, 

asleep 

Mean, delta 

(awake-asleep) 

SD, delta 

(awake-asleep) 

Ratio 

(Asleep/Awake) Phenotype 

HCR001 SBP 123.4 10.2 105.7 9.6 17.3 5.5 0.86 Dipper 

HCR003 SBP 131.6 9.8 111.3 8.8 20.3 1.1 0.85 Dipper 

HCR004 SBP 121.8 9.8 97.8 7.5 24.3 2.8 0.80 Dipper 

HCR006 SBP 130.4 8.5 109.9 12.6 20.7 4.2 0.84 Dipper 

HCR008 SBP 122.2 10.8 98.5 11.6 21.6 0.8 0.81 Dipper 

HCR009 SBP 129.4 9.1 110.2 11.6 20.8 4.2 0.85 Dipper 

All SBP 126.1 10.6 106.8 11.6 20.7 3.9 0.85 Dipper 

HCR001 DBP 78.3 7.2 58.0 8.7 20.2 4.3   

HCR003 DBP 82.6 7.9 61.9 6.9 21.0 1.5   

HCR004 DBP 74.0 8.2 55.0 6.9 19.1 3.8   

HCR006 DBP 78.6 7.1 59.3 11.3 19.4 4.0   
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HCR008 DBP 80.9 11.4 57.9 8.5 25.4 0.6   

HCR009 DBP 77.3 9.1 59.4 13.6 21.4 2.5   

All DBP 78.5 9.1 58.8 10.2 20.7 3.3   

HCR001 MAP 93.0 7.8 75.4 8.5 17.3 4.1   

HCR003 MAP 97.6 7.6 78.1 6.9 19.7 1.3   

HCR004 MAP 89.5 8.5 70.8 6.6 18.8 3.0   

HCR006 MAP 96.1 6.4 77.6 11.2 18.7 4.0   

HCR008 MAP 93.7 11.0 70.6 8.8 23.8 0.3   

HCR009 MAP 95.1 8.9 77.9 12.8 20.4 2.2   

All MAP 94.0 8.9 75.8 10.1 19.4 3.2   
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Table S 5 - Heart Rate, Session 1 & Session 2 

Subject 

HR, mean, 

awake [bpm] 

HR, SD,  

awake [bpm] 

HR, mean, 

asleep [bpm] 

HR, SD, asleep 

[bpm] 

HR, mean, delta 

(awake-asleep) [bpm] 

HR, SD, delta 

(awake-asleep) [bpm] 

HCR001 84.6 9.8 67.1 11.0 17.3 2.9 

HCR003 66.8 12.1 54.4 7.9 13.1 7.7 

HCR004 64.0 11.7 50.1 10.4 13.7 5.8 

HCR006 74.3 7.7 63.7 6.9 10.8 4.1 

HCR008 75.1 11.3 51.8 5.0 23.4 2.2 

HCR009 80.1 11.8 59.1 14.6 24.2 2.7 

All 74.0 13.0 58.8 11.9 16.5 6.6 
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Table S 6 - Social Sensing – Cohort Level 

Subject Parameter Unit Sleep Survey Mean Min Max 

All Activity Counts • min-1 Awake 1904.0 0 55757.7 

All Activity Counts • min-1 Sleeping 307.2 0 29642.7 

All Ambient light intensity Lux • min-1 Awake 42.3 0 6500 

All Ambient light intensity Lux • min-1 Sleeping 2.7 0 5853 

All Aggregate Communication n Awake 18.7 0 166 

All Aggregate Communication n Sleeping 0.9 0 84 

All Call Count n Awake 2.7 0 48 

All Call Count n Sleeping 0.1 0 10 

All Call Duration seconds Awake 820.4 0 16590 

All Call Duration seconds Sleeping 22.0 0 3162 

All Interaction Diversity n Awake 7.2 0 71 

All Interaction Diversity n Sleeping 0.5 0 29 

All Missed Interaction  n Awake 0.6 0 9 
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All Missed Interaction  n Sleeping 0.03 0 2 

All Unreturned Calls n Awake 0.4 0 8 

All Unreturned Calls n Sleeping 0.02 0 2 

All SMS Count n Awake 16.0 0 166 

All SMS Count n Sleeping 0.8 0 75 

All SMS Length n (characters) Awake 868.0 0 14840 

All SMS Length n (characters) Sleeping 47.0 0 3089 
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Table S 7 – Acrophases & Chronotypes 

Subject Measurement 
Session 

Acrophase of 
Activity [h] 

Chronotype according to cutpoints* 
proposed by Roveda et al. 53 

Chronotype according to MCTQ 
administered at enrollment 

HCR001 Both Sessions 14.9 Neither-type (N) Normal 

HCR003 Both Sessions 14.7 Neither-type (N) Normal 

HCR004 Both Sessions 16.0 Neither-type (N) Slight late 

HCR006 Both Sessions 17.5 Neither-type (N) Slight late 

HCR008 Both Sessions 13.3 Morning-type (M) Slight early 

HCR009 Both Sessions 16.0 Neither-type (N) Normal 

* Cutpoints defined as: Acrophase of 876 min or 14.6h as morning-type (M); 948 min or 15.8h as neither-type (N); and 1053 min or 17.6h as 
evening-type (E). 
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