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1 Alternative Bayesian model

The Bayesian model used in the main text assumes that the quality of each option is
estimated independently of the other. Here we remove this approximation, arriving to
a different and more complex model. Regarding superaggregation in adversity, we find
the same conclusions as for the simpler model presented in the main text.

1.1 Derivation of the estimated qualities

Let us consider a choice between two options, x and y. Each option can be good or bad;
we will write X to denote ’x is good’ and X̄ to denote ’x is bad’, and similarly for option
y. The pair of options can be in four possible states: both options are good (XY ), both
options are bad (X̄Ȳ ), or one option is good and the other is bad (XȲ and X̄Y ). We
calculate the probability for each of these states, using both private information (C) and
the behaviours of the other individuals (B). For example, the probability that option x
is good and option y is bad, using Bayes’, theorem, is

P (XȲ |B,C) =
P (B|XȲ ,C)P (XȲ |C)

Ω
, (S1)

where

Ω = P (B|XY,C)P (XY |C) + P (B|XȲ ,C)P (XȲ |C)+

+ P (B|X̄Y, C)P (X̄Y |C) + P (B|X̄Ȳ , C)P (X̄Ȳ |C). (S2)

The term P (XȲ |C) contains the private information about the state of both options,
and the term P (B|XȲ ,C) contains the social information. If we assume that the two
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options can be good or bad independently, we have P (XȲ |C) = P (X|C)P (Ȳ |C). Now
we define Gx = P (X|C) and Gy = P (Y |C), so P (XȲ |C) = Gx(1 − Gy). If we further
assume that private information is symmetrical (Gx = Gy ≡ G), Equation S1 becomes

P (XȲ |B,C) =

P (B|XȲ ,C)G(1−G)

P (B|XY,C)G2 + [P (B|XȲ ,C) + P (B|X̄Y, C)]G(1−G) + P (B|X̄Ȳ , C)(1−G)2
.

(S3)

The four probabilities P (B|XY,C), P (B|XȲ ,C), P (B|X̄Y, C) and P (B|X̄Ȳ , C) parametrize
the available social information. Because they must sum one, we only have three
free parameters. It is therefore more useful to define Sb ≡ P (B|XY,C)/P (B|X̄Ȳ , C),
Sx ≡ P (B|XȲ ,C)/P (B|X̄Ȳ , C) and Sy ≡ P (B|X̄Y, C)/P (B|X̄Ȳ , C), and write Equa-
tion S3 as

P (XȲ |B,C) =
SxG(1−G)

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
. (S4)

The probabilities for the other three states can be derived in the same way:

P (X̄Y |B,C) =
SyG(1−G)

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
(S5)

P (XY |B,C) =
SbG

2

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
(S6)

P (X̄Ȳ |B,C) =
(1−G)2

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
. (S7)

Now we define the quality of x as the probability that x is good (and the same for option
y), getting

Qx = P (X|B,C) =P (XY |B,C) + P (XȲ |B,C) =

=
SbG

2 + SxG(1−G)

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
(S8)

Qy = P (Y |B,C) =P (XY |B,C) + P (X̄Y |B,C) =

=
SbG

2 + SyG(1−G)

SbG2 + (Sx + Sy)G(1−G) + (1−G)2
. (S9)

1.2 Effect of a relative decision rule

We assume that y is the majority option. If the decision rule is relative (Equation 3 of the

main text), superaggregation in adversity will take place when
∂(Qy/Qx)

∂G < 0 (Equation 7
of the main text). From Equations S8 and S9,

∂(Qy/Qx)

∂G
=

Sb(Sx − Sy)

[G(sb − Sx) + Sx]2
. (S10)
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The denominator of this expression is always positive because it is squared. Sb is always
positive because it is a ratio of probabilities. And Sy > Sx because y is the majority
option, so this derivative is always negative. Therefore, there is superaggregation in
adversity for any values of the parameters.

1.3 Effect of an absolute decision rule

If the decision rule is absolute (Equation 10 in the main text), superaggregation in

adversity will take place when
∂(Qy−Qx)

∂G < 0 (Equation 12 of the main text). From
Equations S8 and S9,

∂(Qy −Qx)

∂G
=

(Sx − Sy)[(sb − 1)G2 + 2G− 1]

[SbG2 + (Sx + Sy)G(1−G) + (1−G)2]2
. (S11)

The denominator is always positive because it is squared. Sx − Sy is always negative
because Sy > Sx when y is the majority option. Therefore, the sign depends on the
sign of (sb − 1)G2 + 2G − 1. This polynomial has a single root between 0 and 1 at
G = (

√
sb+1)−1. Therefore, the derivative is negative when G > (

√
sb+1)−1, recovering

the same result as for the Bayesian model in the main text: there is superaggregation
in adversity in the regime of high G, and the opposite effect in the regime of low G.

2 Superaggregation in space emerges for a wide range of
dynamical parameters

The emergence of superaggregation in adversity in our spatial model does not depend
on a particular choice of dynamical parameters. To illustrate this, we have run simula-
tions both in 2D and 3D, and with random parameters of the dynamical model (speed,
acceleration, etc). Superaggregation in adversity arises in most cases, independently of
these details (Figure S1e).

3 The selfish herd hypothesis in the quality landscape

We assume that the available space is divided in M possible locations. The i-th location
is occupied by ni individuals (i = 1 . . .M). The quantities ni do not count the focal
individual, which starts from any given location. A predator may arrive to any location
with probability 1−G (we define it in this way to keep the convention that G decreases
when conditions become adverse). If the predator arrives, it will eat one of the individ-
uals in that location, chosen at random. We define the quality of each option as the
probability that the focal individual survives after choosing that location, so for location
k we have

Qk = P (survive in location k) = 1− 1−G

(nk + 1)
, (S12)

where nk +1 is the number of individuals in option k, assuming that the focal individual
chooses it and that no other individual moves in the current round.
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Figure S1: Average distance between 10 individuals when conditions are adverse (low
G), vs. their average distance when conditions are favorable (higher G; points below
the diagonal indicate superaggregation in adversity). Each average distance comes from
50 simulations with identical parameters and random initial positions. Each simulation
lasts 200 iterations. For each combination of parameters, we run simulations with all
values of G ∈ {10−3, 10−2.5, 10−2, . . . , 100}. The plot shows the results of all pairs of G
(always with the smaller G in the x axis, and the greater G in the y axis). To generate
combinations of parameters, we drew random numbers uniformly distributed in the
following intervals: amax ∈ [0.1, 5], vmax ∈ [1, 50], rinfluence ∈ [5, 30], rview ∈ [10, 50],
tprediction ∈ [0, 5], s ∈ [2, 20]. For each combination of parameters, we run the simulation
both in 2D and 3D. Grey: simulations in 2D. Red: simulations in 3D. See methods for
further details about the model.

4



Figure S2: Selfish herd in the quality landscape. a. Change in estimated qualities
for a selfish herd model (Equation S12). Red: private estimate for favorable conditions
(diamond) and adverse conditions (square). Green arrows: contribution of the social
information. Blue: trajectory of the final estimated qualities. b. For the decision model
in (a), probability of choosing the majority option (y), as a function of the privately
estimated quality (G, higher values indicate more favourable conditions). Solid line:
relative decision rule. Dashed line: absolute decision rule.

Figure S2a shows the trajectory of this estimation rule for the case of two locations
(M = 2), when private information modifies the value of G. The probability of following
the majority increases in adversity both for the relative decision rule (Figure S2b, solid
line) and for the absolute one (Figure S2b, dashed line).
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