Supplemental Material

Table S1. List of primers, cycle numbers (# cycles) and temperatures (°C)

rat qPCR	Gene	For	Rev		
	Ctgf	ATCCCTGCGACCCACACA	ACGGACCCACCGAAGACA		
	Cyr61	CCACCGCTCTGAAAGGGA	CCACAGCACCGTCAATACATG		
	Plk2	CCGAGATCTCGCGGATTATAGT	CTGTCATTTCGTAACACTTTGCAA		
	Gata 4	CCTGCGAGACACCCCAATC	TCCTGTCCCATCTCGCTC		
	Tnni3	AGCCACATGCCAAGAAAAAGTC	TCACGCTCCATCTCCTGCTT		
	Myh7b	GGTGAGCGTGGTTACCATGTCT	GTGGTGACCCCCTGACTGC		
	Vwf	TGAGAACCAGCGGTGTAAACG	CCGACGCCGTCTTCAGTAAC		
	Pecam1	AGCATTGTGACCAGTCTCCGA	GCAATGACCACTCCAATGACAA		
	Lats2	GGAGTTGGTGAATGCAGGATGT	TTGCTCATTCCTGGGGTCC		
	r18S	CCATTCGAACGTCTGCCCTAT	GTCACCCGTGGTCACCATG		
rat PCR	Gene	For	Rev	# cycles	°C
	Abcg2	ACCCTGCAGACTTCTTCCTTGAC	AGTAAAGGGCACCAATAATCAGTCC	30	60
	Kit	CGCCAGGAGACGCTGACTAT	TTAGGGTAGGCCTCGAACTCAAC	30	60
	Pou5f1	GCGCCGTGAAGTTGGAGA	TGATCCTCTTCTGTTTCAGCAGC	30	60
	Nanog	AGGTACCTCAGCCTCCAGCA	CTGCCACCTCTTGCACTTCA	38	60
	Abcb1a	AGCCCTGTTCTTGGACTGTCA	TTGCATAAGCCTGGAGTTCCTTA	30	60
	Abcb1b	AACCTGCTGTTGGCATATTCG	GTGGATGATAGCAGCGAGAGTTC	30	60
	Nkx2.5	ATTTTATCCGCGAGCCTACG	CAGGTACCGCTGTTGCTTGAA	30	60
	Gata4	CTGTGCCAACTGCCAGACTA	AGATTCTTGGGCTTCCGTTT	25	57
	Myh7b	GGTGAGCGTGGTTACCATGTCT	ACTCTGGCCCTTGGTCACATAC	30	57
	Myh6	TGATGACTCCGAGGAGCTTT	TGACACAGACCCTTGAGCAG	39	60
	Tnni3	ACGTGGAAGCAAAAGTCACC	CCTCCTTCTTCACCTGCTTG	30	57
	Vwf	TGAGAACCAGCGGTGTAAACG	CCGACGCCGTCTTCAGTAAC	32	57
	Pecam1	AGCATTGTGACCAGTCTCCGA	GCAATGACCACTCCAATGACAA	32	57
	Gapdh	CAGAACATCATCCCTGCATCC	AGGTCCACCACCCTGTTGC	30	57
	Tbx18	TGCCAAGGCTTCCGAGAC	AAGGTGAGAGTTCGTAGTGATGGC	25	57
	Wt1	CATCCTCTGTGGTGCCCAGT	CAGATGCTGACCGGACAAGAG	30	57
	Aldh1a2	TACATCGATTTGCAGGGAGTCA	TAGACCACAGTGTTACCACAGCA	30	57
	Tcf21	AAGGCCTTCTCCAGGCTCAA	CTCGCGGTCACCACTTCCT	30	57

mouse qPCR	Gene	For	Rev		
	Ctgf	CTTCTGCGATTTCGGCTCC	ACACCGACCCACCGAAGAC		
	Cyr61	CCACCGCTCTGAAAGGGAT	CACGGCGCCATCAATACAT		
	Plk2	ATGGAGCTGAAGGTGGGAGAC	GAGGACTTCGGGGGGAGAGATA		
	Gata 4	GCCAACCCTGGAAGACACC	GACATGGCCCCACAATTGAC		
	Tnni3	CTGCCAACTACCGAGCCTATG	CGTTCCATCTCCTGCTTCG		
	Vwf	GATGGAGGGGAGCTTGAACTG	CGACTCCACCACCTCAAAGTG		
	r18S	CCATTCGAACGTCTGCCCTAT	GTCACCCGTGGTCACCATG		
mouse PCR	Gene	For	Rev	# cycles	°C
	Abcg2	CATGAAACCTGGCCTTAATGC	CTCCTCCAGAGATGCCACG	25	60
	Kit	CAGGACCTCGGCTAACAAAGG	TGGTCAGGCGAAGTTGGTTC	25	60
	Pou5f1	GGAGTCCCAGGACATGAAAGC	TGCTGTAGGGAGGGCTTCG	25	60
	Nanog	GGTGGCAGAAAAACCAGTGG	GCTTCCAGATGCGTTCACC	38	60
	Abcb1a	ATAATAGGATTTACCCGTGGCTGG	CCCATACCAGAATGCCAGAGC	25	60
	Abcb1b	TCAACTACCCATCGAGAAGCG	GGCATTGGCTTCCTTGACAG	25	60
	Nkx2.5	CCTGACCCAGCCAAAGACC	CACTTGTAGCGACGGTTCTGG	38	60
	Gata4	GCCGTATCATCACCAGAATCC	TCCAGCCTCTCGGTCATCTC	25	60
	Myh7b	CCGTTTTGGCAAGTTCATCC	AAGTTCCTCGCCGTCATCC	30	57
	Myh6	GCCAACCCTGGAAGACACC	TTGCAAGAGGCCTGGGAA	38	60
	Tnni3	CTGCCAACTACCGAGCCTATG	CCCTCAGGTCCAAGGATTCC	30	60
	Vwf	GATGGAGGGGAGCTTGAACTG	AGTTGACGGGGTCTTCCTCC	38	60
	Pecam1	CGTGAATGACACCCAAGCG	CACGGGTTTCTGTTTGGCC	38	60
	Gapdh	CAGAACATCATCCCTGCATCC	AGGTCCACCACCTGTTGC	25	60

	EntrezID	Symbol	log2FC	adj.P.Val
1	83476	Cyr61	3.39	2.5E-40
2	64032	Ctgf	2.04	2.7E-30
3	83722	Plk2	1.71	4.2E-28
4	287362	Nlrp3	1.69	1.4E-14
5	100861535	Rn28s	1.51	1.1E-03
6	24723	Rn45s	1.47	2.4E-06
7	65157	Amotl2	1.43	1.3E-27
8	85265	Ajuba	1.41	3.5E-29
9	289419	Nuak2	1.34	3.8E-20
10	259227	Vof16	1.31	9.2E-10
11	27064	Ankrd1	1.23	2.4E-06
12	299626	Gadd45b	1.20	2.2E-13
13	85471	Gata3	1.16	9.0E-11
14	362993	Rnd1	1.09	1.3E-10
15	25433	Hbegf	1.07	1.1E-03
16	29637	Hmgcs1	1.06	1.7E-06
17	366492	Epha2	1.03	1.1E-06
18	361679	Dusp8	0.96	1.6E-05
19	64534	Pim3	0.93	3.6E-12
20	306330	Klf2	0.91	1.4E-07
21	64194	Insig1	0.88	2.4E-06
22	24883	Wt1	0.84	1.0E-02
23	316842	Metrnl	0.84	1.3E-10
24	306636	Efnb2	0.81	1.3E-06
25	300866	Lca5	0.81	2.5E-03
26	295588	Rnd3	0.79	2.6E-02
27	29517	Sgk1	0.79	1.4E-07
28	362598	Sh3d21	0.79	2.2E-02
29	363243	Klf7	0.77	8.5E-08
30	24323	Edn1	0.74	2.2E-02
31	498159	Spry3	0.74	4.6E-02
32	64373	Rhob	0.74	1.4E-07
33	310533	Rapgef2	0.72	6.1E-06
34	25675	Hmgcr	0.70	1.3E-06
35	81503	Cxcl1	0.69	4.9E-04
36	287925	Pkp2	0.69	2.1E-03
37	500400	Fam110b	0.69	8.1E-04
38	292844	Siglec10	0.67	2.2E-02
39	499528	Ceno	0.63	2.2E-02
40	25556	Illrll	0.62	2.2E-02
41	364754	Fzd8	0.60	3.0E-04
42	24577	Мус	0.60	4.9E-04
43	24530	Lcat	0.60	2.9E-02
44	500300	LOC500300	0.60	5.5E-03

Table S2. Complete list of genes regulated on FN versus LN

45	360580	Dusp14	0.59	5.1E-04
46	498796	Fam107b	0.59	5.6E-06
47	365864	Tuft1	0.59	3.9E-05
48	89830	Ptch1	0.58	1.1E-03
49	58834	Dlc1	0.57	4.2E-04
50	299694	Nuak1	0.57	7.9E-04
51	246760	Mafk	0.56	3.5E-04
52	360202	Ston1	0.55	3.5E-04
53	501584	Amer1	0.55	3.9E-05
54	24373	Fst	0.55	2.3E-03
55	300438	Ldlr	0.54	1.7E-03
56	315259	Prickle1	0.54	2.4E-03
57	688993	Kctd7	0.53	2.7E-02
58	65154	Wisp1	0.53	4.0E-02
59	63839	Fhl2	0.52	6.0E-04
60	64562	Prkab2	0.51	1.1E-02
61	498963	Spata2L	0.51	4.2E-02
62	81809	Tgfb2	0.51	5.4E-04
63	305922	Lats2	0.50	1.3E-03
64	686117	Meis1	0.50	2.7E-04
65	25690	Ahr	0.50	4.2E-02
66	140910	Msmo1	0.50	9.3E-04
67	300803	Lactb	0.50	3.3E-03
68	299139	Slc38a6	0.50	4.9E-02
69	25105	Nppb	0.50	1.5E-02
70	29376	Irs2	0.48	9.5E-03
71	310341	Fat4	0.47	3.3E-02
72	29619	Btg2	0.46	1.5E-02
73	291699	Stard4	0.46	2.9E-02
74	83514	Tsc22d3	0.46	8.9E-03
75	309728	Arid5b	0.44	2.6E-03
76	501099	Srt	0.43	1.8E-02
//	296583		0.43	2.6E-02
/8	500000		0.43	3.9E-02
79	<u> </u>		0.42	3.4E-02
80	499891	RGD1505010	0.41	1.4E-02
81	29230	Sqle	0.40	4.2E-02
02 92	311030	Zswiiii5	0.39	2.3E-02
8J	202195	Elan	0.38	4.0E-02
04 95	04268	Ficil Efral	-0.38	4.2E-02
86	31//80	Cpr132	-0.42	0.3E-03
87	2/61/2	Bmf	-0.40	2 QE.02
88	501025	S1a2a0	-0.51	2.7E-02 3.7E-02
80	205021	Chet1	-0.52	2.6E.02
90	100526644	Mir3502	-0.52	6.7E.03
91	280200	RGD1211807	-0.60	1.5E.02
71	207377	KUD1311072	-0.07	1.51-02

92	66015	Adamts4	-0.70	2.7E-06
93	117274	Nr0b2	-0.70	8.5E-03
94	297902	Gem	-0.81	8.2E-09

Р

Q

 α -actinin

DAPI

Merge

Bacteriological dishes Culture dishes Culture dishes 3 Days 2-3 Days 7-12 Days CardioStem sphere generation Culture Medium (-supp. +FCS) Cardiomyogenic Medium 100nM Oxytocin (A), (B) Isolation of $Sca1^+CD31^-$ side population (SP) mouse CPCs (SP-mCPCs). (A) Sorting of freshly isolated cardiac SP-mCPCs by Hoechst 33324 staining with/without Verapamil (Ver; ABC transporter inhibitor) using flow cytometry. (B) Staining of freshly isolated SP-mCPCs with anti-CD31 and Scal antibodies (control: non-stained freshly isolated SP-mCPCs; percentage given for Scal^{+/} CD31⁻ fraction). (C), (D) Gene expression of stemness and progenitor markers of SP-mCPCs and of rat CPCs isolated based on c-kit positivity (rCPCs). Gene expression was assessed by PCR. Mouse embryonic stem cells (ES) and mouse or rat whole heart homogenate were used as positive and negative controls, respectively. (F), (E) Gene expression of cardiac transcription factors and cardiomyogenic and endothelial lineage markers. Whole heart homogenate was used as positive control for all markers, and bone marrow as positive control for endothelial and negative control for cardiomyogenic markers. (G), (H) Assessment of surface marker expression in expanded mouse and rat CPCs. (G) Flowcytometry of expanded SP-mCPCs stained with anti-CD31 and Sca1 antibodies (control: non-stained expanded SP-mCPCs). (H) Flowcytometry of expanded rCPCs stained with anti-c-Kit antibody or IgG isotype. (I), (J) Clonogenicity of mouse and rat CPCs. Representative images of clone formation after the days indicated for mCPCs (I) and rCPCs (J). (K), (L) CardioStem Sphere (CSS) formation of mCPC (K) and rCPC (L). Bar: 50µm. (M), (N) Expanded SP-mCPCs can differentiate into endothelial cells. (M) vWF protein expression after 3 weeks in endothelial differentiation medium. (N) Tube formation of SP-mCPCs primed and differentiated on LN for three weeks after 24 hours in matrigel. (O)-(O) Cardomyogenic differentiation of SP-mCPCs and rCPCs. (O) Cardiomyogenic differentiation of freshly isolated GFP-SP-mCPCs co-cultured with neonatal rat cardiomyocytes for 3 weeks. Bar: 50µm. (P) Cardiomyogenic differentiation of CSSderived rCPC according to the protocol depicted in (Q) (for detailed description please see manuscript Methods section)¹. Bar: 50µm.

Abcb1a: ATP-binding cassette, sub-family B (MDR/TAP), member 1A (Mdr1a); Abcb1b: ATP-binding cassette, subfamily B (MDR/TAP), member 1B (Mdrab); Abcg2: ATP-binding cassette, subfamily G (WHITE), member 2 (BCRP1); Gapdh: glyceraldehyde-3-phosphate dehydrogenase; Gata4: GATA binding protein 4; Kit: v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog; Myh6: myosin, heavy chain 6, cardiac muscle, alpha; Myh7b: myosin, heavy chain 7B, cardiac muscle, beta; Nanog: Nanog homeobox; Nkx2.5: NK2 homeobox 5; Pecam1: platelet/endothelial cell adhesion molecule 1 (CD31); PoU5f1: POU domain, class 5, transcription factor 1 (Oct-4); Tnni3: troponin I, cardiac 3; Vwf: Von Willebrand factor

Figure S2. Non-normalized data of gene expression as per Figure 1.

(A) Lineage gene expression of rCPCs on LN and FN as per Figure 1C. *p<0.05 for LN vs. FN (Wilcoxon signed rank test). (B) Lineage gene expression of SP-mCPCs on LN and FN as per Figure 1D. Data are given as mean±SEM. LN: laminin; FN: fibronectin; rCPCs: rat cardiac progenitor cells; SP-mCPCs: side population mouse cardiac progenitor cells.

Figure S3. Lineage marker expression in CPCs in 3D-culture on LN- and FN-coated scaffolds using a perfusion bioreactor.

Collagen scaffold coated with Laminin. (A) Bright filter; (B) Alexa546 shows LN. Scaffolds were incubated with 10μ g/mL LN; Bar: 500 μ m. (C) LN also enhances commitment towards the endothelial lineage compared to FN in perfusion-based bioreactor 3D-culture. Gene expression by qRT-PCR (n=3). rCPCs were plated on LN- or FN-coated scaffolds with 1% FBS. Data are given as mean ±SEM. Sus.: suspension; LN: laminin; FN: fibronectin; rCPCs: rat cardiac progenitor cells.

(A) Morphology of rat CPCs under growth conditions. rCPCs are an inhomogeneous cell population encompassing cells with different shapes. (B) Gene expression of epicardial markers in rat CPCs. Tbx18 is the only marker expressed in rCPCs. Wt1: Wilms tumor protein 1; Aldh1a2: aldehyde dehydrogenase 1 family member a2; Tcf21: transcription factor 21. rHeart: RNA from neonatal rat heart serving as positive control. (C) Rat CPCs do not express von Willebrand factor protein in culture medium (F12). Human microvascular endothelial cells (HMEC) were used as positive control. vWF: von Willebrand Factor, rCPC: rat CPCs. Bar: 25µm.

Heat maps of gene expression from enriched gene sets as identified by Gene Set Enrichment Analysis (GSEA) in rat CPCs on LN and FN.
(A) CORDENONSI_YAP_CONSERVED_SIGNATURE. (B) WGGAATGY_V\$TEF1_Q6.

Supplemental References:

1. Smith AJ, Lewis FC, Aquila I, Waring CD, Nocera A, Agosti V, Nadal-Ginard B, Torella D, Ellison GM. Isolation and characterization of resident endogenous c-kit+ cardiac stem cells from the adult mouse and rat heart. *Nat Protoc.* 2014;9:1662-1681.