
Supplementary Information – Text S2: Numerical

experiments

We performed several batches of simulations to assess the ability of the estimation method to

infer effective population sizes and selection coefficients accurately. Two numerical experiments

were performed.

Experiment 1. In experiment 1, we simulated datasets involving a population of 5 virus

variants, initially in equimolar mixture and all detected by the high-throughput sequencing

(HTS) method. A dataset was obtained with the following three steps: (1) random sampling

of selection and genetic drift parameters, (2) generation of population demogenetic dynamics

given these known parameters with a Wright-Fisher model including selection and genetic drift

and (3) building of numerical datasets with a structure similar to our real-life experiment, by

sampling the composition of several populations at various time-points.

Step 1: Random sampling of selection and genetic drift parameters. Parameters

θtrue = (rtrue,N true) are independently drawn from dedicated distributions that encompass a

large diversity of selection and genetic drift scenarios. The relative fitness of the 5 virus variants

rtrue is obtained by independently drawing 5 values in uniform distribution (∼ Unif[0.85, 1.15])

and then dividing them by their mean in order to have mean(rtrue) = 1. The scenario of

genetic drift is obtained as follows. Firstly, the effective population size in the inoculated

organ (N IO
e ) is drawn in a log-uniform distribution (∼ Log-unif[10, 2000]). This stage lasts

6 generations. Secondly, the effective population size at the onset of system infection (NS1
e )

is drawn in a log-uniform distribution (∼ Log-unif[10, 2000]). This stage lasts 5 generations.

Then, 5 more effective population sizes are drawn, corresponding to systemic infection stages.

In order to avoid unrealistic trajectories ([1]), we set that the ratio of population sizes between

two consecutive stages could not exceed 10. In practice, we iteratively computed log10(N
Si+1
e ) =

max(min(log10(NSi
e )+αi, log10(2000)), log10(10)), with αi sampled uniformly between −1 and

1 and 1 ≤ i ≤ 5. Each stage lasts 5 generations, except the last one lasting 3 generations. We

thus obtained a vector N true lasting 34 generations as follows:

N true = (N IO
e , N IO

e , . . .︸ ︷︷ ︸
6 generations

, NS1
e , NS1

e , . . .︸ ︷︷ ︸
5 generations

, NS2
e , . . .︸ ︷︷ ︸

5 generations

, . . . , NS6
e , . . .︸ ︷︷ ︸

3 generations

) (1)
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Step 2: Generation of population demogenetic dynamics. We generated 48 indepen-

dent Wright-Fisher simulations (using equations (2) and (3) of the main text) corresponding

to the dynamics of populations of the 5 virus variants in 48 different plants of the same plant

genotype, given θtrue = (rtrue,N true) and λinoc = (0.2, 0.2, 0.2, 0.2, 0.2).

Step 3: Building numerical datasets. We then carried out virtual observations for eight

individual plants on each of the measurement dates corresponding to those used in the biological

experiment, T obs = (6, 10, 14, 20, 27, 34) days post-inoculation (dpi). We accounted for the

HTS process, by sampling variant frequencies from multinomial distributions of size 3000 and

with frequencies from Wright-Fisher simulations (in the same way as for step 2 of the ABC

algorithm described in the main text). Importantly, in experiment 1, HTS analysis provides

samples of the true frequencies of virus variants in the simulated Wright-Fisher populations.

Finally, the dataset generated was accepted according to the following criteria, considered to be

satisfied for all datasets from laboratory experiments (with the exception of one plant in 720).

At each measurement date, at least two variants had to be present at a minimum frequency of

1% each in at least 50% of the populations. In addition, at least two variants had to be present

in all populations at a minimum frequency of 1% each at the first measurement date (6 dpi).

This criterion is hence largely permissive regarding the diversity of virus populations retained.

Step 4: Estimation of parameters. Using the three previous steps, we generated 750

datasets under as many selection and genetic drift regimes as defined by the corresponding

750 values of θtrue. In order to assess the ability of the estimation method to infer effective

population sizes and selection coefficients accurately, we estimated for each dataset θ̂ = (r̂, η̂e)

using the more general model M4 (i.e. with ηe =
(
ηIOe , ηS1

e , η
S2
e , η

S3
e

)
). We assessed the accuracy

of the estimates by comparing directly the estimated values of intrinsic rates of increase r̂ with

their true values rtrue. For the effective population sizes, we compared the true harmonic

mean of effective population sizes assessed from N true at each measurement date T obs and

the harmonic mean of effective population sizes assessed from the piecewise function Ne(t)

(equation (1) of the main text) parameterized by η̂e.

Experiment 2. In experiment 2, we tested the sensitivity of the estimation method to the

presence of a sixth undetected virus variant. This sixth variant was selectively neutral (its

selection coefficient is null), present in the inoculum at a frequency of 3% and still present at
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the last sampling date (34 dpi) in all plants analyzed at frequencies ranging from 1% to 6%.

It impacts the dynamics of the 5 variants of interest in all plants but is not detected, meaning

that variant frequencies measured by HTS are noisy with respect to their true values. In all,

350 simulated datasets were analyzed for this second test. The mean relative change between

the true frequencies of the 5 variants of interest in the simulated population and their measured

frequencies by HTS is 0.08 (5% quantile = 0.01, median = 0.05, 95% quantile = 0.29).

In practice, a dataset in experiment 2 was obtained with the previous three steps modified

as follows. In step 1 (Random sampling of selection and genetic drift parameters), the only

difference is to add a sixth relative fitness equal to 1 to the vector rtrue. In step 2 (Genera-

tion of population demogenetic dynamics), as many as necessary independent Wright-Fisher

simulations given θtrue = (rtrue,N true) and λinoc = (0.194, 0.194, 0.194, 0.194, 0.194, 0.03) are

performed until having 48 independent simulations where the sixth variant is still present at

the last sampling date (34 dpi) at frequencies ranging from 1% to 6%. Then, the dynamics

of the sixth variant is erased from the 48 independent simulations retained. Step 3 (Building

numerical datasets) is the same as previously. However, due to the deletion of the dynamics of

the sixth variant, the frequencies of the 5 virus variants of interest used to mimic HTS though

multinomial sampling are no more the true frequencies of the variants in the virus population

but noisy values. Step 4 is also the same as in experiment 1. In particular, the inference was

performed assuming that the inoculum was an equimolar mixture of the 5 variants of interest.
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