[Supplementary Information]

Target of rapamycin complex 1 and Tap42-Associated Phosphatases Are Required for Sensing Changes in Nitrogen Conditions in the Yeast Saccharomyces cerevisiae

Contents:

1. Supplemental Figures

Supplemental Figure 1. Gln3 distribution in wild type and mutant *tor* and *tap42* cells under different nitrogen conditions

Supplemental Figure 2. Tap42 is dispensable for nitrogen downshift-induced *GLN1*

expression

Supplemental Figure 3. TORC1 is required for nitrogen limitation or downshift-induced

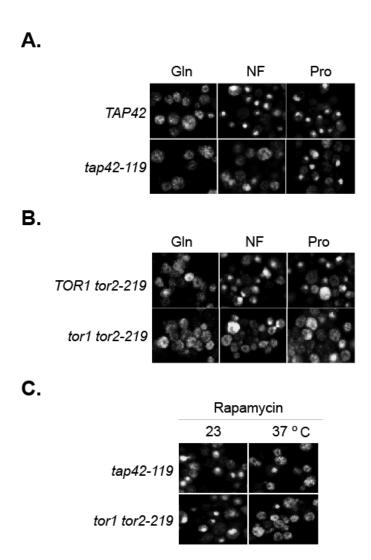
GLN1 expression.

Supplemental Figure 4. Both Tap42 and TORC1 are required for rapamycin-induced *GLN1*

expression.

Supplemental Figure 5. Expression levels of Tap42 and Kog1-HA in cells shown in Figure

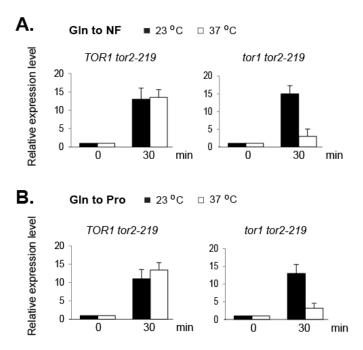
4 of the main text.

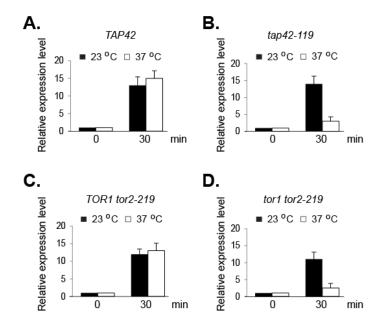

Supplemental Figure 6. Expression levels of Tap42 and Kog1-HA in cells shown in Figure

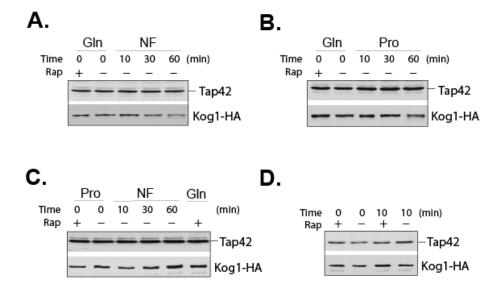
6 of the main text.

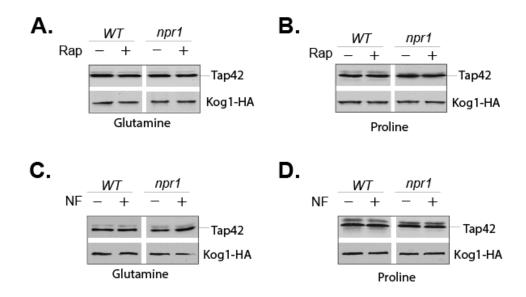
2. Supplemental Methods

3. Supplemental References


1. Supplemental Figures


Supplemental Figure 1. Gln3 distribution in wild type and mutant *tor* and *tap42* cells under different nitrogen conditions. Exponentially growing cells expressing *GLN3*-myc in glutamine (Gln) medium were shifted from 23 to 37°C for 2 hr and then transferred to nitrogen-free (NF) or proline (Pro) medium for 30 min. **A.** *TAP42* (Y339) and *tap42-119* (Y351). **B.** *TOR1 tor2-219* and *tor1 tor2-219*. **C.** Exponentially growing *tap42-119* and *tor1 tor2-219* cells expressing *GLN3*-myc in glutamine (Gln) medium were shifted from 23 to 37°C for 2 hr and then treated with rapamycin for 30 min. Gln3-myc distribution in the cells was examined by immunofluorescent microscopy.


Supplemental Figure 2. Tap42 is dispensable for nitrogen downshift-induced expression of *GLN1*. Wild type (Y339) and tap42-119 mutant (Y351) cells expressing *GLN3*-myc were grown at 23°C to early log phase in glutamine (Gln) medium. The cultures were divided and incubated for two additional hours with one half at 37°C and the other half at 23°C. Cells were then transferred to nitrogen-free (**A**) or proline (**B**) medium and collected before (time 0) and 30 min after the transfer. Expression levels of *GLN1* were analyzed by qRT-PCR and shown as relative values of treated vs. untreated samples. The experiment was repeated three times. The relative expression levels are shown as mean \pm SD.


Supplemental Figure 3. TORC1 is required for nitrogen limitation or downshift-induced *GLN1* **expression.** The *tor2-219* (Y511) and *tor1 tor2-102* mutant (Y442) cells expressing *GLN3*-myc were grown at 23°C to early log phase in glutamine (Gln) medium. The cultures were divided and incubated for two additional hours with one half at 37°C and the other half at 23°C. Cells were then transferred to nitrogen-free (**A**) or proline (**B**) medium and collected before (time 0) and 30 min after the transfer. Expression levels of *GLN1* were analyzed by qRT-PCR and shown as relative values of treated vs. untreated samples. The experiment was repeated three times. The relative expression levels are expressed as mean \pm SD

Supplemental Figure 4. Both Tap42 and TORC1 are required for rapamycin-induced expression of *GLN1***.** Cells expressing *GLN3*-myc were grown at 23°C to early log phase in glutamine (Gln) medium. The cultures were divided, with one half shifted to 37°C and the other half remained at 23°C. Upon incubation for additional 2 hr, cells were treated with rapamycin and collected before (time 0) and 30 after addition of the drug. Expression levels of *GLN1* were analyzed by qRT-PCR and shown as relative values of treated vs. untreated samples. The experiment was repeated three times. The relative expression levels are expressed as mean \pm SD. **A.** Wild type (Y339), **B.** *tap42-119* mutant (Y351), **C.** *TOR1 tor2-219* (Y511), and **D.** *tor1 tor2-219* mutant (Y442).

Supplemental Figure 5. Expression levels of Tap42 and Kog1-HA in cells shown in Figure 4 of the main text. Cells expressing *KOG1*-HA (Y1032) and *GLN3*-myc grown in glutamine medium (Gln) were treated with rapamycin for 30 min (Rap +) or transferred to nitrogen–free (NF) (A) or proline (Pro) medium (B) for indicated times. C. Cells grown in proline medium were treated with rapamycin for 30 min (Rap +) or transferred to nitrogen-free (NF) medium. Cells grown in glutamine medium were treated with rapamycin and included as a control (Gln Rap+). D. Cells grown in glutamine medium were treated with rapamycin (+) or drug vehicle (-) before and after being shifted to proline medium for 10 min. The expression levels of Tap42 and Kog1-HA in the cells were examined by western blotting. The association of Tap42 with Kog1-HA in the treated cells was assayed by immunoprecipitation and shown in Figure 4 of the main text.

Supplemental Figure 6. Expression levels of Tap42 and Kog1-HA in cells shown in Figure 6 of the main text. Wild type (Y1032) and *npr1* deletion (Y1709) cells expressing *KOG1*-HA grown in glutamine (**A**) or proline medium (**B**) were treated with rapamycin (Rap +) or drug vehicle (Rap -) for 30 min. The same pairs of cells grown in glutamine (**C**) or proline medium (**D**) were transferred to nitrogen-free (NF) medium and collected before and 30 min after the transfer. The expression levels of Tap42 and Kog1-HA in the cells were examined by western blotting. The association of Tap42 with Kog1-HA in the treated cells was assayed by immunoprecipitation and shown in Figure 6 of the main text.

2. Supplemental Methods

Quantitative RT-PCR __Total yeast cell RNA was isolated using the Qiagen RNeasy MiniKit (Qiagen, Chatsworth, CA). cDNA was generated from the isolated RNA using iScript Reverse Transcrition kit (Bio-Rad, Hercules, CA) following manufacturer's instructions. cDNA was analyzed by RT-PCR for levels of GLN1 and ACT1 using previously reported primers as follows (Crespo et al., 2002): GLN1, 5'-CGTTTGGATCGATGGTACTG-3' and 5'-CGCAAACAGTTTCACACATG-3'; ACT1, 5'-ATGGATTCTGAGGTTGCTGC-3' and 5'-ACCTTCATGGAAGATGGAGC-3'. The expression level of GLN1 was normalized to that of ACT1 in the same sample.

3. Supplemental References:

Crespo, J.L., T. Powers, B. Fowler & M.N. Hall, (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of

glutamine. *Proceedings of the National Academy of Sciences of the United States of America* **99**: 6784-6789.