

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Universal or targeted approach to prevent the transmission of extended-spectrum beta-lactamase-producing Enterobacteriaceae in intensive care units? A costeffectiveness analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017402
Article Type:	Research
Date Submitted by the Author:	21-Apr-2017
Complete List of Authors:	Sloma, Lidia; Inserm UMR 1137, UMR 1137 – UFR de Médecine Paris 7 Denis Diderot Lucet, Jean-Christophe ; INSERM, UMR 1137 perozziello, anne; Inserm, UMR 1137 Pelat, Camille; Inserm, UMR 1137 Birgand, Gabriel; Assistance Publique - Hopitaux de Paris Ruppé, Etienne; Assistance Publique - Hopitaux de Paris Boelle, Pierre-Yves; INSERM UMR S 707, ; INSERM, U707 Andremont, Antoine; Assistance Publique - Hopitaux de Paris yazdanpanah, yazdan; INSERM, UMR 1137
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Health economics, Public health, Intensive care, Health policy
Keywords:	Infection control < INFECTIOUS DISEASES, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Cost-effectiveness

SCHOLARONE[™] Manuscripts

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20 24	
21	
22	
23	
24	
20	
20	
28	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 57	
55	
56	
5/ E0	
20	
59	
00	

1 Intended category: Research

2	Universal or targeted approach to prevent the transmission of
3	extended-spectrum beta-lactamase-producing Enterobacteriaceae in
4	intensive care units? A cost-effectiveness analysis
5	Lidia Kardaś-Słoma, PhD; ^{1,2} , Jean-Christophe Lucet, Prof; ^{1,2,3} , Anne Perozziello, MS; ^{1,2} ,
6	Camille Pelat, PhD; ^{1,2} , Gabriel Birgand,PhD; ^{1,2,3} , Etienne Ruppé, PhD; ⁴ , Pierre-Yves
7	Boëlle,Prof; ⁵ , Antoine Andremont, Prof; ⁴ and Yazdan Yazdanpanah, Prof ^{1,2,6}
8	¹ INSERM, Infection, Antimicrobials, Modelisation, Evolution (IAME), UMR 1137, F-75018
9	Paris, France
10	² University of Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France
11	³ AP-HP, Bichat-Claude Bernard Hospital, Infection Control Unit, F-75018 Paris, France
12	⁴ AP-HP, Bichat-Claude Bernard Hospital, Bacteriology Laboratory, F-75018 Paris, France
13	⁵ Sorbonne University, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology
14	and Public Health (IPLESP UMRS 1136), 75012, Paris, France
15	⁶ AP-HP, Bichat-Claude Bernard Hospital, Infectious and Tropical Diseases Department, F-75018
16	Paris, France
17	Corresponding author:
18	Lidia Kardaś-Słoma
19	University of Paris Diderot, Inserm-IAME, UMR 1137
20	16, rue Henri Huchard, 75018 Paris, France
21	E-mail address: lidia.kardas@inserm.fr

22 ABSTRACT

Objective

Several control strategies have been used to limit the transmission of multidrug-resistant organisms in hospitals. However, their implementation is expensive and effectiveness of interventions for the control of extended-spectrum beta-lactamase–producing Enterobacteriaceae (ESBL-PE) spread is controversial. Here we aim to assess the cost-effectiveness of hospital-based strategies to prevent ESBL-PE transmission and infections.

29 Design

- 30 Cost-effectiveness analysis based on dynamic, stochastic transmission model over a one-year
- 31 time horizon.

32 Patients and setting

33 Patients hospitalized in a hypothetical 10- bed intensive care unit (ICU).

34 Interventions

- Base case scenario compared to 1) universal strategies (e.g. improvement of hand hygiene (HH)
- 36 among healthcare workers (HCWs), antibiotic stewardship), 2) targeted strategies (e.g. screening
- of patient for ESBL-PE at ICU admission and contact precautions or cohorting of carriers) and 3)
- 38 mixed strategies (e.g. targeted approaches combined with antibiotic stewardship).

39 Main Outcomes and Measures: Cases of ESBL-PE transmission, infections, cost of

40 intervention, cost of infections, incremental cost per infection avoided.

41 Results

- 42 In the base case scenario, 15 transmissions and 5 infections due to ESBL-PE occurred per 100
- 43 ICU admissions, representing a mean cost of €94 792. All control strategies improved health

1	
2	
3	
4	
5	
6	
7	
י פ	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
5/	
54	
55	
50	
5/	
58	
59	
60	

44	outcomes and reduced costs associated with ESBL-PE infections. The overall costs (cost of
45	intervention and infections) were the lowest for HH compliance improvement to 80%/80%.
46	Two strategies required higher investments than the HH programme, but also improved health
47	benefits; 1) HH improvement to 80%/80% combined with antibiotic stewardship and 2) screening
48	and cohorting strategy combined with antibiotic stewardship.
49	Conclusions
50	Improved compliance with HH was the most cost-saving strategy to prevent the transmission of
51	ESBL-PE. Adding antibiotic restriction to HH or screening and cohorting slightly improved their
52	effectiveness and may be worthy of consideration by decision-makers'.
53	
54	Strength and limitations of this study
55	• We used a dynamic transmission model to take into account that the risk of colonization
56	in the ICU depends on the number of ESBL-PE carriers and could change over time.
57	 Parameters used in the model were derived from recent multicentre studies.
58	 We undertook sensitivity analyses to show the impact of uncertainty in parameter
59	estimation and the impact of model assumptions on the conclusions.
60	 Direct HCW-to-HCW transmissions as well as environmental contamination were not
61	included in the model.
62	
63	INTRODUCTION
64	The incidence of infection and colonization with extended-spectrum beta-lactamase-producing
65	Enterobacteriaceae (ESBL-PE) has increased worldwide. In Europe, in 2014, the percentage of

isolates was 12% and 23%, respectively¹. A similar trend was observed in the United States,
although with large variations between states².

In hospital settings, ESBL-PE acquisition is mainly due to indirect transmission between patients with the hands of healthcare workers (HCWs) as vectors. Increased prevalence of colonization augments the risk of acquiring ESBL-PE infection³. Such infections represent a serious socioeconomic burden and are associated with a raised mortality, a longer hospitalization, and additional costs⁴.

Many interventions have been proposed to limit the transmission of multidrug-resistant organisms (MDROs) in hospitals. They can be classified as either 1) a 'universal' or 'horizontal' approach, applied to all patients e.g. improvement of hand hygiene (HH) among HCWs or antibiotic stewardship or 2) a 'targeted' or 'vertical' approach, e.g. screening and isolation of asymptomatic carriers in addition to infected patients, with the aim of identifying carriers and implementing measures to prevent the transmission from carriers to other patients⁵.

There is general agreement that HH reduces the transmission of MDROs, especially MRSA³. However, few studies have evaluated the impact of HH on the prevention of ESBP-PE dissemination and, so far, most of those studies have not provided evidence of HH benefit⁶, with the exception of one recently published study⁷. The effectiveness of targeted measures in controlling the spread of MDROs, and especially ESBL-PE, remains controversial. This approach is mainly recommended in high-risk units, e.g. intensive care units (ICUs)⁸.

The implementation of interventions with demonstrated effectiveness in reducing ESBL-PE infections is associated with costs that are generally supported by hospitals. However, when evaluating implementation of an infection prevention programme, one should also take into account savings associated with these interventions, but this has been largely ignored in previous studies.

BMJ Open

2
3
4
5
6
7
1
8
9
10
11
12
13
10
14
15
16
17
18
19
20
21
22
22
20
24
25
26
27
28
29
30
31
32
33 02
00 04
34 05
35
36
37
38
39
40
41
42
43
40
44 15
40
46
47
48
49
50
51
52
53
54
54
00 FC
56
57
58
59

In this study, we used a mathematical model to evaluate the effectiveness and cost-effectiveness
of universal and targeted control strategies for the prevention of ESBL-PE transmission in an
ICU in a high-income country.

94

95 METHODS

96 <u>The model</u>

We extended a previously described stochastic, compartmental and dynamic model of ESBL-PE
transmission⁹ to assess the economic impact of infection control strategies implemented in a
hypothetical, ICU setting over a one-year time horizon.

- 100 The model simulated the spread of ESBL-PE among patients through contacts with HCWs in an
- 101 ICU, taking into account hospital admissions and discharges of patients, antibiotic exposure, and
- 102 control interventions (**Figure 1**).

103 The **Supplementary Text S1** provides details of the model and its assumptions.

104 Model simulations and outcomes

Simulations of the model were performed using Gillespie's method and programmed in C++
language. The outcomes (cases of ESBL-PE transmission, infections, cost of intervention, cost of
infections) were calculated after a period of 1 year and averaged over the 1,000 Monte Carlo
simulations. Cost-effectiveness analysis and graphics were performed in R¹⁰.

109

60

110 Base case scenario

111 In the base case scenario, with no control intervention, we considered that compliance with hand

hygiene before/after contact with a patient was 55%/60% respectively¹¹ and 56% of patients

113 received antibiotics at ICU admission¹².

> Infection control strategies

Universal approaches

We evaluated control strategies implemented in all patients (independently of their colonization status), that comprised one or both of the following interventions: 1) improved compliance with HH, and 2) antibiotic stewardship. For HH, we considered different levels of compliance. First, compliance with HH before/after contact with a patient was improved from 55%/60% at baseline to 55%/80% or 80%/80%. Second, antibiotic stewardship resulted in halving the proportion of patients on antibiotics at ICU admission and in reducing by 25% the duration of antibiotic treatment.

Targeted approaches

We evaluated 2 strategies that combined screening of patients for ESBL-PE at ICU admission and one of the following interventions implemented: 1) contact precautions (improved compliance with HH before/after contact with carriers to 80%/80%); or 2) cohorting of ESBL-PE carriers with dedicated HCWs. HH compliance for other patients was maintained at baseline level.

Mixed approaches

We evaluated two strategies combining the targeted approaches with antibiotic stewardship.

Model parameters

Model parameters and their values are presented in Supplementary Table 1.

BMJ Open

Based on recent French data, we assumed that 15% of patients were colonized with ESBL-PE at ICU admission¹³.

Infection status was not included in the model, so we estimated the number of infections by multiplying the cumulated number of colonized patients after one year by the probability of developing an infection during an ICU stay, set at 16.4%¹⁴. Even though this value came from a recent large multicentre study, we also considered the impact of lower (8%) and higher (30%) probability of infection in alternative analyses.

Costs

> The analysis was performed from a public hospital perspective. Cost estimates are based on values reported in Euros from 2015 (1 \in = US \$0.94). We considered the following costs in the model: 1) costs of intervention (material resources and personnel costs), 2) costs of ESBL-PE infections. The cost of an ESBL-PE infection was estimated using the ESBL-PE-attributable LOS and the cost of a hospital bed-day for infected patients^{13,15,16}. See **Table 1** for cost parameters and Supplementary Text 1 for more details.

Cost-effectiveness evaluation

To conduct the cost-effectiveness¹⁷, we estimated the costs associated with each intervention implemented, and the health benefits were related to the number of avoided cases of ESBL-PE infections. First, we determined whether any strategy was dominated by another in terms of costs and health benefits. Second, we determined whether any strategy was dominated through principles of extended dominance (i.e. whether the incremental cost-effectiveness ratios [ICERs]decrease as the strategies increases in cost^{17,18}). Finally, for the non-dominated strategies,

we calculated the incremental cost per case of infection avoided, which is the ratio of the difference in costs between two strategies to the difference in health benefits. This process produces an "efficient frontier" indicating more costly, but more effective strategies.

163 Sensitivity analysis

We performed supplementary analyses to assess the impact of parameter uncertainty on the model's predictions. We first ran a univariate sensitivity analysis to evaluate the costeffectiveness of strategies in settings with either low or high prevalence of patients colonized at admission (from 5% to 50%). We also considered the impact of a lower (8%) and a higher (30%) probability of infection in colonized patients. We then investigated the model assuming 1) a lower baseline compliance with HH and 2) a lower sensitivity of the screening method used to detect ESBL-PE carriers at ICU admission.

We also performed an analysis to explore the uncertainty in human time required in an HH programme and its potential effects. In this analysis, we varied the time an infection control nurse works on the programme (quarter-time, half-time or full-time) simultaneously with the level of HH compliance achieved (from 55%/60% to 80%/80% before after contact).

Finally, we performed a probabilistic sensitivity analysis to explore the effect of joint uncertainty across parameters on the cost-effectiveness of universal vs targeted strategies. We varied the following parameters concurrently: 1) number of HCW contacts with patients, 2) transmission parameters, 3) length of stay of ICU patients, 4) natural decontamination rate for HCW, 5) antibiotic initiation rate, 6) prevalence of ESBL-PE carriage among patients admitted to the ICU,

1 2		
2 3 4	182	7) death rate of patients, 8) probability of infection in colonized patients and 9) cost parameters.
5 6	183	We randomly sampled values from each of the parameter distributions and calculated the mean
7 8 9	184	costs and mean number of infections for each strategy (averaged over 1,000 simulations).
10 11	185	
12 13 14	186	RESULTS
15 16	187	In the absence of control interventions (base case strategy), 15 new acquisitions (i.e.
17 18 19	188	transmissions) and 5 new infections due to ESBL-PE occurred per 100 admissions. Compared to
20 21	189	the base case (Strategy 1), all strategies reduced ESBL-PE acquisition and infections within one
22 23	190	year (Figure 2).
24 25 26	191	Among universal strategies, HH compliance improvement to 80%/80% (Strategy 2) was the most
27 28	192	effective, resulting in a mean reduction to 2.9 acquired infections per 100 admissions. Among
29 30	193	targeted strategies, screening of patients on admission and cohorting of carriers (Strategy 6) was
31 32 33	194	the most effective strategy and resulted in a mean reduction to 2.8 infections per 100 admissions.
34 35	195	Screening followed by contact precautions (Strategy 5) was the least effective in comparison with
36 37 28	196	all other options. Adding antibiotic stewardship to HH or targeted strategies only slightly
39 40	197	improved their effectiveness.
41 42	198	
43 44 45	199	Cost-saving analysis
45 46 47	200	In Table 2 we present the estimated costs and outcomes over one year for all strategies. The
48 49	201	mean total cost associated with the base case strategy was estimated at €105 344/100 admissions,
50 51 52	202	€94 792 of which was related to infections and €10 552 to interventions. Investments in infection
53 54	203	prevention was always cost-saving because they avoided cases of ESBL-PE infections and thus
55 56	204	costs associated with these infections. For instance, when HH compliance was improved to

205 80%/80%, the mean cost of the strategy implementation increased to €25 639/100 admissions, 206 but the costs related to infections decreased to €54 916, resulting in an overall monetary benefit 207 of €24 788/100 admissions in comparison with the base case. This strategy was associated with 208 the highest savings within all evaluated strategies.

210 Cost-effectiveness analysis

HH compliance improvement to 80%/80% was the least expensive strategy. However, two strategies required higher investments than the HH programme, but also improved health benefits. To help choose between strategies we calculated the incremental cost-effectiveness ratio (Figure 3). The ICER of HH improvement to 80%/80% and antibiotic stewardship (Strategy 7) vs. HH compliance improvement to 80%/80% was estimated at €49 025/avoided infection (Table 2). The ICER of screening, cohorting and antibiotic stewardship (Strategy 10) vs. HH improvement to 80%/80% and antibiotic stewardship was estimated at €62 005/avoided infection. Other strategies were dominated (more expensive and less effective).

220 Sensitivity analysis

Findings from sensitivity analysis showed the robustness of predictions to: 1) the lower/higher prevalence of ESBL-PE carriage on ICU admission,2) the lower/higher probability of infections in colonized patients,3) the baseline compliance with HH lower than in our core analysis (20%/40%), and 4) the lower sensitivity to detect ESBL-PE carriers at ICU admission. Results of this analysis are shown in **Supplementary Text 2** (Figure S1 and Table S1, Table S2 A and B, Table S3, and Figure S2).

Page 11 of 67

BMJ Open

In a second sensitivity analysis, we focused on human time and performance to improve HH compliance. If an infection control nurse was assumed to work quarter-time, half-time or fulltime on the programme, the HH compliance had to increase by at least 5%, 7.5% or 15%, respectively, to make the programme cost saving compared to the base case (**Supplementary Table S4A**).

In comparison with the screening and cohorting strategy, the HH improvement was cost-saving when an infection control nurse worked quarter-time or half-time on the programme, and HH compliance increased by at least 12.5% or 17.5%, respectively. The screening and cohorting strategy dominated the HH improvement programme when an infection control nurse was working full-time on the programme (**Supplementary Table S4B**).

Finally, the probabilistic sensitivity analysis showed that improvement of HH to 80%/80% (Strategy 2) was less expensive than the screening and cohorting intervention (Strategy 6) in 91% of simulations. Among them, in 42% of simulations, the HH strategy was less expensive but more effective (dominated the Strategy 6), and in 49% of runs the screening and cohorting was more effective and more expensive (**Supplementary Figure S3**). Screening and contact precautions (Strategy 5) were always less effective than improvement of HH to 80%/80% (Strategy 2) (**Supplementary Figure S4**).

DISCUSSION

The impact of infection control strategies for preventing ESBL-PE transmission is controversial because clinical studies cannot account for the multiple confounding factors, notably both infection control measures and antibioc stewardship. Despite several recent high-level

interventional studies (Climo et al.¹⁹; Derde et al.⁶; Huang et al.²⁰), the most effective and costeffective interventions for controlling MDROs are still debated. Since the spread of ESBL-PE
between patients is a dynamic and complex process, modelling can help for understanding the
transmission mechanisms and deciding which intervention are to be preferred (Doan et al.²¹;
Grundmann et al.²²).

Our model estimated the annual burden of ESBL-PE infections in a French ICU at €94 792 per 100 admissions in the base case strategy. Several prior studies have reported the cost of infections due to multidrug resistant organisms in the ICU^{23–26}. However, even though all authors underlined the high costs of infections, comparison between studies remains difficult. Estimated costs varied according to the country, but also to the population studied, e.g. patients with sitespecific or microorganism-specific infections. Moreover, the methods used to estimate the costs were not similar in all publications.

Implementation of infection control programmes may reduce the high cost of healthcareassociated infections. However, when evaluating the cost-effectiveness and benefits of such
programmes, it is crucial to consider their cost.

In recent years, mathematical models have increasingly been used to study the cost-effectiveness of control strategies. For example, Robotham et al.²⁷compared a wide range of strategies to control MRSA transmission in ICUs and found that universal decolonization was the most costeffective option. In another study, Gidengil et al.²⁸compared hospital strategies to prevent MRSA transmission and infections in an ICU. They confirmed that universal decolonization was the most cost-saving strategy.

Page 13 of 67

1

BMJ Open

2		
3		
4		
5		
6		
7		
י ה		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	л Л	
1	4 5	
1	ວ	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
$\frac{-}{2}$	ว	
2 2	2 2	
2	ک	
2	4	
2	5	
2	6	
2	7	
2	8	
2	ğ	
2 2	٥ ٨	
ა ი	4	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
2	ģ	
ა ი	0	
3	9	
4	Ú	
4	1	
4	2	
4	3	
4	4	
4	5	
Δ	6	
т Л	7	
+ 1	í o	
4	ð	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	י ה	
5	с С	
о г	0	
5	1	
5	8	
5	9	
ิค	n	

Our study is the first to compare the effectiveness and the costs of universal and targeted control strategies in the context of the spread of ESBL-PE in ICUs. Our model predicted that improving HH to 80%/80% in contacts with all patients would prevent 83% of ESBL-PE acquisitions and avoid at least two out of five infections per 100 admissions. This strategy represented the most cost-saving, with a monetary benefit of €24 788 per 100 admissions.

The association between HH and reduction of MDROs infections has long been known and HH 277 278 has been accepted as a crucial component of infection prevention. HH has in addition the benefit 279 of being effective for reducing transmission of many resistant or susceptible bacteria. A recent publication reported that a programme designed to control MRSA by implementing universal 280 281 components in addition to screening and contact precautions for MRSA carriers also effectively reduced the incidence of resistant gram-negative bacteria, the most likely being ESBL-PE⁷. Thus, 282 the overall economic benefit of an HH programme for the hospital might be greater than reported 283 in our study. 284

Despite the confirmed effectiveness of HH and national and international recommendations, compliance with HH remains low and is often lower than values used in our base case analysis^{29,30}.However, we showed in a sensitivity analysis that improving HH remained the most cost-saving strategy even in a low baseline compliance scenario.

289

Different strategies have been suggested to improve HH in hospitals³¹, but the evidence-based approach is still lacking. Recently, a revue ³² concluded that a multimodal strategy proposed by the WHO and consisting of five components: 1) system change, 2) training and education, 3) observation and feedback, 4) reminders in the hospital, and 5) a hospital safety climate, was effective at increasing HH among HCWs. Moreover, the authors underlined that additional

measures (e.g. reward incentives for reaching a certain level of compliance) could lead to further improvements. In our study, we assumed that a key component of an HH programme was a dedicated staff working on the programme (i.e. HH education, observation and feedback). We hypothesized, for example, that to improve HH compliance an infection control nurse working half-time would be sufficient. However, to explore the uncertainty of the required time dedicated to the HH programme and its expected effects, we performed a sensitivity analysis.

Screening strategies have been used to prevent transmission of MDROs, however their effectiveness and cost-effectiveness have been largely debated. In this study, we showed, that in endemic settings, screening and cohorting strategy had comparable efficacy as HH but was more expensive and dominated by other control options. We can hypothesize that in the case of highly resistant bacteria (e.g. Carbapenem-resistant *Enterobacteriaceae*) where there is a highest clinical impact on the outcomes of infected patients, given the lack of therapeutic options, a rapid identification and cohorting of carriers may be more beneficial from the hospital but also societal perspective.

While antibiotic use is the major driver for the selection of antibiotic-resistant bacteria, there is no clear evidence of the effectiveness of antimicrobial restriction policies on resistance³³. We assumed in the model that a reduction in antibiotic use acted in 2 ways: it decreased the colonization probability of uncolonized patients and the probability of transmission from colonized patients to HCWs. However, we found that reducing antibiotic use was less effective than HH or a screening and cohorting strategy. Under the hypotheses used in our model, we also demonstrated in a previous study through sensitivity analyses that antibiotic parameters did not significantly influence the effectiveness of interventions⁹.

BMJ Open

However, adding antibiotic stewardship to an HH strategy slightly improved its effectiveness and may be worthy of consideration if the decision-makers are willing to pay at least ϵ 49 025per infection avoided (we calculated that it would be equivalent to ϵ 5 562 per life-year gained (LYG)). Combining antibiotic stewardship with screening and cohorting was even more effective than combining HH and antibiotic stewardship, but with an additional cost of ϵ 62 005 per infection avoided (or ϵ 7 030/LYG).

Our study has several strengths. Firstly, we used a dynamic model to represent interactions between patients and HCWs and to take into account that the risk of colonization in the ICU depends on the number of ESBL carriers and could change over time. Moreover, our model incorporated the key elements of ESBL-PE transmission, such as the impact of prevalence at admission or antibiotic treatment. Secondly, we used input parameters derived from recent multicentre studies. Thirdly, we estimated the cost of HCW according to the time they spend working on the programme based on the best evidence from the literature and expert opinion. Finally, we assessed the impact of uncertainty in parameter estimation and the impact of model assumptions on the model's predictions by performing multiple sensitivity analyses.

Our study also has several limitations. Firstly, ICU parameters and costs were based mostly on French data, and ESB L-PE infections, prevalence, compliance with control measures and costs may be different in other countries. Secondly, we modelled an ICU as a single-room unit where transmission among patients results via contacts with HCWs. In the absence of detailed information on transmission of ESBL-PE in hospital wards, we ignored direct HCW-to-HCW transmissions as well as environmental contamination. Finally, ESBL-PE acquisition in the ICU can lead to transmission from an ICU-acquired case and infection in downstream units, thus increasing costs of hospitalization. Our cost evaluation was therefore conservative, since

transmission and infection after ICU discharge were not added to the global costs of infections. A

342 ward-based model, including other hospital units, should be tested.

344 CONCLUSION

Our study suggests that a universal approach with improved compliance with HH was the most cost-saving strategy to prevent the transmission of ESBL-PE in an ICU setting. Screening and cohorting of carriers had comparable effectiveness to HH improvement, but was more expensive. Adding antibiotic restriction to the HH or the screening and cohorting strategies slightly improved their effectiveness and may be worthy of consideration by decision-makers.

351 ACKNOWLEDGMENTS

352 We thank Dr. Laurence Armand for useful discussion on our study.

354 FOOTNOTES

Contributors: YY, JCL, CP and LKS designed the study. YY, JCL, PYB, AA, CP and LKS
contributed to the development of the model. CP, AP, GB, ER and LKS collected the data. CP

and LKS wrote the code. LKS conducted computer simulations and result analysis. LKS, JCL

and YY drafted the manuscript. All authors read and critically revised the manuscript.

359 Funding: This work was supported by the French government (PREPS program [grant number

360 13-0693]) and by the National Institute for Health and Medical Research (INSERM).

Competing interests: None declared.

Data sharing statement: Details of the computer code for the model are available from the

363 corresponding author.

1 2 3 4 5	364		
6 7	365	REFERENCES	
8 9 10	366	1 European Centre for Disease Prevention and Control (ECDC). SURVEILLANCE REPORT:	
11 12	367	Antimicrobial resistance surveillance in Europe 2014.	
13 14 15	368	http://ecdc.europa.eu/en/publications/publications/antimicrobial-resistance-europe-2014.pdf	
16 17 18	369	(accessed Sept 30, 2016).	
19 20 21	370	2 Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Patient Safety Atlas.	
22 23	371	Summary of Results. http://gis.cdc.gov/grasp/PSA/Downloads/ARPatientSafetyAtlas-	
24 25 26	372	SummaryofResults.pdf (accessed Sept 30, 2016).	
27 28 29	373	3 World Health Organization. Evidence of hand hygiene to reduce transmission and infections	
30 31	374	by multi-drug resistant organisms in health-care settings.	
32 33 34	375	http://www.who.int/gpsc/5may/MDRO_literature-review.pdf (accessed Sept 7, 2016).	
35 36 37	376	4 Gandra S, Barter DM, Laxminarayan R. Economic burden of antibiotic resistance: how much	
38 39	377	do we really know? Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2014;	
40 41 42	378	20 : 973–80.	
43 44 45	379	5 Septimus E, Weinstein RA, Perl TM, Goldmann DA, Yokoe DS. Approaches for preventing	
46 47	380	healthcare-associated infections: go long or go wide? Infect Control Hosp Epidemiol 2014; 35	
48 49 50	381	Suppl 2 : S10-14.	
51 52 53	382	6 Derde LPG, Cooper BS, Goossens H, et al. Interventions to reduce colonisation and	
54 55	383	transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time	
56 57 58 59 60	384	series study and cluster randomised trial. <i>Lancet Infect Dis</i> 2014; 14 : 31–9.	

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
41	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

385	7 Goto M, O'Shea AMJ, Livorsi DJ, et al. The Effect of a Nationwide Infection Control
386	Program Expansion on Hospital-Onset Gram-Negative Rod Bacteremia in 130 Veterans
387	Health Administration Medical Centers: An Interrupted Time-Series Analysis. Clin Infect Dis
388	<i>Off Publ Infect Dis Soc Am</i> 2016; 63 : 642–50.
389	8 Otter JA, Mutters NT, Tacconelli E, Gikas A, Holmes AH. Controversies in guidelines for the
390	control of multidrug-resistant Gram-negative bacteria in EU countries. Clin Microbiol Infect
391	Off Publ Eur Soc Clin Microbiol Infect Dis 2015; 21 : 1057–66.
~~~	
392	9 Pelat C, Kardas-Słoma L, Birgand G, <i>et al.</i> Hand Hygiene, Conorting, or Antibiotic Restriction
393	to Control Outbreaks of Multidrug-Resistant Enterobacteriaceae. Infect Control Hosp
394	<i>Epidemiol</i> 2016; <b>37</b> : 272–80.
395	10R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (accessed
396	Sept 15, 2016).
397	11 Venier AG, Zaro-Goni D, Pefau M, et al. Performance of hand hygiene in 214 healthcare
398	facilities in South-Western France. J Hosp Infect 2009; 71: 280-2.
399	12 REA-Raisin network. Surveillance des infections nosocomiales en réanimation adulte / 2012 /
400	Maladies infectieuses / Rapports et synthèses / Publications et outils / Accueil.
401	http://invs.santepubliquefrance.fr/Publications-et-outils/Rapports-et-syntheses/Maladies-
402	infectieuses/2012/Surveillance-des-infections-nosocomiales-en-reanimation-adulte (accessed
403	Sept 15, 2016).

#### **BMJ Open**

2		
3 4	404	13 Razazi K, Derde LPG, Verachten M, Legrand P, Lesprit P, Brun-Buisson C. Clinical impact
5 6	405	and risk factors for colonization with extended-spectrum $\beta$ -lactamase-producing bacteria in the
7 8 9	406	intensive care unit. Intensive Care Med 2012; 38: 1769–78.
10 11 12	407	14 Barbier F, Pommier C, Essaied W, <i>et al.</i> Colonization and infection with extended-spectrum $\beta$ -
13 14	408	lactamase-producing Enterobacteriaceae in ICU patients: what impact on outcomes and
15 16 17	409	carbapenem exposure? J Antimicrob Chemother 2016; 71: 1088–97.
19 20	410	15 Viau R, Frank KM, Jacobs MR, et al. Intestinal Carriage of Carbapenemase-Producing
21 22 23 24	411	Organisms: Current Status of Surveillance Methods. <i>Clin Microbiol Rev</i> 2016; <b>29</b> : 1–27.
25 26	412	16 Vasudevan A, Memon BI, Mukhopadhyay A, Li J, Tambyah PA. The costs of nosocomial
27 28 20	413	resistant gram negative intensive care unit infections among patients with the systemic
29 30 31	414	inflammatory response syndrome- a propensity matched case control study. Antimicrob Resist
32 33 34	415	Infect Control 2015; 4: 3.
35 36 27	416	17 Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford
37 38 39	417	University Press, 2006 https://www.york.ac.uk/che/publications/books/decision-modelling/
40 41 42	418	(accessed Sept 6, 2016).
43 44 45	419	18 Cantor SB, Ganiats TG. Incremental cost-effectiveness analysis: the optimal strategy depends
46 47 48	420	on the strategy set. J Clin Epidemiol 1999; 52: 517–22.
49 50	421	19 Climo MW, Yokoe DS, Warren DK, et al. Effect of daily chlorhexidine bathing on hospital-
52 53 54	422	acquired infection. N Engl J Med 2013; 368: 533-42.
55 56	423	20 Huang SS, Septimus E, Kleinman K, et al. Targeted versus universal decolonization to prevent
57 58 50	424	ICU infection. N Engl J Med 2013; 368: 2255–65.
59 60		19

21 Doan TN, Kong DCM, Kirkpatrick CMJ, McBryde ES. Optimizing hospital infection control: the role of mathematical modeling. Infect Control Hosp Epidemiol 2014; 35: 1521-30. 22 Grundmann H, Hellriegel B. Mathematical modelling: a tool for hospital infection control. Lancet Infect Dis 2006; 6: 39-45. 23 Chaix C, Durand-Zaleski I, Alberti C, Brun-Buisson C. Control of endemic methicillin-resistant Staphylococcus aureus: a cost-benefit analysis in an intensive care unit. JAMA 1999; : 1745–51. 24 Roberts RR, Hota B, Ahmad I, et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis Off Publ Infect Dis Soc Am 2009; 49: 1175–84. 25 Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA. Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob Agents Chemother 2010; 54: 109-15. 26 Lee SY, Kotapati S, Kuti JL, Nightingale CH, Nicolau DP. Impact of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species on clinical outcomes and hospital costs: a matched cohort study. Infect Control Hosp Epidemiol 2006; 27: 1226–32. 27 Robotham JV, Graves N, Cookson BD, et al. Screening, isolation, and decolonisation strategies in the control of meticillin resistant Staphylococcus aureus in intensive care units: cost effectiveness evaluation. BMJ 2011; 343: d5694. 

#### **BMJ Open**

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
22	
∠ວ	
24	
25	
26	
27	
28	
29	
20	
21	
21	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
40 //7	
+/ /0	
48	
49	
50	
51	
52	
53	
54	
55	
00	
26	
57	
58	
59	
60	

28 Gidengil CA, Gay C, Huang SS, Platt R, Yokoe D, Lee GM. Cost-effectiveness of strategies to
prevent methicillin-resistant Staphylococcus aureus transmission and infection in an intensive
care unit. *Infect Control Hosp Epidemiol* 2015; **36**: 17–27.

29 Scheithauer S, Haefner H, Schwanz T, *et al.* Compliance with hand hygiene on surgical,
medical, and neurologic intensive care units: direct observation versus calculated disinfectant
usage. *Am J Infect Control* 2009; **37**: 835–41.

30 Cepeda JA, Whitehouse T, Cooper B, *et al.* Isolation of patients in single rooms or cohorts to
reduce spread of MRSA in intensive-care units: prospective two-centre study. *Lancet Lond Engl* 2005; 365: 295–304.

453 31 Pittet D, Hugonnet S, Harbarth S, *et al.* Effectiveness of a hospital-wide programme to
454 improve compliance with hand hygiene. Infection Control Programme. *Lancet Lond Engl*455 2000; **356**: 1307–12.

456 32 Luangasanatip N, Hongsuwan M, Limmathurotsakul D, *et al.* Comparative efficacy of
457 interventions to promote hand hygiene in hospital: systematic review and network meta458 analysis. *BMJ* 2015; **351**: h3728.

33 Smith, R.D., Coast, J., Millar, M.R., Wilton P., Karcher, A-M. Interventions against an
antibiotic resistance: A review of the literature and exploration of modelling costeffectiveness. A report prepared for the Global Forum for Health Research. World Health
Organization http://announcementsfiles.cohred.org/gfhr_pub/assoc/s14820e/s14820e.pdf
(accessed Sept 21, 2016).

34 Girard R, Aupee M, Erb M, Bettinger A, Jouve A. Hand rub dose needed for a single disinfection varies according to product: a bias in benchmarking using indirect hand hygiene indicator. J Epidemiol Glob Health 2012; 2: 193-8. 35Kaier K. Economic implications of the dynamic relationship between antibiotic use and hospital-acquired infections. Value Health J Int Soc Pharmacoeconomics Outcomes Res 2012; : 87–93. 36 Armand L. Place des nouvelles techniques dans l'optimisation diagnostique et thérapeutique infections nosocomiales réanimation. des http://cclin-sudest.chu-en lyon.fr/Reseaux/REA/Journee/2014/6 Bacterio NouveauxOutils.pdf (accessed Sept 6, 2016). 37 Birgand G, Ruimy R, Schwarzinger M, et al. Rapid detection of glycopeptide-resistant enterococci: impact on decision-making and costs. Antimicrob Resist Infect Control 2013; 2: 30. 

#### **BMJ Open**

### 477 FIGURE LEGENDS

Figure 1. Model of transmission of ESBL-PE between patients through contacts with health-care
workers (HCWs) and impact of infection control measures in the transmission process. Solid
lines represent the transitions between population groups and dashed lines represent the
transmission between patients and HCWs.

482A. Impact of universal (horizontal) control measures: 1) hand hygiene (reduces the transmission
among patients and HCWs); 2) antibiotic restriction (reduces the risk of transmission from
colonized patients receiving antibiotics to HCWs or from contaminated HCWs to uncolonized
patients receiving antibiotics).

487B. Impact of targeted (vertical) control measures: screening of patients on ICU admission and 488 identification of patients who had positive screening results (patients surrounded be a shaded 489 box). Implementation of: 1) contact precautions (hand hygiene reduces the transmission from 490 identified ESBL-PE carriers to HCWs); 2) cohorting of identified ESBL-PE carriers and 491 attribution of a dedicated HCW (prevents the transmission from cohorted patients to other HCWs 492 and patients). Note that we included two categories of colonized patients: 1) who had false 493 negative admission screening results; 2) who had positive admission screening results (patients 494 surrounded by a shaded box).

Figure 2. Patient outcomes after one year under the different control strategies tested. (A) New
acquisitions (transmissions) of ESBL-PE per 100 admissions, (B) Total number of ESBL-PE
infections per 100 admissions in patients who: 1) acquired colonization in the ICU, and 2) those
who were already colonized at ICU admission.

500	Strategies are: (1) Base case (reference strategy with no control intervention and hand hygiene
501	compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to
502	80%/80%; (3) Hand hygiene improvement to 55%/80%; (4) Antibiotic reduction; (5) Screening
503	of all admissions and contact precautions for identified carriers; (6) Screening of all admissions
504	and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and antibiotic
505	reduction; (8) Hand hygiene improvement to 55%/80% and antibiotic reduction; (9) Screening of
506	all admissions, contact precautions with identified carriers and antibiotic reduction; (10)
507	Screening of all admissions, cohorting of identified carriers and antibiotic reduction.
508	
509	Figure 3. Cost-effectiveness plane showing the incremental health benefits (infections avoided)
510	and costs relative to the least expensive strategy (Strategy 2). Strategies 1, 3, 4, 5, 8, 9 are
511	dominated as they have both a worse outcome and a higher cost. The efficiency frontier (grey
512	line), joins Strategy 2 with more expensive and more efficient strategies (7 and 10). Strategy 6 is
513	extended to this frontier and excluded by the principle of extended dominance. The slope of the
514	efficiency frontier represents the incremental cost-effectiveness.
515	Strategies are: (1) Base case (reference strategy with no control intervention and hand hygiene
516	compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to
517	80%/80%; (3) Hand hygiene improvement to 55%/80%; (4) Antibiotic reduction; (5) Screening
518	of all admissions and contact precautions with identified carriers; (6) Screening of all admissions
519	and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and antibiotic
520	reduction; (8) Hand hygiene improvement to 55%/80% and antibiotic reduction; (9) Screening of
521	all admissions, contact precautions with identified carriers and antibiotic reduction; (10)
522	Screening of all admissions, cohorting of identified carriers and antibiotic reduction.
523	

1								
2 3 4	524	TABLES						
5 6	525	Table 1. Cost parameters, their sources and ranges for sensitivity analyses.						
7 8 9	526	Costs of control strategies were based on material and personnel. For example, the cost of the HH						
10 11	527	improvement strategy included the cost of HH (hand-rub and HCWs' time) and the cost of an						
12 13 14	528	infection control nurse working on the programme, i.e. HH education, observation and feedback.						
15 16	529							
18			Resource	<u>Cost (€^a)</u>	<u>Cost (€^a)</u>	<b>Source</b>	<b>Distribution</b>	
19 20 21				<u>mean</u>	<u>SD</u>			
22 23			ICU bed-day	1,583	226	AP-HP ^b	Gamma	
24 25	Universa	l strategies						
26 27	Hand hyd	tiene	Alcohol-based hand rub	0.011	0.0055	34,35	Gamma	
28 28			Alcohol-based hand tub	0.011	0.0055		Gamma	
29 30			HCW's time per hand hygiene	0.143	0.0714		Gamma	
31 32 33			Infection control nurse at half-	2,048 ^c	164	AP-HP ^b	Gamma	
34 time/month 35			time/month					
36 37 38	Antibioti	c stewardship	Infectious disease physician at half-	5,500 ^c	273	AP-HP ^b	Gamma	
39 40			time/month					
41 42	Targeted	strategies						
43	Screenin	n	Screening test + laboratory costs	40	20	35–37	Gamma	
44 45	Sereening	5	Screening test + laboratory costs	40	20		Gamma	
46 47	46 Contact precautions Alcohol-based hand rub 47		Alcohol-based hand rub	0.011	0.0055	34,35	Gamma	
⁴⁸ (= hand hygiene at HCW's time per hand hygiene		HCW's time per hand hygiene	0.143	0.0714		Gamma		
50 51 52	80%/80%	6 with						
53 54	identified	I ESBL-PE						
55 56 57	patients)							
58								
59 60							25	

1 2										
3 4 5 6 7 8 9	Cohorting (additional HCW + contact precautions)		Additional full-time HCW/month	3,598°	642	AP-HP ^b	Gamma			
10 11 12 13	) <u>-</u> 		Alcohol-based hand rub	0.0055	34,35	Gamma				
14 15 16	+ 5 5		HCW's time per hand hygiene	0.143	0.0714		Gamma			
17 18	530	^a 1€ = US \$0.9	4							
19 20	) 531	^b AP-HP: The	Assistance publique – Hôpitaux de Par	ris						
22 23	532	^c Cost of staff	from a hospital perspective (salary + e	mployer cont	ributions)					
24 25	533									
20 27 28	534									
29 30	535	535								
31 32 33	2									
34 35										
36 37	,									
38 39	; )									
40 41	)									
42 43	3									
44										
40	) ,									
40	)									
51 52	, ,									
53 54	<b>3</b>  -									
55 56	5									
57 58	, }									
59 60	)						26			

# **Table 2.** Results of cost-effectiveness analysis.

5								
6			Cost of	Cost of	Infections		Incremental	
7								
8			infections/	intervention/	due to	Incremental	effect (ΔE)	
9								
11	Number of ICU		100	100	ESBL-PE/	cost/100	(infections	ICER (∆C/∆E) (€
12							_	
13	admissions	Total cost/100	admissions	admissions	100	admissions (ΔC)	avoided/100	/ infection
14								
15 Strategy		admissions (€)	(€)	(€)	admissions	(€)	admissions)	avoided)
16								
1/ 2: HH 80%/80%	573	80 556	54 916	25 639	2.9	-	-	-
10								
20								
21								
22 7: HH 80%/80% + ATB reduction	581	88 498	51 840	36 657	2.7	7 941 ^a	0.1618 ^a	49 025°
23								
24 10: Screening + cohorting + ATB								
25								
26 reduction	584	94 313	50 058	44 255	2.6	5 815 ^b	0.0937 ^b	62 005 ^b
28								
29								
30								
31 3: HH 55%/80%	548	84 751	66 773	17 978	3.5			Dominated ^c
32								
33								
34								
35								
30 37								
38.6: Screening + cohorting	575	86 713	53 278	33 435	2.8			Dominated ^d
39	575	00710	55 270	55 155	210			Dominated
40 8. HH 55%/80% + ATB reduction	565	88 621	59 445	29 176	3.1			Dominated ^c
41	505	00 021	55 445	25 170	5.1			Dominated
42								
43								
44								27
40	Ганисск		4 m . //b m :	hmi com laita		in oo yhteel		
40 47	For peer	review only - h	ttp://pinjopen	i.omj.com/site/	about/guidel	mes.xntml		
48								

1 2									
3 4	Screeni	ing + contact precautions							
5 6 + 7	ATB red	uction	546	94 309	67 560	26 749	3.6		Dominated ^c
8 9									
10 ₅ 11	: Screeni	ing + contact precautions	519	96 716	81 582	15 134	4.3		Dominated $^{\circ}$
12 13 14									
15 4 15 4	ATB red	duction	528	100 128	77 641	22 486	4.1		Dominated ^c
17 <u>1</u> 18	Base ca	ise	498	105 344	94 792	10 552	5.0		Dominated ^c
19 20	537	^a Relative to strategy 2							
21 22	538	^b Relative to strategy 7							
23 24 25	539	^c Dominated: A strategy is	dominated wher	n it has higher co	ost and lower h	nealth benefit tl	nan another s	strategy.	
26 27	540	^d Dominated by extended	dominance: Strat	egy is dominate	d by extended	l dominance if t	he linear con	nbination of other strategies produces	
28 29	541	greater benefit at lower c	ost.						
30 31									
32 33									
34 35									
36 37									
38 39									
40 41									
42 43									
44 45									28
46 47			For peer	review only - h	ttp://bmjopen	.bmj.com/site/a	about/guidel	ines.xhtml	

48 ⊿0



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 34 6867

 **BMJ Open** 



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



Figure 2. Patient outcomes after one year under the different control strategies tested. (A) New acquisitions (transmissions) of ESBL-PE per 100 admissions, (B) Total number of ESBL-PE infections per 100 admissions in patients who: 1) acquired colonization in the ICU, and 2) those who were already colonized at ICU admission.

Strategies are: (1) Base case (reference strategy with no control intervention and hand hygiene compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to 80%/80%; (3) Hand hygiene improvement to 55%/80%; (4) Antibiotic reduction; (5) Screening of all admissions and contact precautions for identified carriers; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and antibiotic reduction; (8) Hand hygiene improvement to 55%/80% and antibiotic reduction; (9) Screening of all admissions, contact precautions with identified carriers and antibiotic reduction; (10) Screening of all admissions, cohorting of identified carriers and antibiotic reduction.

317x141mm (72 x 72 DPI)





Figure 3. Cost-effectiveness plane showing the incremental health benefits (infections avoided) and costs relative to the least expensive strategy (Strategy 2). Strategies 1, 3, 4, 5, 8, 9 are dominated as they have both a worse outcome and a higher cost. The efficiency frontier (grey line), joins Strategy 2 with more expensive and more efficient strategies (7 and 10). Strategy 6 is extended to this frontier and excluded by the principle of extended dominance. The slope of the efficiency frontier represents the incremental cost-effectiveness.

Strategies are: (1) Base case (reference strategy with no control intervention and hand hygiene compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to 80%/80%; (3) Hand hygiene improvement to 55%/80%; (4) Antibiotic reduction; (5) Screening of all admissions and contact precautions with identified carriers; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and antibiotic reduction; (8) Hand hygiene improvement to 55%/80% and antibiotic reduction; (9) Screening of all admissions, contact precautions with identified carriers and antibiotic reduction; (10) Screening of all admissions, cohorting of identified carriers and antibiotic reduction.

352x211mm (72 x 72 DPI)

### **Supplementary material**

### **Supplementary Text S1**

Defining the objectives, scope and policy cont	ext of a model.				
Decision objective	To evaluate ESBL-PE control strategies				
Policy context	This analysis was used to support decision				
0	makers in choosing the best strategy for				
	controlling ESBL-PE				
Funding source	PREPS Program*, Inserm**				
Disease	ESBL-PE infections				
Perspective	Hospital perspective				
Target population	ICU patients				
Health benefits	Reduction in ESBL-PE infections				
Strategies	Universal strategies (hand hygiene				
	improvement or antibiotic reduction)				
	Targeted strategies (screening of patients on				
	ICU admission and contact precaution in				
	contact with carriers or cohorting)				
Resources/costs	Staff time working on the program, materials				
Time horizon	1 year				
*PREPS - French government's program on Care System Performance					
**Inserm- National Institute for Health and Medical Research					
#### **Transmission model**

We have used an extended version of a previously developed compartmental, dynamic, stochastic model to simulate the transmission of ESBL-PE in a hypothetical ICU with 10 single-bed rooms among patients through contacts with healthcare workers (HCWs)¹.

For each simulation, we introduced a single unidentified ESBL-PE carrier receiving antibiotics within the ward and simulated the ESBL-PE dynamics for one year. In this version of the model, following the first admitted colonized patient,  $\varphi$  was the fraction of admitted patients assumed to be colonized with ESBL-PE. Patients are discharged at rate  $\gamma$  or die at rate v but bed occupancy is assumed to be 100% (the population of patients in the ward is constant).

Patients may or may not receive antibiotics at admission; antibiotics are initiated during the patient's stay at rate  $\tau$  per day and antibiotics are discontinued at rate  $\theta$  per day.

In the model, all patients were classified as 1) uncolonized receiving antibiotics  $(S_{p,a})$  or not  $(S_{p,n})$ , 2) unidentified ESBL-PE carriers receiving antibiotics  $(C_{p,a})$  or not  $(C_{p,n})$  (Figure 1A). Antibiotics in the model acted in two ways: 1) increased the risk of becoming colonized for uncolonized patients receiving antibiotics; and 2) increased the risk of transmission from colonized patients receiving antibiotics.

Initially uncontaminated HCWs ( $S_h$ ) can become transiently contaminated (and go to the compartment  $C_h$ ) after contact with a colonized patient ( $C_{p,n}$  or  $C_{p,a}$ ).

#### **Transmission parameters**

Exposure to antibiotics has been associated with increased probability of colonization for uncolonized patients^{2,3} and of transmission from colonized patients to HCWs⁴. Thus, we hypothesized that: 1) the colonization probability after contact with a contaminated HCW was higher in patients on antibiotics than in untreated patients ( $b_{p,a} > b_{p,n}$ ), 2) the probability of contamination of an HCW through contact with a colonized patient was higher if the patient was treated with antibiotics ( $b_{h,a} > b_{h,n}$ ).

The model parameters and their values are presented in Supplementary Table 1.

#### **Model calibration**

The model was simulated stochastically. We calibrated the colonization and contamination parameters using Monte Carlo methods in order to reproduce the observed 12.9% acquisition rate in an ICU after a 6-month period⁵.

#### Mathematical model under targeted infection control measures

The model was modified to account for the effect of targeted control measures. To detect ESBL-PE carriers, we simulated the screening of patients at ICU admission. We assumed that the screening method had 95% sensitivity and 100% specificity. Thus in the model, all patients were classified as 1) uncolonized receiving antibiotics ( $S_{p,a}$ ) or not ( $S_{p,n}$ ), 2) unidentified ESBL-PE carriers receiving antibiotics ( $C_{p,a}$ ) or not ( $C_{p,n}$ ), and 3) identified ESBL-PE carriers receiving antibiotics ( $I_{p,a}$ ) or not ( $I_{p,n}$ ) (**Figure 1B**).

The transmission parameter  $\beta$  depends on the rate of HCW visits followed by contacts with the patient (*a*), the probability of ESBL-PE bacteria transmission per infectious contact (*b*_{...}), and the compliance with hand hygiene (HH) (*p_p* and *p_h*).

The risk of transmission from an unidentified ESBL-PE carrier to n HCW might differ from that of an identified ESBL-PE carrier, because of the implementation of targeted control measures. Firstly, we modelled the implementation of contact precautions (improvement of HH) in contacts with identified ESBL-PE carriers. HH for other patients was maintained at baseline level. The transmission parameters were defined as follows:

 $\beta_{p,a} = a \cdot b_{p,a} \cdot (1 - p_p)$  $\beta_{p,n} = a \cdot b_{p,n} \cdot (1 - p_p)$ 

 $\beta_{h,a} = a \cdot b_{h,a} \cdot (1 - p_h)$  $\beta_{h,n} = a \cdot b_{h,n} \cdot (1 - p_h)$ 

 $\beta_{h,a,I} = a \cdot b_{h,a,I} \cdot (1 - p_{h,Is})$  $\beta_{h,n,I} = a \cdot b_{h,n,I} \cdot (1 - p_{h,Is})$ 

Transmission from contaminated HCWs to uncolonized patients (receiving antibiotics or not)

Transmission from non-identified, colonized patients (receiving antibiotics or not) to HCWs

Transmission from identified, colonized patients (receiving antibiotics or not) to HCWs

Secondly, we modelled the introduction of a dedicated HCW to interact only with identified,

 $\beta_{h,n} = a \cdot b_{h,n} \cdot (1 - p_h)$ 

 $\beta_{h,a,I}=0$ 

 $\beta_{h.n.l} = 0$ 

colonized patients. The transmission parameters were defined as follows:  $\beta_{p,a} = a \cdot b_{p,a} \cdot (1 - p_p)$   $\beta_{p,n} = a \cdot b_{p,n} \cdot (1 - p_p)$ Transmission from contaminated HCWs to uncolonized patients (receiving antibiotics or not)  $\beta_{h,a} = a \cdot b_{h,a} \cdot (1 - p_h)$ Transmission from non-identified, colonized patients (receiving antibiotics or not) to HCWs

> Transmission from identified, colonized patients (receiving antibiotics or not) to HCWs (other than the dedicated HCW)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

Once colonized, patients do not clear ESBL-PE colonization before discharge. HCWs are transiently contaminated and they become decontaminated either by performing HH or after a mean waiting time of one hour.

#### **Model parameters**

The model parameters and their values are presented in **Supplementary Table 1**. Parameter values were derived from multicentre studies if available, and by default based on best evidence from the literature or expert opinion.

We modelled an ICU with 10 single-rooms with continuous presence of 6 HCWs⁶. We assumed 100% bed occupancy. Consequently, a shorter length of stay (LOS) implies a higher turnover and possible admission of colonized patients⁷. As reported recently, the ICU LOS of ESBL-PE carriers is longer (13 days) than uncolonized patients (5 days)⁸. The extended LOS in ESBL-PE carriers increases the colonization pressure in the ICU, consequently increasing the risk of cross-transmission.

When targeted control strategies were used, colonization was detected using a screening method assuming that the time between collection of specimens and reporting results to the ward was less than 1 day. We assumed that the sensitivity of the screening method was 95%⁹. Screening results had 100% specificity.

#### **Costs of control strategies**

We estimated the costs of control strategies over the one-year simulation period. See **Table 1** for details on cost parameters. The cost of the base case strategy (reference strategy) was considered

to be the cost of HH at baseline level, namely cost of the alcohol-based hand rub and costs associated with the time HCWs required for hand disinfection.

As reported recently, the highest cost of an HH program arose from the time people spent working on the program¹⁰. We therefore assumed that the cost of an HH improvement strategy included the cost of HH (hand-rub and HCWs' time) and the cost of an infection control nurse working on the program, i.e. HH education, observation and feedback^{10,11}. We assumed that improving hand HH compliance to 55/80% and to 80/80% required respectively a quarter and a half of the working time of an infection control nurse. In accordance with staffing practices common in the European Union, we assumed that one staff position requires the recruitment of three nurses¹².

Antibiotic stewardship programs (ASPs) have proven efficient in reducing antibiotic use and antibiotic duration in hospitals^{13,14}. Interventions included in ASPs require additional resources associated with higher costs¹⁵. One of the resources needed and associated with the highest costs is the staff time¹⁶. We calculated the cost of an action to reduce antibiotic use as the cost of a half-time infectious disease physician working on the ASP. The cost of antibiotics is considered to be marginal and was not considered in our study¹⁴.

The cost of screening was first based on the cost of testing materials and on the cost of laboratory technician time. For the strategy in which screening at admission was combined with contact precautions for identified ESBL-PE carriers, we also included the cost of contact precautions such as the cost of improved HH (i.e. the cost of the alcohol-based hand rub), and the costs associated with the time HCWs required for hand disinfection. Here we did not consider the cost

of an infection control nurse. We hypothesized that knowing that the patient is an ESBL-PE carrier, HCWs would adhere more easily to HH.

For the strategy in which screening on admission was combined with cohorting of identified ESBL-PE patients, the cost of cohorting was the cost of contact precautions and the cost of additional HCWs caring for cohorted patients. For screening interventions, the cost of HH in non-carriers and unidentified carriers was considered to be identical to the costs of the baseline level.

#### Cost of hospital-acquired infections

The mean cost of an ICU bed-day was estimated at  $\notin 1,583$  (based on the average amount paid in 2015 for ICUs in Paris public hospitals (AP-HP). This amount is based on French Diagnosis-Related Groups and complementary revenues specific to ICU units and divided by the mean length of stay in ICUs in 2015¹⁷. Based on published reports, the cost per day of a patient with ESBL-PE infection was 50% higher than the cost of an uninfected patient ^{18,19}. The cost of an ESBL-PE infection was estimated using the ESBL-PE-attributable LOS and the cost of a hospital bed-day for infected patients^{20,21}.

#### Model simulations and outcomes

Simulations of the model were performed using Gillespie's method and programmed in C++ language. The outcomes were calculated after a period of 1 year and averaged over the 1,000 Monte Carlo simulations. Cost-effectiveness analysis and graphics were performed in  $R^{22}$ .

#### TABLES

**Supplementary Table 1**. Base case values and ranges for probabilistic sensitivity analysis of input parameters used in the compartmental model of ESBL-PE transmission.

**Comment.** As can be seen, for some parameters the ranges for a sensitivity analysis are omitted (e.g.

d_{ATB,S}). This is because these parameters are specific to a strategy (e.g. Atb reduction) and must be fixed

in sensitivity analysis to allow the comparison of outcomes with other strategies.

				Sensitiv	ity analysis
Parameter	Description	Value	Source	Range	Distribution
N _p	Number of beds	10	23		
N _h	Number of HCWs	6	24		
	Number of HCW visits	9			
Cp	associated with at least one	81	25–27	13.8 ²⁸ -	triangular (peak
	aseptic contact per patient			160 ^{25,29,30}	at 81)
	per day		2		
	Number of HCW visits		C		
а	associated with at least one	13.5	c _p /N _h	5	
	aseptic contact per HCW per				
	day				
	Colonization probability for				
b _{p,n}	patients not receiving	0.0127	Calibrated,	0-0.1	triangular (peak
	antibiotics		consistent with		at 0.0127)
	Colonization probability for		data from⁵		
b _{p,a}	patients receiving antibiotics	0.0530		b _{p,n} -0.5	uniform

		Probability of contamination				
	b _{h,n}	of an HCW with ESBL-PE	0.0379	Calibrated,	0-0.6	triangular (peak
		during a contact with a		consistent with		at 0.0379)
		colonized patient not		data from⁵		
		receiving antibiotics				
		Probability of contamination				
	$b_{h,a}$	of an HCW during a contact	0.3198	Calibrated,	b _{h,n} -0.8	uniform
		with a colonized patient		consistent with		
		receiving antibiotics		data from 5		
	$d_s$	Mean length of stay of	5	8	3-9 ⁸	triangular (peak
		uncolonized patients (days)				at 5)
	$d_C$	Mean length of stay of	13	8	6-26 ⁸	triangular (peak
		colonized patients (days)				at 13)
				0		
	$d_{Is}$	Mean length of stay of	13	8	6-26 ⁸	triangular (peak
		isolated patients (days)				at 13)
	γs	Discharge rate of	0.2	1/d _s		
		uncolonized patients (/day)				
	γc	Discharge rate of colonized	0.0154	1/d _c		
		patients (/day)				
	ν	Death rate of patients (/day)	0.0027	8	0.00135-	triangular (peak
					0.0054	at 0.0027)
L						

	Natural decontamination				
	rate for HCW (i.e. not by	24	28,31	10 40	triangular (pack
$\mu_0$	rate for HCW (I.e. not by	24		12-48	triangular (peak
	hand hygiene) (/day)				at 24)
ψ	Prevalence of antibiotic	0.56	32,33	0.2-0.9	triangular (peak
	therapy among admitted				at 0.56)
	natients				
τ	Antibiotic initiation rate	0.1	assumed	0.05-0.2	triangular (peak
	(/day)				at 0.1)
d _{ate s}	Antibiotic therapy duration	8	33		
	for uncolonized natients				
	(days)				
d _{ATB,C}	Antibiotic therapy duration	18	33		
	for colonized patients (days)		- 4		
	Antibiotic therapy				
A.	discontinuation rate for	0 125	1/dATB-		
Us		0.125	L/UATDS		
	uncolonized patients (/day)				
	Antibiotic therapy				
θ _c	discontinuation rate for	0.05556	1/dATB _c		
	colonized patients (/day)				
	Probability of hand hygiene				
		0.55	34		
p _p	before contact with patient	0.55			
	(uncolonized or colonized				

Page 45 of 67

	unidentified)				
	Probability of hand hygiene				
p _h	after contact with	0.6	34		
	patient(uncolonized or				
	colonized unidentified)				
p _{pls}	Probability of hand hygiene	0.8	assumed		
	before contact with isolated				
	patient				
p _{hls}	Probability of hand hygiene	0.8	assumed		
	after contact with isolated				
	patient				
φ	Prevalence of ESBL-PE	0.15	20	0.07-0.3	triangular (peak
	carriage among admitted				at 0.15)
	patients		4.		
pı	Probability of infection in	0.164	8	0.08- 0.32	triangular (peak
	colonized patient				at 0.164)
			C		
				2	
dı	Mean length of stay of	13	8	6-29 [12]	triangular (peak
	infected patients (days)				at 13)
Sb	Sensitivity of the screening	95	9		
	method (%)				
Sp	Specificity of the screening	100	assumed		
	method (%)				

# REFERENCES

- Pelat C, Kardaś-Słoma L, Birgand G, *et al.* Hand Hygiene, Cohorting, or Antibiotic Restriction to Control Outbreaks of Multidrug-Resistant Enterobacteriaceae. *Infect Control Hosp Epidemiol* 2016; 37: 272–80.
- 2 Nicolas-Chanoine M-H, Jarlier V, Robert J, *et al.* Patient's origin and lifestyle associated with CTX-Mproducing Escherichia coli: a case-control-control study. *PloS One* 2012; 7: e30498.
- 3 Colodner R, Rock W, Chazan B, *et al.* Risk factors for the development of extended-spectrum betalactamase-producing bacteria in nonhospitalized patients. *Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol* 2004; 23: 163–7.
- 4 D'Agata EMC, Webb G, Horn M. A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci. *J Infect Dis* 2005; **192**: 2004–11.
- 5 Derde LPG, Cooper BS, Goossens H, *et al.* Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial. *Lancet Infect Dis* 2014; 14: 31–9.
- 6 French Ministry, of Health website. Décret n°2002-466 du 5 avril 2002 relatif aux conditions techniques de fonctionnement auxquelles doivent satisfaire les établissements de santé pour pratiquer les activités de réanimation, de soins intensifs et de surveillance continue et modifiant le code de la santé publique (troisième partie : Décrets simples). 2002.
- 7 Cooper BS, Medley GF, Scott GM. Preliminary analysis of the transmission dynamics of nosocomial infections: stochastic and management effects. *J Hosp Infect* 1999; **43**: 131–47.
- 8 Barbier F, Pommier C, Essaied W, *et al.* Colonization and infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in ICU patients: what impact on outcomes and carbapenem exposure? *J Antimicrob Chemother* 2016; **71**: 1088–97.
- 9 Chavada R, Maley M. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections. *Open Microbiol J* 2015; **9**: 125–35.
- 10 Page K, Barnett AG, Campbell M, *et al.* Costing the Australian National Hand Hygiene Initiative. J Hosp Infect 2014; **88**: 141–8.
- 11 World Health Organization. WHO Guidelines on Hand Hygiene in Health Care. 2009. http://apps.who.int/iris/bitstream/10665/44102/1/9789241597906_eng.pdf (accessed Sept 6, 2016).
- 12 Ferrer J, Boelle P-Y, Salomon J, *et al.* Management of nurse shortage and its impact on pathogen dissemination in the intensive care unit. *Epidemics* 2014; **9**: 62–9.
- 13 Davey P, Brown E, Charani E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. *Cochrane Database Syst Rev* 2013; : CD003543.

#### BMJ Open

- 14 Rimawi RH, Mazer MA, Siraj DS, Gooch M, Cook PP. Impact of regular collaboration between infectious diseases and critical care practitioners on antimicrobial utilization and patient outcome. *Crit Care Med* 2013; **41**: 2099–107.
  - 15 Dik J-WH, Vemer P, Friedrich AW, *et al.* Financial evaluations of antibiotic stewardship programs-a systematic review. *Front Microbiol* 2015; **6**: 317.
  - 16 Page K, Graves N, Halton K, Barnett AG. Humans, 'things' and space: costing hospital infection control interventions. *J Hosp Infect* 2013; **84**: 200–5.
  - 17 Assistance publique Hôpitaux de Paris (AP-HP). Base de données PMSI. 2015.
  - 18 Vasudevan A, Memon BI, Mukhopadhyay A, Li J, Tambyah PA. The costs of nosocomial resistant gram negative intensive care unit infections among patients with the systemic inflammatory response syndrome- a propensity matched case control study. *Antimicrob Resist Infect Control* 2015; **4**: 3.
  - 19 MacVane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum β-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. *J Hosp Med* 2014; **9**: 232–8.
  - 20 Razazi K, Derde LPG, Verachten M, Legrand P, Lesprit P, Brun-Buisson C. Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. *Intensive Care Med* 2012; **38**: 1769–78.
  - 21 Viau R, Frank KM, Jacobs MR, *et al.* Intestinal Carriage of Carbapenemase-Producing Organisms: Current Status of Surveillance Methods. *Clin Microbiol Rev* 2016; **29**: 1–27.
  - 22 R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (accessed Sept 15, 2016).
  - 23 The French Intensive Care Society. SRLF. http://www.srlf.org/en/the-french-intensive-care-society/ (accessed Sept 15, 2016).
  - 24 French Ministry, of Health website. Décret n° 2002-466 du 5 avril 2002 relatif aux conditions techniques de fonctionnement auxquelles doivent satisfaire les établissements de santé pour pratiquer les activités de réanimation, de soins intensifs et de surveillance continue et modifiant le code de la santé publique (troisième partie : Décrets simples). 2002.
  - 25 Steed C, Kelly JW, Blackhurst D, *et al.* Hospital hand hygiene opportunities: where and when (HOW2)? The HOW2 Benchmark Study. *Am J Infect Control* 2011; **39**: 19–26.
  - 26 Beggs CB, Noakes CJ, Shepherd SJ, Kerr KG, Sleigh PA, Banfield K. The influence of nurse cohorting on hand hygiene effectiveness. *Am J Infect Control* 2006; **34**: 621–6.
  - 27 Guyot, J.M. Etude sur l'évaluation des pratiques dans le cadre de la lutte contre les infections nosocomiales sur les « frictions hydro-alcooliques par spécialités médico-chirurgicales ». Lot n°2 : Enquête sur le nombre d'opportunités d'hygiène des mains par spécialité médico-chirugicale: 2008.
  - 28 Austin DJ, Bonten MJ, Weinstein RA, Slaughter S, Anderson RM. Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. *Proc Natl Acad Sci U S A* 1999; **96**: 6908–13.

29 McArdle FI, Lee RJ, Gibb AP, Walsh TS. How much time is needed for hand hygiene in intensive care? A prospective trained observer study of rates of contact between healthcare workers and intensive care patients. *J Hosp Infect* 2006; **62**: 304–10.

- 30 Scheithauer S, Haefner H, Schwanz T, *et al.* Compliance with hand hygiene on surgical, medical, and neurologic intensive care units: direct observation versus calculated disinfectant usage. *Am J Infect Control* 2009; **37**: 835–41.
- 31 Sypsa V, Psichogiou M, Bouzala G-A, Hadjihannas L, Hatzakis A, Daikos GL. Transmission dynamics of carbapenemase-producing Klebsiella pneumoniae and anticipated impact of infection control strategies in a surgical unit. *PloS One* 2012; 7: e41068.
- 32 REA-Raisin network. Surveillance des infections nosocomiales en réanimation adulte / 2012 / Maladies infectieuses / Rapports et synthèses / Publications et outils / Accueil. http://invs.santepubliquefrance.fr/Publications-et-outils/Rapports-et-syntheses/Maladies-infectieuses/2012/Surveillance-des-infections-nosocomiales-en-reanimation-adulte (accessed Sept 15, 2016).
- 33 Robert J, Péan Y, Varon E, *et al.* Point prevalence survey of antibiotic use in French hospitals in 2009. *J Antimicrob Chemother* 2012; **67**: 1020–6.
- 34 Venier AG, Zaro-Goni D, Pefau M, *et al.* Performance of hand hygiene in 214 healthcare facilities in South-Western France. *J Hosp Infect* 2009; **71**: 280–2.



**BMJ Open** 

#### 

# **Supplementary material**

# Supplementary Text S2- Sensitivity analyses

### 1. Impact of prevalence on admission on health outcomes and costs

The prevalence of ESBL-PE carriage on ICU admission highly influenced health outcomes and costs (**Supplementary Figure S1**) as well as the ranking of the strategies (**Supplementary Table S1**). However, improvement of HH to 80%/80% (Strategy 2) remained the most cost saving strategy, if the prevalence on admission was from 5% to 50%. If 50% of patients carried ESBL-PE on ICU admission, Strategy 2 was dominated by screening + cohorting (Strategy 6).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 **Figure S1** Impact of prevalence on admission on the number of ESBL-PE infections and total cost of strategies for: (1) Base Case (reference strategy with no control intervention and hand hygiene compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to 80%/80%; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and Antibiotic reduction; (10) Screening of all admissions, cohorting of identified carriers and Antibiotic reduction.



When the prevalence on admission was less than 15%, the improvement of hand hygiene to 80%/80% (Strategy 2) was the most cost-saving strategy. The second strategy on the efficiency frontier was the combination of hand hygiene 80%/80% with antibiotic reduction (Strategy 7). When the prevalence was 15%, the Strategy 10 (Screening + cohorting + ATB reduction) joined the efficiency frontier too. When the prevalence varied from 20% to 45%, Hand hygiene 80%/80% was always on the top of the ranking, followed by Screening + cohorting (Strategy 6) and Screening + cohorting + ATB reduction (Strategy 10). Finally, when 50% of patients carried ESBL-PE on ICU admission, hand hygiene was dominated by screening + cohorting (Strategy6).

Supplementary Table S1. Results of sensitivity analysis. Cost-effectiveness of strategies under different levels of ESBL-PE carriage on admission. The prevalence on admission varied from 0.05 to 0.5.

		Total cost/		Incremental	Incremental effect (AF)	
	Prevalence	100	Infections/	cost/100	(infections	
	on	admissions	100	admissions	avoided/100	
Strategy	admission	(€)	admissions	(∆C) (€)	admissions)	ICER ( $\Delta C/\Delta E$ ) ( $\notin$ / infection avoided)
2: Hh 80%/80%	0.05	41 225	1.01			
7: Hh 80%/80% + ATB reduction		49 639	0.94	8 414	0.07	122 909
6: Screening + cohorting		51 542	1.09			Dominated
10: Screening + cohorting + ATB reduction		58 218	0.94			Dominated by extended dominance
1: Base case		60 031	2.68			Dominated
2: Hh 80%/80%	0.15	80 556	2.89			
7: Hh 80%/80% + ATB reduction		88 498	2.73	7 942	0.16	49 055
10: Screening + cohorting + ATB reduction		94 313	2.63	5 815	0.09	62 005
6: Screening + cohorting		86 713	2.80			Dominated by extended dominance
1: Base case		105 344	4.99			Dominated

Page	52	of	67
------	----	----	----

2: Hh 80%/80%	0.2	98 843	3.77			
6: Screening + cohorting		103 075	3.61	4 232	0.16	26 631
10: Screening + cohorting + ATB reduction		112 565	3.49	9 490	0.12	77 958
7: Hh 80%/80% + ATB reduction		107 275	3.59			Dominated by extended dominance
1: Base case		123 231	5.90			Dominated
6: Screening + cohorting	0.5	201 668	8.43			
10: Screening + cohorting + ATB reduction		216 470	8.36	14 802	0.07	208 058
2: Hh 80%/80%		202 288	8.72			Dominated
1: Base case	6	210 957	10.35			Dominated
7: Hh 80%/80% + ATB reduction		215 102	8.54			Dominated

tion 215 102 8.54 Dominat

2. Impact of **probability of infection** in patients colonized with ESBL-PE.

Results of sensitivity analysis for a lower and higher probability of infection in colonized ESBL-PE patients versus the basecase analysis are

presented in Supplementary Table S2 A and B. Overall main results of our analysis were robust to variation in the probability of infection of

colonized patients (8% or 30% vs. 16% in our central analysis).

# Supplementary Table S2A Results of sensitivity analysis. Cost-effectiveness of strategies when the probability of infection was set at 0.08.

Strategy	Total cost/	Infections/	Incremental	Incremental	ICER ( $\Delta C/\Delta E$ ) ( $\in$ / infection avoided)
	100	100	cost/100	effect (∆E)	
	admissions	admissions	admissions	(infections	
	(€)		(∆C) (€)	avoided/100	
				admissions)	
3: Hh 55%/80%	50 550	1.71			
2: Hh 80%/80%	52 428	1.41	1 878	0.304	6 178
7: Hh 80%/80% + ATB reduction	61 945	1.33	9 517	0.079	120 468
10: Screening + cohorting + ATB reduction	68 673	1.29	6 728	0.046	146 261
5: Screening + contact precautions	54 930	2.10			Dominated
1: Base case	56 792	2.43			Dominated
8: Hh 55%/80% + ATB reduction	58 173	1.53			Dominated by extended dominance
6: Screening + cohorting	59 424	1.37			Dominated by extended dominance
9: Screening + contact precautions + ATB reduction	59 706	1.74			Dominated
4: ATB reduction	60 360	1.99			Dominated

# Supplementary Table S2B Results of sensitivity analysis. Cost-effectiveness of strategies when the probability of infection was set at 0.30.

Strategy	Total cost/ 100	Infections/	Incremental	Incremental	ICER ( $\Delta C/\Delta E$ ) ( $\in$ / infection avoided)		
	admissions (€)	100	cost/100	effect (ΔE)			
		admissions	admissions	(infections			
			(∆C) (€)	avoided/100			
				admissions)			
2: Hh 80%/80%	126 096	5.29					
7: Hh 80%/80% + ATB reduction	131 487	4.99	5 391	0.296	18 204		
10: Screening + cohorting + ATB	135 825	4.82	4 338	0.172	25 283		
reduction							
6: Screening + cohorting	130 896	5.13			Dominated by extended dominance		
8: Hh 55%/80% + ATB reduction	137 917	5.72			Dominated		
3: Hh 55%/80%	140 124	6.43			Dominated		
9: Screening + contact precautions +	150 335	6.50			Dominated		
ATB reduction							
5: Screening + contact precautions	164 370	7.85			Dominated		
4: ATB reduction	164 513	7.48			Dominated		
1: Base case	183 951	9.13			Dominated		

3. Impact of lower compliance with HH than in the base case scenario.

If the baseline compliance with HH was lower than in our core analysis, e.g. 20% before and 40% after patient contact, HH improvement, e.g. to

50%/60% was confirmed to be cost-saving. Screening + cohorting was the second strategy with an ICER of €3 236/infection avoided vs. HH

improvement (Supplementary Table S3).

Supplementary Table S3 Results of sensitivity analysis. Cost-effectiveness of strategies when the baseline compliance with Hand hygiene was set to 20%/40% (instead of 55%/60%).

Strategy	Total cost/ 100	Infections/	Incremental	Incremental	ICER (ΔC/ΔE) (€ / infection avoided)
	admissions (€)	100	cost/100	effect (ΔE)	
		admissions	admissions	(infections	
			(∆C) (€)	avoided/100	
				admissions)	
2: Hh 50%/60%	81 676	3.14			
6: Screening + cohorting	82 867	2.772	1 191	0.368	3 236
10: Screening + cohorting + ATB	91 134	2.632	8 267	0.14	59 050
reduction					
3: Hh 20%/60%	85 059	3.758			Dominated
8: Hh 20%/60% + ATB reduction	87 440	3.284			Dominated
7: Hh 50%/60% + ATB reduction	88 144	2.891			Dominated by extended dominance
9: Screening + contact precautions +	93 552	3.741			Dominated
ATB reduction					
4: ATB reduction	95 195	4.075			Dominated
5: Screening + contact precautions	97 350	4.571			Dominated
1: Base case Hh 20% 40%	100 905	5.02			Dominated

# 4. Impact of lower sensitivity to detect ESBL-PE carriage in screening strategies.

If the sensitivity to detect ESBL-PE on ICU admission was lower than in our core analysis and varied from 80% to 95%, HH 80%/80% (Strategy 2) and HH 80%/80% and antibiotic reduction (Strategy 7) always dominated the screening strategies (Strategy 6 and 10) (Supplementary Figure S2).

**Figure S2** Cost-effectiveness plane showing the incremental health benefits (infections avoided) and costs of screening and cohorting strategies relative to the Strategy 2. The sensitivity of detection of ESBL carriers at ICU admission in screening and isolation strategies varied from 80% to 95%.

Strategies are: (2) Hand hygiene improvement to 80%/80%; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and Antibiotic reduction; (10) Screening of all admissions, cohorting of identified carriers and Antibiotic reduction.



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table S4A Impact of infection control nurse's time working on the hand hygiene program and the level of hand hygiene achieved on model predictions compared to the Base case strategy. The cost-effective ratio (CER) was calculated when the hand hygiene strategy was more expensive but more effective that the base case.

Level of hand hygiene	Level of hand hygiene				
before contact with	after contact with	Mean increase in hand	Number of infections	Total cost /100	
patient (%)	patient (%)	hygiene from baseline (%)	/100 admissions	admissions (€)	CER (vs base case)
Base case					
55	60	-	4.99	105 344	-
ICN working on Hh progr	am at 1/4 time				
55	60	0.0	4.99	112 783	Hh strategy dominated by the Base case
60	60	2.5	4.65	106 497	3 433
55	65	2.5	4.64	106 366	2 965
60	65	5.0	4.29	99 722	Base case dominated by the Hh strategy
:	:	: .		:	Base case dominated by the Hh strategy
80	80	22.5	2.89	74 103	Base case dominated by the Hh strategy
ICN working on Hh strate	gy at 1/2 time		(0)		
55	60	0.0	4.99	120 222	Hh strategy dominated by the Base case
60	60	2.5	4.65	113 789	25 146
55	65	2.5	4.64	113 675	24 160
60	65	5.0	4.29	106 861	2 182
65	65	7.5	4.02	101 484	Base case dominated by the Hh strategy
:	:	:	:	:	Base case dominated by the Hh strategy
80	80	22.5	2.89	80 556	Base case dominated by the Hh strategy
ICN working on Hh strate	gy at full time				
55	60	0.0	4.99	135 100	Hh strategy dominated by the Base case
60	60	2.5	4.65	128 375	68 573
55	65	2.5	4.64	128 292	66 551

60	65	5.0	4.29	121 137	22 712
65	65	7.5	4.02	115 442	10 397
55	70	5.0	4.22	119 423	18 278
60	70	7.5	3.98	114 488	9 029
65	70	10.0	3.75	110 092	3 823
70	70	12.5	3.53	105 942	411
55	75	7.5	3.85	111 932	5 806
60	75	10.0	3.68	108 574	2 468
65	75	12.5	3.51	105 357	9
70	75	15.0	3.32	101 754	Base case dominated by the Hh strategy
					Base case dominated by the Hh strategy
80	80	22.5	2.89	93 462	Base case dominated by the Hh strategy



Supplementary Table S4B Impact of infection control nurse's time working on the hand hygiene strategy and the level of hand hygiene achieved on model predictions compared to the Screenig and cohorting strategy. The cost-effective ratio (CER) was calculated when the screening and cohorting strategy was more expensive but more effective that the hand hygiene.

Level of hand hygiene	Level of hand hygiene		Number of		
before contact with	after contact with	Mean increase in hand	infections/100	Total cost/100	
patient (%)	patient (%)	hygiene from baseline (%)	admissions	admissions (€)	CER (vs Hand hygiene strategy)
Screening and cohorting					
55 (with non cohorted	60 (with non				
patients)	cohorted patients)		2,80	86 713	
ICN working on Hh strategy	y at 1/4 time				
55	60	0,0	4,99	112 783	Hh strategy dominated by Screening and cohorting
:	:		:	:	Hh strategy dominated by Screening and cohorting
70	70	12,5	3,53	85 621	1 496
55	75	7,5	3,85	91 212	Hh strategy dominated by Screening and cohorting
60	75	10,0	3,68	88 104	Hh strategy dominated by Screening and cohorting
65	75	12,5	3,51	85 102	2 283
70	75	15,0	3,32	81 748	9 554
75	75	17,5	3,15	78 568	23 561
55	80	10,0	3,51	84 751	2 763
60	80	12,5	3,38	82 408	7 507
65	80	15,0	3,24	79 993	15 442
70	80	17,5	3,12	77 946	28 012
75	80	20,0	2,99	75 742	58 203
80	80	22,5	2,89	74 103	146 278
ICN working on Hh strategy	·				
55	60	0,0	4,99	120 222	Hh strategy dominated by Screening and cohorting
:	:	:	:	:	Hh strategy dominated by Screening and cohorting
75	75	17,5	3,15	85 136	4 561 €

55	80	10,0	3,51	91 498	Hh strategy dominated by Screening and cohorting
60	80	12,5	3,38	89 094	Hh strategy dominated by Screening and cohorting
65	80	15,0	3,24	86 608	Hh strategy dominated by Screening and cohorting
70	80	17,5	3,12	84 516	7 023 €
75	80	20,0	2,99	82 227	23 801 €
80	80	22,5	2,89	80 556	71 424 €
ICN working on Hh strategy	y at full time				
55	60	0,0	4,99	135 100	Hh strategy dominated by Screening and cohorting
:			:	:	Hh strategy dominated by Screening and cohorting
80	80	22,5	2,89	93 462	Hh strategy dominated by Screening and cohorting

80 22,5 2,89 93 462 Hh strategy dominated by Scru

**Supplementary Figure S3** Results of probabilistic sensitivity analysis. Cost-effectiveness plane shows the incremental health benefits (infections avoided) and costs for Screening and cohorting (Strategy 6), relative to horizontal strategies: A) Hand hygiene improvement to 80%/80% (Strategy 2); B) Hand hygiene improvement to 55%/80% (Strategy3); C) Antibiotic reduction (Strategy 4). The frequency that the Strategy 6 was in one of four quadrant of CE plane is represented by "p".



Worse outcome, lower cost, p= 0%

-2

-4

A)

-6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Incremental Benefits

Better outcome, lower cost, p= 9%



C)





**Supplementary Figure S4** Results of probabilistic sensitivity analysis. Cost-effectiveness plane shows the incremental health benefits (infections avoided) and costs for Screening and contact precautions (Strategy 5), relative to horizontal strategies: A) Hand hygiene improvement to 80%/80% (Strategy 2); B) Hand hygiene improvement to 55%/80% (Strategy3); C) Antibiotic reduction (Strategy 4). The frequency that the Strategy 6 was in one of four quadrant of CE plane is represented by "p".

A)



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml







# **BMJ Open**

# Universal or targeted approach to prevent the transmission of extended-spectrum beta-lactamase-producing Enterobacteriaceae in intensive care units? A costeffectiveness analysis

Journal:	BMJ Open				
Manuscript ID	bmjopen-2017-017402.R1				
Article Type:	Research				
Date Submitted by the Author:	01-Aug-2017				
Complete List of Authors:	Sloma, Lidia; Inserm UMR 1137, UMR 1137 – UFR de Médecine Paris 7 Denis Diderot Lucet, Jean-Christophe ; INSERM, UMR 1137 perozziello, anne; Inserm, UMR 1137 Pelat, Camille; Inserm, UMR 1137 Birgand, Gabriel; Assistance Publique - Hopitaux de Paris Ruppé, Etienne; Assistance Publique - Hopitaux de Paris Boelle, Pierre-Yves; INSERM UMR S 707, ; INSERM, U707 Andremont, Antoine; Assistance Publique - Hopitaux de Paris yazdanpanah, yazdan; INSERM, UMR 1137				
<b>Primary Subject Heading</b> :	Infectious diseases				
Secondary Subject Heading:	Epidemiology, Health economics, Public health, Intensive care, Health policy				
Keywords:	Infection control < INFECTIOUS DISEASES, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Cost-effectiveness				

SCHOLARONE[™] Manuscripts



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

1 Intended category: Research

# 2 Universal or targeted approach to prevent the transmission of 3 extended-spectrum beta-lactamase-producing *Enterobacteriaceae* in

# 4 intensive care units? A cost-effectiveness analysis

- Lidia Kardaś-Słoma, PhD;^{1,2}, Jean-Christophe Lucet, Prof; ^{1,2,3}, Anne Perozziello, MS;^{1,2},
  Camille Pelat, PhD;^{1,2}, Gabriel Birgand,PhD;^{1,2,3}, Etienne Ruppé, PhD;⁴, Pierre-Yves
  Boëlle,Prof;⁵, Antoine Andremont, Prof; ⁴ and Yazdan Yazdanpanah, Prof^{1,2,6}
- ¹ INSERM, Infection, Antimicrobials, Modelisation, Evolution (IAME), UMR 1137, F-75018
  Paris, France
- ²University of Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France
- ³ AP-HP, Bichat-Claude Bernard Hospital, Infection Control Unit, F-75018 Paris, France
- ⁴AP-HP, Bichat-Claude Bernard Hospital, Bacteriology Laboratory, F-75018 Paris, France
- ⁵ Sorbonne University, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology
- 14 and Public Health (IPLESP UMRS 1136), 75012, Paris, France
- ⁶AP-HP, Bichat-Claude Bernard Hospital, Infectious and Tropical Diseases Department, F-75018
- 16 Paris, France
- *Corresponding author:*
- 18 Lidia Kardaś-Słoma
- 19 University of Paris Diderot, Inserm-IAME, UMR 1137
- 20 16, rue Henri Huchard, 75018 Paris, France
- 21 E-mail address: <u>lidia.kardas@inserm.fr</u>

# 22 ABSTRACT

# **Objective**

Several control strategies have been used to limit the transmission of multidrug-resistant organisms in hospitals. However, their implementation is expensive and effectiveness of interventions for the control of extended-spectrum beta-lactamase–producing *Enterobacteriaceae* (ESBL-PE) spread is controversial. Here we aim to assess the cost-effectiveness of hospital-based strategies to prevent ESBL-PE transmission and infections.

#### 29 Design

Cost-effectiveness analysis based on dynamic, stochastic transmission model over a one-year
time horizon.

# 32 Patients and setting

Patients hospitalized in a hypothetical 10- bed intensive care unit (ICU) in a high-income
country.

# 35 Interventions

36 Base case scenario compared to 1) universal strategies (e.g. improvement of hand hygiene (HH)

37 among healthcare workers (HCWs), antibiotic stewardship), 2) targeted strategies (e.g. screening

38 of patient for ESBL-PE at ICU admission and contact precautions or cohorting of carriers) and 3)

39 mixed strategies (e.g. targeted approaches combined with antibiotic stewardship).

# 40 Main Outcomes and Measures:

41 Cases of ESBL-PE transmission, infections, cost of intervention, cost of infections, incremental

42 cost per infection avoided.

# 43 Results
#### **BMJ Open**

3 4 5 6 7 8 9 1112345678901222222222222223333333344423456789011234567890122222222222233333333345678901234567855555555555555555555555555555555555	~	
4 5 6 7 8 9 1 1 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	3	
56789111234567890112345678901222222222222222222222222222222222222	4	
5 6 7 8 9 111234567890122222222222222222333333333444234456789012234567890122345678901233456789012234567890122345678901223455555555555555555555555555555555555	÷	
6 7 8 9 11123456789012222222222222233333333444234567890112345678901222222222222333333333345678901234567855555555555555555555555555555555555	Э	
7 8 9 1 1 1 2 1 4 5 6 7 8 9 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	6	
7 8 9 101 123 4 5 6 7 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	-	
8 9 11123415678901222222222222222222222222222222222222	1	
9 9 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	8	
9 101 123 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 3 3 3	~	
10 11 20 12 22 22 22 22 22 22 22 22 22 22 22 22	9	
112345678901222222222222222222222222222222222222	10	
11234567890122222222222233333333456789011234456789012222222222233333333333444234456789012234565555555555555555555555555555555555		
12345678901222222222222222222222222222222222222	11	
13 14 15 16 17 18 19 22 22 22 22 22 22 22 22 22 22 22 22 22	12	
13 14 15 16 7 8 9 0 12 23 22 22 22 22 22 22 22 22 22 22 22 22	12	
145678922222222222233333333456789011222222222222333333333444234456789012234567855555555555555555555555555555555555	13	
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1/	
15 16 17 18 9 0 12 23 24 25 27 28 9 0 12 33 33 33 33 33 34 44 23 44 55 55 55 55 55 55 55 55 55 55 55 55	14	
16 17 19 22 22 22 22 22 22 22 22 22 22 22 22 22	15	
1789222222222223333333345678890142344567889012234567855555555555555555555555555555555555	16	
17 18 19 22 22 22 22 22 22 22 22 22 22 22 22 22		
18 20 22 22 22 22 22 22 22 22 22 22 22 22	17	
- 19 212222222222222222222222222222222222	18	
19 20 22 22 22 22 22 22 22 22 22 22 22 22	10	
20 22 22 22 22 22 22 22 22 22 22 22 22 2	19	
21 22 22 22 22 22 22 22 22 22 22 22 22 2	20	
21 22 22 22 22 22 22 22 22 22 22 22 22 2	20	
223 225 227 229 229 229 229 229 229 229 229 229	21	
23 23 22 22 22 22 23 33 33 33 33 33 33 3	22	
23 24 22 22 22 22 23 31 23 33 33 33 33 33 33 44 23 44 55 23 45 55 55 55 55 55 55 55 55 55 55 55 55	~~	
24 25 27 29 31 33 33 33 33 33 30 41 23 44 44 44 49 51 23 45 55 55 55 55 55 55 55 55 55 55 55 55	23	
- 25 22 22 22 22 23 33 23 33 33 33 33 33 34 44 23 44 54 23 44 55 55 55 55 55 55 55 55 55 55 55 55	24	
25 26 27 29 30 33 33 33 33 33 30 41 23 44 44 44 49 51 23 45 55 55 55 55 55 55 55 55 55 55 55 55		
26 27 29 30 32 33 33 33 33 30 41 42 44 44 49 51 23 45 55 55 55 55 55 55 55 55 55 55 55 55	25	
27 28 20 31 33 33 33 33 33 33 30 41 23 44 44 44 40 51 23 45 55 55 55 55 55 55 55 55 55 55 55 55	26	
27 28 29 31 33 33 33 33 33 30 41 23 44 44 44 40 51 23 45 55 55 55 55 55 55 55 55 55 55 55 55	20	
28 29 31 33 33 33 33 33 33 33 33 33 33 33 33	27	
29 30 32 33 33 33 33 33 33 33 33 33 33 33 33	28	
29 30 31 33 33 33 33 33 33 33 33 33 33 33 33	20	
30 31 32 33 35 36 37 38 30 41 23 44 45 46 78 90 12 34 55 55 55 55 55 55 55 55 55 55 55 55 55	29	
31 32 33 33 33 33 33 33 33 33 33 33 33 33	30	
31 32 33 33 33 33 33 33 33 30 41 42 44 44 44 49 51 23 45 55 55 55 55 55 55 55 55 55 55 55 55	00	
32 33 35 36 37 39 41 42 44 45 47 49 51 23 45 55 55 55 55 55 55 55 55 55 55 55 55	31	
33 33 35 36 37 39 41 42 44 44 46 48 90 51 23 45 55 55 55 55 55 55 55 55 55	32	
33 34 35 36 37 39 41 42 44 46 47 49 51 23 45 55 55 55 55 55 55 55 55 55 55	52	
34 35 36 37 38 40 42 44 44 46 47 49 51 23 45 55 55 55 55 55 55 55 55 55	33	
35 36 37 38 39 41 42 44 45 47 49 51 23 45 55 55 55 55 55 55 55 55 55 55 55	34	
35 36 37 39 41 42 44 45 47 49 51 53 45 55 57 55 57 58	54	
36 37 39 40 41 42 44 45 47 49 51 52 54 55 55 55 55 55 55 55 55	35	
37 38 39 41 42 44 44 46 47 49 51 23 45 55 55 55 55 55 55 55 55 55 55	36	
37 38 39 41 42 44 45 46 47 49 51 23 55 55 55 55 55 55 55 55 55 55	50	
38 39 40 41 42 43 44 45 46 47 49 51 52 53 4 55 57 58	37	
39 40 41 42 43 44 45 47 49 51 53 55 55 55 55 55 55 55 55 55 55	20	
39 40 41 42 44 45 46 47 49 51 53 55 55 55 55 55 55 55 55 55 55 55	50	
40 41 42 43 44 45 46 47 49 51 53 55 55 55 55 55 55 55 55 55 55	39	
41 42 43 44 45 46 47 49 51 53 55 55 55 55 55 55 55 55 55	4∩	
41 42 43 44 45 47 48 49 51 52 53 4 55 55 57 58		
42 43 44 45 46 47 48 49 51 52 53 55 55 55 55 55 55 55 55	41	
43 44 45 46 47 49 51 53 55 55 55 55 57 58	42	
43 44 45 46 47 48 49 51 52 53 55 55 56 57 58	72	
44 45 46 47 48 49 51 52 53 54 55 56 57 58	43	
45 46 47 48 50 51 52 53 55 56 57 58	44	
45 46 47 48 49 50 51 52 53 55 56 57 58		
46 47 48 49 50 51 52 53 54 55 56 57 58	45	
47 48 49 50 51 52 53 54 55 56 57 58	46	
47 48 49 50 51 52 53 54 55 56 57 58		
48 49 50 51 52 53 54 55 56 57 58	47	
49 50 51 52 53 54 55 56 57 58	48	
49 50 51 52 53 54 55 56 57 58	-10	
50 51 52 53 54 55 56 57 58	49	
50 51 52 53 54 55 56 57 58	50	
51 52 53 54 55 56 57 58	50	
52 53 54 55 56 57 58	51	
53 54 55 56 57 58	52	
53 54 55 56 57 58	52	
54 55 56 57 58	53	
55 56 57 58	51	
55 56 57 58	54	
56 57 58	55	
57 58	56	
57 58	50	
58	57	
00	58	
59	59	
~~	60	
121 Y	nU	

In the base case scenario, 15 transmissions and 5 infections due to ESBL-PE occurred per 100 44 ICU admissions, representing a mean cost of €94 792. All control strategies improved health 45 outcomes and reduced costs associated with ESBL-PE infections. The overall costs (cost of 46 intervention and infections) were the lowest for HH compliance improvement from 55%/60% 47 before/after contact with a patient to 80%/80%. 48 Two strategies required higher investments than the HH programme, but also improved health 49 benefits; 1) HH improvement to 80%/80% combined with antibiotic stewardship and 2) screening 50 and cohorting strategy combined with antibiotic stewardship. 51 Conclusions 52 Improved compliance with HH was the most cost-saving strategy to prevent the transmission of 53 ESBL-PE. Antibiotic stewardship was not cost-effective. However, adding antibiotic restriction 54 strategy to HH or screening and cohorting strategies slightly improved their effectiveness and 55 56 may be worthy of consideration by decision-makers'. 57 Strength and limitations of this study 58 We used a dynamic transmission model to take into account that the risk of colonization 59 in the ICU depends on the number of ESBL-PE carriers and could change over time. 60 Parameters used in the model were derived from recent multicentre studies. 61 We undertook sensitivity analyses to show the impact of uncertainty in parameter 62 estimation and the impact of model assumptions on the conclusions. 63 Direct HCW-to-HCW transmissions as well as environmental contamination were not 64 included in the model. 65 66 3

# 67 INTRODUCTION

The incidence of infection and colonization with extended-spectrum beta-lactamase-producing *Enterobacteriaceae* (ESBL-PE) has increased worldwide¹⁻⁴. In Europe, in 2014, the percentage of *Escherichia coli* and *Klebsiella pneumoniae* resistant to 3rd generation cephalosporins in invasive isolates was 12% and 23%, respectively¹. A similar trend was observed in the United States, although with large variations between states².

In hospital settings, ESBL-PE acquisition is mainly due to indirect transmission between patients with the hands of healthcare workers (HCWs) as vectors⁵. Increased prevalence of colonization augments the risk of acquiring ESBL-PE infection⁶. Such infections represent a serious socioeconomic burden and are associated with a raised mortality, more frequent hospital admissions in comparison with non-carriers, and additional costs⁷.

Many interventions have been proposed to limit the transmission of multidrug-resistant organisms (MDROs) in hospitals. They can be classified as either 1) a 'universal' or 'horizontal' approach, applied to all patients e.g. improvement of hand hygiene (HH) among HCWs or antibiotic stewardship or 2) a 'targeted' or 'vertical' approach, e.g. screening and isolation of asymptomatic carriers in addition to infected patients, with the aim of identifying carriers and implementing measures to prevent the transmission from carriers to other patients⁸.

There is general agreement that HH reduces the transmission of MDROs, especially MRSA⁶. However, few studies have evaluated the impact of HH on the prevention of ESBL-PE dissemination and they have provided conflicting results^{9,10}. The effectiveness of targeted measures in controlling the spread of MDROs, and especially ESBL-PE, remains controversial. This approach is mainly recommended in high-risk units, e.g. intensive care units (ICUs)¹¹.

#### **BMJ Open**

The implementation of interventions with demonstrated effectiveness in reducing ESBL-PE infections is associated with costs that are generally supported by hospitals. However, when evaluating implementation of an infection prevention programme, one should also take into account savings associated with these interventions, but this has been largely ignored in previous studies.

In this study, we used a mathematical model to evaluate the effectiveness and cost-effectiveness of universal and targeted control strategies for the prevention of ESBL-PE transmission in an ICU in a high-income country. 

#### **METHODS**

The model

We extended a previously described stochastic, compartmental and dynamic model of ESBL-PE transmission¹² to assess the economic impact of infection control strategies implemented in a hypothetical, ICU setting. We run the model over a one-year to capture all costs and health effects relevant to implemented control strategies. 

The model simulated the spread of ESBL-PE among patients through contacts with HCWs in an

ICU, taking into account hospital admissions and discharges of patients, antibiotic exposure, and

control interventions (Figure 1). 

The Supplementary Text S1 provides details of the model and its assumptions. 

#### Model simulations and outcomes

Simulations of the model were performed using Gillespie's method and programmed in C++ language. The outcomes (cases of ESBL-PE transmission, infections, cost of intervention, cost of 

2
3
4
5
6
7
8
à
10
10
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
24
25
20
26
27
28
29
20
30
31
32
33
34
25
30
36
37
38
39
10
4U
41
42
43
44
15
40
46
47
48
49
50
50
51
52
53
54
55
55
90
57
58
59
60
00

infections) were calculated after a period of 1 year and averaged over the 1,000 Monte Carlo
simulations. Cost-effectiveness analysis and graphics were performed in R¹³.

113

1

### 114 Base case scenario

In the base case scenario, with no control intervention, we considered that compliance with hand hygiene before/after contact with a patient was 55%/60% respectively¹⁴ and 56% of patients received antibiotics at ICU admission¹⁵.

118 Infection control strategies

119

### 120 Universal approaches

We evaluated control strategies implemented in all patients (independently of their colonization status), that comprised one or both of the following interventions: 1) improved compliance with HH, and 2) antibiotic stewardship. For HH, we considered different levels of compliance. First, compliance with HH before/after contact with a patient was improved from 55%/60% at baseline to 55%/80% or 80%/80%. Second, antibiotic stewardship resulted in halving the proportion of patients on antibiotics at ICU admission and in reducing by 25% the duration of antibiotic treatment.

128

#### 129 Targeted approaches

We evaluated 2 strategies that combined screening of patients for ESBL-PE at ICU admission and one of the following interventions implemented: 1) contact precautions (improved compliance with HH before/after contact with carriers to 80%/80%); or 2) cohorting of ESBL-PE

#### **BMJ Open**

2		
3 4	133	carriers with dedicated HCWs. HH compliance for other patients was maintained at baseline
5	42.4	11
6	134	level.
7 8 9	135	Mixed approaches
10 11	136	We evaluated two strategies combining the targeted approaches with antibiotic stewardship.
12 13 14	137	
15 16	138	Model parameters
17 18 19	139	Model parameters and their values are presented in Supplementary Table 1.
20 21	140	Based on recent French data, we assumed that 15% of patients were colonized with ESBL-PE at
22 23 24	141	ICU admission ¹⁶ .
25 26	142	Infection status was not included in the model, so we estimated the number of infections by
27 28 20	143	multiplying the cumulated number of colonized patients after one year by the probability of
29 30 31	144	developing an infection during an ICU stay, set at 16.4% ¹⁷ . Even though this value came from a
32 33	145	recent large multicentre study, we also considered the impact of lower (8%) and higher (30%)
34 35 36	146	probability of infection in alternative analyses.
37 38	147	
39 40	148	Costs
41 42 43	149	The analysis was performed from a public hospital perspective. Cost estimates are based on
44 45	150	values reported in Euros from 2015 (1 $\in$ = US \$0.94). We considered the following costs in the
46 47 48	151	model: 1) costs of intervention (material resources and personnel costs), 2) costs of ESBL-PE
49 50	152	infections. The cost of an ESBL-PE infection was estimated using the ESBL-PE-attributable LOS
51 52	153	and the cost of a hospital bed-day for infected patients ^{16,18,19} . See <b>Table 1</b> for cost parameters and
53 54 55	154	Supplementary Text 1 for more details.
56 57 58 59	155	

## 156 <u>Cost-effectiveness evaluation</u>

To conduct the cost-effectiveness 20 , we estimated the costs associated with each intervention implemented, and the health benefits were related to the number of avoided cases of ESBL-PE infections. First, we determined whether any strategy was dominated by another in terms of costs and health benefits. Second, we determined whether any strategy was dominated through principles of extended dominance (i.e. whether the incremental cost-effectiveness ratios [ICERs]decrease as the strategies increases in  $cost^{20,21}$ ). Finally, for the non-dominated strategies, we calculated the incremental cost per case of infection avoided, which is the ratio of the difference in costs between two strategies to the difference in health benefits. This process produces an "efficient frontier" indicating more costly, but more effective strategies. 

### 167 <u>Sensitivity analysis</u>

We performed supplementary analyses to assess the impact of parameter uncertainty on the model's predictions. We first ran a univariate sensitivity analysis to evaluate the cost-effectiveness of strategies in settings with either low or high prevalence of patients colonized at admission (from 5% to 50%). We also considered the impact of a lower (8%) and a higher (30%) probability of infection in colonized patients. We then investigated the model assuming 1) a lower baseline compliance with HH (20%/40% or 40%/50%), 2) a lower sensitivity of the screening method used to detect ESBL-PE carriers at ICU admission, and 3) a lower, 30% reduction in antibiotic prescribing.

We also performed an analysis to explore the uncertainty in human time required in an HH programme and its potential effects. In this analysis, we varied the time an infection control nurse

#### **BMJ Open**

works on the programme (quarter-time, half-time or full-time) simultaneously with the level of
HH compliance achieved (from 55%/60% to 80%/80% before after contact).

Finally, we performed a probabilistic sensitivity analysis to explore the effect of joint uncertainty across parameters on the cost-effectiveness of universal vs targeted strategies. We varied the following parameters concurrently: 1) number of HCW contacts with patients, 2) transmission parameters, 3) length of stay of ICU patients, 4) natural decontamination rate for HCW, 5) antibiotic initiation rate, 6) prevalence of ESBL-PE carriage among patients admitted to the ICU, 7) death rate of patients, 8) probability of infection in colonized patients and 9) cost parameters. We randomly sampled values from each of the parameter distributions and calculated the mean costs and mean number of infections for each strategy (averaged over 1,000 simulations). 

# **RESULTS**

In the absence of control interventions (base case strategy), 15 new acquisitions (i.e. transmissions) and 5 infections due to ESBL-PE (those from new acquisitions and in patients colonized at admission) occurred per 100 admissions. Compared to the base case (Strategy 1), all strategies reduced ESBL-PE acquisition and infections within one year (**Figure 2**).

Among universal strategies, HH compliance improvement to 80%/80% (Strategy 2) was the most effective, resulting in a mean reduction to 2.9 acquired infections per 100 admissions. Among targeted strategies, screening of patients on admission and cohorting of carriers (Strategy 6) was the most effective strategy and resulted in a mean reduction to 2.8 infections per 100 admissions. Screening followed by contact precautions (Strategy 5) was the least effective in comparison with

all other options. Adding antibiotic stewardship to HH or targeted strategies only slightlyimproved their effectiveness.

## 204 Cost-saving analysis

In **Table 2** we present the estimated costs and outcomes over one year for all strategies. The mean total cost associated with the base case strategy was estimated at  $\notin 105 \ 344/100$  admissions, €94 792 of which was related to infections and €10 552 to interventions. Investments in infection prevention was always cost-saving because they avoided cases of ESBL-PE infections and thus costs associated with these infections. For instance, when HH compliance was improved to 80%/80%, the mean cost of the strategy implementation increased to  $\notin 25$  639/100 admissions, but the costs related to infections decreased to €54 916, resulting in an overall monetary benefit of €24 788/100 admissions in comparison with the base case. This strategy was associated with the highest savings within all evaluated strategies.

### 215 Cost-effectiveness analysis

HH compliance improvement to 80%/80% was the least expensive strategy. However, two strategies required higher investments than the HH programme, but also improved health benefits. To help choose between strategies we calculated the incremental cost-effectiveness ratio (Figure 3). The ICER of HH improvement to 80%/80% and antibiotic stewardship (Strategy 7) vs. HH compliance improvement to 80%/80% was estimated at €49 055/avoided infection (Table 2). The ICER of screening, cohorting and antibiotic stewardship (Strategy 10) vs. HH improvement to 80%/80% and antibiotic stewardship was estimated at €61 994/avoided infection. Other strategies were dominated (more expensive and less effective).

1		
2 3 4	224	
5 6 7	225	Sensitivity analysis
7 8 9	226	Findings from sensitivity analysis showed the robustness of predictions to: 1) the lower/higher
10 11 12	227	prevalence of ESBL-PE carriage on ICU admission,2) the lower/higher probability of infections
12 13 14	228	in colonized patients,3) the baseline compliance with HH lower than in our core analysis
15 16	229	(20%/40% or 40%/50%), 4) the lower sensitivity to detect ESBL-PE carriers at ICU admission,
17 18 19	230	and 5) the 30% reduction in antibiotic prescribing, Results of this analysis are shown in
20 21	231	Supplementary Text 2 (Figure S1 and Table S1, Table S2A and B, Table S3, Figure S2 and
22 23	232	Table S4).
24 25 26	233	
27 28	234	In a second sensitivity analysis, we focused on human time and performance to improve HH
29 30	235	compliance. If an infection control nurse was assumed to work quarter-time, half-time or full-
31 32 33	236	time on the programme, the HH compliance had to increase by at least 5%, 7.5% or 15%,
34 35	237	respectively, to make the programme cost saving compared to the base case (Supplementary
36 37	238	Table S5A).
38 39 40	239	In comparison with the screening and cohorting strategy, the HH improvement was cost-saving
41 42	240	when an infection control nurse worked quarter-time or half-time on the programme, and HH
43 44 45	241	compliance increased by at least 12.5% or 17.5%, respectively. The screening and cohorting
45 46 47	242	strategy dominated the HH improvement programme when an infection control nurse was
48 49	243	working full-time on the programme (Supplementary Table S5B).
50 51 52	244	

Finally, the probabilistic sensitivity analysis showed that improvement of HH to 80%/80% (Strategy 2) was less expensive than the screening and cohorting intervention (Strategy 6) in 91% 

of simulations. Among them, in 42% of simulations, the HH strategy was less expensive but more effective (dominated the Strategy 6), and in 49% of runs the screening and cohorting was more effective and more expensive (**Supplementary Figure S3**). Screening and contact precautions (Strategy 5) were always less effective than improvement of HH to 80%/80% (Strategy 2) (**Supplementary Figure S4**).

# 253 DISCUSSION

The impact of infection control strategies for preventing ESBL-PE transmission is controversial because clinical studies cannot account for the multiple confounding factors, notably both infection control measures and antibiotic stewardship. Despite several recent high-level interventional studies (Climo et al.²²; Derde et al.⁹; Huang et al.²³), the most effective and cost-effective interventions for controlling MDROs are still debated. Since the spread of ESBL-PE between patients is a dynamic and complex process, modelling can help for understanding the transmission mechanisms and deciding which intervention are to be preferred (Doan et al.²⁴; Grundmann et al.²⁵). 

Our model estimated the annual burden of ESBL-PE infections in a French ICU at €94 792 per 100 admissions in the base case strategy. Several prior studies have reported the cost of infections due to multidrug resistant organisms in the  $ICU^{26-29}$ . However, even though all authors underlined the high costs of infections, comparison between studies remains difficult. Estimated costs varied according to the country, but also to the population studied, e.g. patients with sitespecific or microorganism-specific infections. Moreover, the methods used to estimate the costs were not similar in all publications.

#### **BMJ Open**

In recent years, mathematical models have increasingly been used to study the cost-effectiveness of control strategies. For example, Robotham et al.³⁰compared a wide range of strategies to control MRSA transmission in ICUs and found that universal decolonization was the most costeffective option. In another study, Gidengil et al.³¹compared hospital strategies to prevent MRSA transmission and infections in an ICU. They confirmed that universal decolonization was the most cost-saving.

While decolonization regimens have been indicated as cost-effective for MRSA, only a few studies have examined the effect of decolonization on ESBL-PE carriage^{32,33}. These studies have shown that decolonization strategies might be efficacious only in the short-term. Moreover, they have reported the risk of emergence of resistance to antibiotics used for decolonisation, namely to colimycin, which is the last line effective therapy against carbapenemase-producing *Enterobacteriacae*³³. Thus, decolonization was not considered in our study.

Our study is the first to compare the effectiveness and the costs of universal and targeted control strategies in the context of the spread of ESBL-PE in ICUs. Our model predicted that improving HH to 80%/80% in contacts with all patients would prevent 83% of ESBL-PE acquisitions and avoid at least two out of five infections per 100 admissions. This strategy represented the most cost-saving, with a monetary benefit of €24 788 per 100 admissions.

The association between HH and reduction of MDROs infections has long been known and HH has been accepted as a crucial component of infection prevention³⁴. HH has in addition the benefit of being effective for reducing transmission of many resistant or susceptible bacteria³⁴. A recent publication reported that a programme designed to control MRSA by implementing universal components in addition to screening and contact precautions for MRSA carriers also

effectively reduced the incidence of resistant gram-negative bacteria, the most likely being ESBL-PE¹⁰. Thus, an HH programme designed to reduce ESBL-PE transmission may have positive effects on reducing the transmission of other microorganisms, and the overall economic benefit of an HH programme for the hospital might be greater than reported in our study.

Despite the confirmed effectiveness of HH and national and international recommendations, compliance with HH remains low and is often lower than values used in our base case analysis^{35,36}. Furthermore, improving HH compliance from 60% to 80% may be far more difficult and costly, challenging than improving from lower baseline level. However, we showed in a sensitivity analysis that improving HH remained the most cost-saving strategy even in a low baseline compliance scenario. Different strategies have been suggested to improve HH in hospitals³⁷, but the evidence-based approach is still lacking. Recently, a review ³⁸ concluded that a multimodal strategy proposed by the WHO and consisting of five components: 1) system change, 2) training and education, 3) observation and feedback, 4) reminders in the hospital, and 5) a hospital safety climate, was effective at increasing HH among HCWs. Moreover, the authors underlined that additional measures (e.g. reward incentives for reaching a certain level of compliance) could lead to further improvements. In our study, we assumed that a key component of an HH programme was a dedicated staff working on the programme (i.e. HH education, observation and feedback). We hypothesized, for example, that to improve HH compliance an infection control nurse working half-time would be sufficient. However, this assumption was based on expert opinion; we performed a sensitivity analysis to explore the uncertainty of the required time dedicated to the HH programme and its expected effects.

Screening strategies have been used to prevent transmission of MDROs, however, in a sensitivity
analysis, we showed that improvement of HH to 80%/80% was always more effective than

#### **BMJ Open**

screening and contact precautions and mostly less expensive than the screening and cohorting intervention. However, we can hypothesize that in the case of highly resistant bacteria (e.g. Carbapenem-resistant *Enterobacteriaceae*) where there is a highest clinical impact on the outcomes of infected patients, given the lack of therapeutic options, a rapid identification and cohorting of carriers may be more beneficial from the hospital but also societal perspective.

Antibiotic use is the major driver for the selection of antibiotic-resistant bacteria³⁹ and many strategies have been proposed to reduce the use of antibiotics in hospitals⁴⁰. These strategies could be implemented and associated with different efficacies and costs⁴¹. Here, we considered that antibiotic stewardship, based on the introduction of an infectious disease specialist to the ward, led to a 50% reduction in antibiotic use ⁴². However, despite this optimistic scenario, we found that antibiotic stewardship was less effective than HH or a screening and cohorting strategy.

Under the hypotheses used in our model, we also demonstrated in a previous study through
sensitivity analyses that antibiotic parameters did not significantly influence the effectiveness of
interventions¹².

However, adding antibiotic stewardship to an HH strategy slightly improved its effectiveness and may be worthy of consideration if the decision-makers are willing to pay at least  $\epsilon$ 49 055per infection avoided (we calculated that it would be equivalent to  $\epsilon$ 5 562 per life-year gained (LYG)). Combining antibiotic stewardship with screening and cohorting was even more effective than combining HH and antibiotic stewardship, but with an additional cost of  $\epsilon$ 61 994 per infection avoided (or  $\epsilon$ 7 030/LYG).

> Our study has several strengths. Firstly, we used a dynamic model to represent interactions between patients and HCWs and to take into account that the risk of colonization in the ICU depends on the number of ESBL carriers and could change over time. Moreover, our model incorporated the key elements of ESBL-PE transmission, such as the impact of prevalence at admission or antibiotic treatment. Secondly, we used input parameters derived from recent multicentre studies. Thirdly, we estimated the cost of HCW according to the time they spend working on the programme based on the best evidence from the literature and expert opinion. Finally, we assessed the impact of uncertainty in parameter estimation and the impact of model assumptions on the model's predictions by performing multiple sensitivity analyses.

> Our study also has several limitations. ICU parameters and costs were based mostly on French
> data, and ESBL-PE infections, prevalence, compliance with control measures and costs may be
> different in other countries.

A recent multicentre cohort study¹⁷ found no difference in LOS between infected and colonised patients. Thus, in order to simplify assumptions, the "infected" state was not included to the model. However, infected patients are potentially more contaminating HCW hands, disseminating the organism in the environment and increase the transmissibility⁴³. Thus, consequently we may have underestimated the number of acquisitions in the ICU and the impact of control measures.

The epidemiologic characteristics of ESBL-PE are complex and may vary, depending on ESBL-PE species. For example, Thiébaut et al. ⁴⁴ showed that *E.coli* ESBL was mainly imported (66%) and *K. Pneumoniae* ESBL was acquired (77%). Furthermore, the differential capacity of crosstransmission between ESBL *E. coli* and other *Enterobacteriaceae* has been clearly established⁴⁵. In a previous publication from our group¹², however, we showed no difference in the effectiveness of control measures, whatever the *Enterobacteriaceae* considered, either *E. coli* or

#### **BMJ Open**

another *Enterobacteriaceae*. We therefore decided to consider *Enterobacteriacae* globally, a
situation that can be extended to carbapenemase-producing *Enterobacteriacae*.

We modelled an ICU as a single-room unit where transmission among patients results via contacts with HCWs. In the absence of detailed information on transmission of ESBL-PE in hospital wards, we ignored direct HCW-to-HCW transmissions as well as environmental contamination or excreta management.

ESBL-PE acquisition in the ICU can lead to transmission from an ICU-acquired case and infection in downstream units, thus increasing costs of hospitalization. Moreover, colonization with ESBL-PE may persist several months after hospital discharge⁴⁶, therefore increasing the risk of infection with potential subsequent treatment failure. Thus, an efficient intervention to prevent the inhospital cross-transmission may also have an impact on the prevention of post-discharge infections and the need for readmissions.

Our cost evaluation therefore underestimated health benefits and cost savings resulting from
inhospital interventions to control ESBL-PE, but participate to demonstrate the usefulness of
inhospital intervention to prevent further costs.

# 380 CONCLUSION

Our study suggests that a universal approach with improved compliance with HH was the most cost-saving strategy to prevent the transmission of ESBL-PE in an ICU setting. Screening and cohorting of carriers had comparable effectiveness to HH improvement, but was more expensive.

Antibiotic stewardship was not cost-effective in comparison with other options. However, adding antibiotic restriction to the HH or the screening and cohorting strategies slightly improved their effectiveness and may be worthy of consideration by decision-makers. ACKNOWLEDGMENTS We thank Dr. Laurence Armand for useful discussion on our study. **FOOTNOTES** Contributors: YY, JCL, CP and LKS designed the study. YY, JCL, PYB, AA, CP and LKS contributed to the development of the model. CP, AP, GB, ER and LKS collected the data. CP and LKS wrote the code. LKS conducted computer simulations and result analysis. LKS, JCL and YY drafted the manuscript. All authors read and critically revised the manuscript. **Funding:** This work was supported by the French government (PREPS program [grant number 13-0693]) and by the National Institute for Health and Medical Research (INSERM). Competing interests: None declared. Data sharing statement: Details of the computer code for the model are available from the corresponding author. REFERENCES 1 European Centre for Disease Prevention and Control (ECDC). SURVEILLANCE REPORT: Antimicrobial resistance surveillance in Europe 2014. 

# **BMJ Open**

2	405		
4	405		http://ecdc.europa.eu/en/publications/publications/antimicrobial-resistance-europe-2014.pdf
5 6 7	406		(accessed Sept 30, 2016).
8 9 10	407	2	Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Patient Safety Atlas. Summary
11 12	408		of Results. http://gis.cdc.gov/grasp/PSA/Downloads/ARPatientSafetyAtlas-SummaryofResults.pdf
13 14 15	409		(accessed Sept 30, 2016).
16 17	410	3	Sidjabat HE, Paterson DL. Multidrug-resistant Escherichia coli in Asia: epidemiology and management.
18 19 20 21	411		Expert Rev Anti Infect Ther 2015; <b>13</b> : 575–91.
22 23	412	4	Tansarli GS, Poulikakos P, Kapaskelis A, Falagas ME. Proportion of extended-spectrum β-lactamase
24 25 26	413		(ESBL)-producing isolates among Enterobacteriaceae in Africa: evaluation of the evidencesystematic
27 28 29	414		review. J Antimicrob Chemother 2014; <b>69</b> : 1177–84.
30 31	415	5	Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev
32 33 34	416		2005; <b>18</b> : 657–86.
35 36 37	417	6	World Health Organization. Evidence of hand hygiene to reduce transmission and infections by multi-
38 39	418		drug resistant organisms in health-care settings. http://www.who.int/gpsc/5may/MDRO_literature-
40 41 42	419		review.pdf (accessed Sept 7, 2016).
43 44 45	420	7	Gandra S, Barter DM, Laxminarayan R. Economic burden of antibiotic resistance: how much do we
46 47 48	421		really know? Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2014; <b>20</b> : 973–80.
49 50	422	8	Septimus E, Weinstein RA, Perl TM, Goldmann DA, Yokoe DS. Approaches for preventing healthcare-
51 52 53	423		associated infections: go long or go wide? Infect Control Hosp Epidemiol 2014; 35 Suppl 2: S10-14.
54 55 56			
57 58			
59 60			19

9 Derde LPG, Cooper BS, Goossens H, *et al.* Interventions to reduce colonisation and transmission of
antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster
randomised trial. *Lancet Infect Dis* 2014; **14**: 31–9.

427 10 Goto M, O'Shea AMJ, Livorsi DJ, *et al.* The Effect of a Nationwide Infection Control Program Expansion
428 on Hospital-Onset Gram-Negative Rod Bacteremia in 130 Veterans Health Administration Medical
429 Centers: An Interrupted Time-Series Analysis. *Clin Infect Dis Off Publ Infect Dis Soc Am* 2016; **63**: 642–
430 50.

431 11 Otter JA, Mutters NT, Tacconelli E, Gikas A, Holmes AH. Controversies in guidelines for the control of
 432 multidrug-resistant Gram-negative bacteria in EU countries. *Clin Microbiol Infect Off Publ Eur Soc Clin* 433 *Microbiol Infect Dis* 2015; **21**: 1057–66.

434 12 Pelat C, Kardaś-Słoma L, Birgand G, *et al.* Hand Hygiene, Cohorting, or Antibiotic Restriction to Control
435 Outbreaks of Multidrug-Resistant Enterobacteriaceae. *Infect Control Hosp Epidemiol* 2016; **37**: 272–
436 80.

437 13 R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (accessed Sept
438 15, 2016).

439 14 Venier AG, Zaro-Goni D, Pefau M, *et al.* Performance of hand hygiene in 214 healthcare facilities in
440 South-Western France. *J Hosp Infect* 2009; **71**: 280–2.

441 15 REA-Raisin network. Surveillance des infections nosocomiales en réanimation adulte / 2012 /
442 Maladies infectieuses / Rapports et synthèses / Publications et outils / Accueil.
443 http://invs.santepubliquefrance.fr/Publications-et-outils/Rapports-et-syntheses/Maladies444 infectieuses/2012/Surveillance-des-infections-nosocomiales-en-reanimation-adulte (accessed Sept

445 15, 2016).

# BMJ Open

2		
3 4	446	16 Razazi K, Derde LPG, Verachten M, Legrand P, Lesprit P, Brun-Buisson C. Clinical impact and risk
5 6	447	factors for colonization with extended-spectrum $\beta$ -lactamase-producing bacteria in the intensive care
7 8 0	448	unit. Intensive Care Med 2012; <b>38</b> : 1769–78.
9 10 11	440	17 Darkier F. Dammier C. Fassied W. et al. Calculation and infastion with extended enastrony 0
12	449	17 Barbler F, Pommier C, Essaled W, et al. Colonization and infection with extended-spectrum p-
14	450	lactamase-producing Enterobacteriaceae in ICU patients: what impact on outcomes and carbapenem
15 16 17	451	exposure? <i>J Antimicrob Chemother</i> 2016; <b>71</b> : 1088–97.
18 19 20	452	18 Viau R, Frank KM, Jacobs MR, et al. Intestinal Carriage of Carbapenemase-Producing Organisms:
20 21 22 23	453	Current Status of Surveillance Methods. <i>Clin Microbiol Rev</i> 2016; <b>29</b> : 1–27.
24 25 26	454	19 Vasudevan A, Memon BI, Mukhopadhyay A, Li J, Tambyah PA. The costs of nosocomial resistant gram
27 28	455	negative intensive care unit infections among patients with the systemic inflammatory response
29 30 31	456	syndrome- a propensity matched case control study. Antimicrob Resist Infect Control 2015; <b>4</b> : 3.
32 33 34	457	20 Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford University
35 36	458	Press, 2006 https://www.york.ac.uk/che/publications/books/decision-modelling/ (accessed Sept 6,
37 38 39	459	2016).
40 41	460	21 Cantor SB, Ganiats TG. Incremental cost-effectiveness analysis: the optimal strategy depends on the
42 43 44	461	strategy set. J Clin Epidemiol 1999; 52: 517–22.
45 46 47	462	22 Climo MW, Yokoe DS, Warren DK, et al. Effect of daily chlorhexidine bathing on hospital-acquired
48 49 50	463	infection. <i>N Engl J Med</i> 2013; <b>368</b> : 533–42.
50 51 52	464	23 Huang SS, Septimus E, Kleinman K, et al. Targeted versus universal decolonization to prevent ICU
53 54 55 56	465	infection. <i>N Engl J Med</i> 2013; <b>368</b> : 2255–65.
57 58 59		

24 Doan TN, Kong DCM, Kirkpatrick CMJ, McBryde ES. Optimizing hospital infection control: the role of mathematical modeling. Infect Control Hosp Epidemiol 2014; 35: 1521-30. 25 Grundmann H, Hellriegel B. Mathematical modelling: a tool for hospital infection control. Lancet Infect Dis 2006; 6: 39-45. 26 Chaix C, Durand-Zaleski I, Alberti C, Brun-Buisson C. Control of endemic methicillin-resistant Staphylococcus aureus: a cost-benefit analysis in an intensive care unit. JAMA 1999; 282: 1745–51. 27 Roberts RR, Hota B, Ahmad I, et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis Off Publ Infect Dis Soc *Am* 2009; **49**: 1175–84.

28 Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA. Attributable hospital cost and length of stay
associated with health care-associated infections caused by antibiotic-resistant gram-negative
bacteria. *Antimicrob Agents Chemother* 2010; 54: 109–15.

478 29 Lee SY, Kotapati S, Kuti JL, Nightingale CH, Nicolau DP. Impact of extended-spectrum beta-lactamase479 producing Escherichia coli and Klebsiella species on clinical outcomes and hospital costs: a matched
480 cohort study. *Infect Control Hosp Epidemiol* 2006; **27**: 1226–32.

30 Robotham JV, Graves N, Cookson BD, *et al.* Screening, isolation, and decolonisation strategies in the
control of meticillin resistant Staphylococcus aureus in intensive care units: cost effectiveness
evaluation. *BMJ* 2011; 343: d5694.

484 31 Gidengil CA, Gay C, Huang SS, Platt R, Yokoe D, Lee GM. Cost-effectiveness of strategies to prevent
 485 methicillin-resistant Staphylococcus aureus transmission and infection in an intensive care unit. *Infect* 486 *Control Hosp Epidemiol* 2015; **36**: 17–27.

#### **BMJ Open**

2		
3 4	487	32 Huttner B, Haustein T, Uçkay I, et al. Decolonization of intestinal carriage of extended-spectrum $\beta$ -
5 6	488	lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind,
7 8 9	489	placebo-controlled trial. J Antimicrob Chemother 2013; 68: 2375–82.
10 11 12	490	33 Halaby T, Al Naiemi N, Kluytmans J, van der Palen J, Vandenbroucke-Grauls CMJE. Emergence of
13 14	491	colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract
15 16 17	492	decontamination in an intensive care unit. <i>Antimicrob Agents Chemother</i> 2013; <b>57</b> : 3224–9.
19 20	493	34 World Health Organization. WHO Guidelines on Hand Hygiene in Health Care. 2009.
21 22 23	494	http://apps.who.int/iris/bitstream/10665/44102/1/9789241597906_eng.pdf (accessed Sept 6, 2016).
24 25 26	495	35 Scheithauer S, Haefner H, Schwanz T, et al. Compliance with hand hygiene on surgical, medical, and
27 28	496	neurologic intensive care units: direct observation versus calculated disinfectant usage. Am J Infect
29 30 31	497	Control 2009; <b>37</b> : 835–41.
32 33	498	36 Cepeda JA, Whitehouse T, Cooper B, et al. Isolation of patients in single rooms or cohorts to reduce
35 36	499	spread of MRSA in intensive-care units: prospective two-centre study. Lancet Lond Engl 2005; 365:
37 38 39	500	295–304.
40 41	501	37 Pittet D, Hugonnet S, Harbarth S, et al. Effectiveness of a hospital-wide programme to improve
42 43 44 45	502	compliance with hand hygiene. Infection Control Programme. <i>Lancet Lond Engl</i> 2000; <b>356</b> : 1307–12.
46 47	503	38 Luangasanatip N, Hongsuwan M, Limmathurotsakul D, et al. Comparative efficacy of interventions to
48 49	504	promote hand hygiene in hospital: systematic review and network meta-analysis. BMJ 2015; 351:
50 51 52 53	505	h3728.
54 55	506	39 Holmes AH, Moore LSP, Sundsfjord A, et al. Understanding the mechanisms and drivers of
56 57 58 59	507	antimicrobial resistance. The Lancet 2016; <b>387</b> : 176–87.

2	
3	
4	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
16	
-0 /7	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
09	
υu	

1

40 Davey P, Brown E, Charani E, *et al.* Interventions to improve antibiotic prescribing practices for
hospital inpatients. *Cochrane Database Syst Rev* 2013; : CD003543.

41 de Jong E, van Oers JA, Beishuizen A, *et al.* Efficacy and safety of procalcitonin guidance in reducing
the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. *Lancet Infect Dis* 2016; 16: 819–27.

- 42 Roger P-M, Farhad R, Pulcini C, *et al.* [Elderly patients presenting with fever and respiratory problems
  in an intensive care unit. Diagnostic, therapeutic and prognostic impact of a systematic infectious
  disease consultation]. *Presse Medicale Paris Fr 1983* 2003; **32**: 1699–704.
- 516 43 Ruppé E, Lixandru B, Cojocaru R, *et al.* Relative fecal abundance of extended-spectrum-β-lactamase 517 producing Escherichia coli strains and their occurrence in urinary tract infections in women.
   518 Antimicrob Agents Chemother 2013; 57: 4512–7.

44 Thiébaut ACM, Arlet G, Andremont A, *et al.* Variability of intestinal colonization with third-generation
cephalosporin-resistant Enterobacteriaceae and antibiotic use in intensive care units. *J Antimicrob Chemother* 2012; **67**: 1525–36.

45 Tschudin-Sutter S, Lucet J-C, Mutters NT, Tacconelli E, Zahar JR, Harbarth S. Contact precautions for
 preventing nosocomial transmission of ESBL-producing Escherichia coli - a point/counterpoint review.

524 *Clin Infect Dis Off Publ Infect Dis Soc Am* 2017; published online April 3. DOI:10.1093/cid/cix258.

46 Birgand G, Armand-Lefevre L, Lolom I, Ruppe E, Andremont A, Lucet J-C. Duration of colonization by
 extended-spectrum β-lactamase-producing Enterobacteriaceae after hospital discharge. *Am J Infect Control* 2013; **41**: 443–7.

# **BMJ Open**

2		
3 4	528	47 Girard R, Aupee M, Erb M, Bettinger A, Jouve A. Hand rub dose needed for a single disinfection varies
5 6	529	according to product: a bias in benchmarking using indirect hand hygiene indicator. J Epidemiol Glob
7 8 9	530	Health 2012; <b>2</b> : 193–8.
10 11 12	531	48 Kaier K. Economic implications of the dynamic relationship between antibiotic use and hospital-
12 13 14	532	acquired infections. Value Health J Int Soc Pharmacoeconomics Outcomes Res 2012; 15: 87–93.
15 16		
17 18	533	49 Armand L. Place des nouvelles techniques dans l'optimisation diagnostique et thérapeutique des
19 20	534	infections nosocomiales en réanimation. http://cclin-sudest.chu-
21 22 23	535	lyon.fr/Reseaux/REA/Journee/2014/6_Bacterio_NouveauxOutils.pdf (accessed Sept 6, 2016).
24 25	536	50 Birgand G, Ruimy R, Schwarzinger M, et al. Rapid detection of glycopeptide-resistant enterococci:
20 27 28	537	impact on decision-making and costs. Antimicrob Resist Infect Control 2013; <b>2</b> : 30.
29 30 31 32 33	538	
34 35 36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 ⊿9		
50		
51		
52 53		
54		
55		
56		
57 58		
50 59		
60		25

#### 

## 539 FIGURE LEGENDS

Figure 1. Model of transmission of ESBL-PE between patients through contacts with health-care
workers (HCWs) and impact of infection control measures in the transmission process. Solid
lines represent the transitions between population groups and dashed lines represent the
transmission between patients and HCWs.

544A. Impact of universal (horizontal) control measures: 1) hand hygiene (reduces the transmission
among patients and HCWs); 2) antibiotic restriction (reduces the risk of transmission from
colonized patients receiving antibiotics to HCWs or from contaminated HCWs to uncolonized
patients receiving antibiotics).

**B.** Impact of targeted (vertical) control measures: screening of patients on ICU admission and 550 identification of patients who had positive screening results (patients surrounded be a shaded 551 box). Implementation of: 1) contact precautions (hand hygiene reduces the transmission from 552 identified ESBL-PE carriers to HCWs); 2) cohorting of identified ESBL-PE carriers and 553 attribution of a dedicated HCW (prevents the transmission from cohorted patients to other HCWs 554 and patients). Note that we included two categories of colonized patients: 1) who had false 555 negative admission screening results; 2) who had positive admission screening results (patients 556 surrounded by a shaded box).

**Figure 2.** Patient outcomes after one year under the different control strategies tested. (A) New acquisitions (transmissions) of ESBL-PE per 100 admissions, (B) Total number of ESBL-PE infections per 100 admissions in patients who: 1) acquired colonization in the ICU, and 2) those who were already colonized at ICU admission.

#### **BMJ Open**

Strategies are: (1) Base case (reference strategy with no control intervention and hand hygiene compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to 80%/80%; (3) Hand hygiene improvement to 55%/80%; (4) Antibiotic reduction; (5) Screening of all admissions and contact precautions for identified carriers; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and antibiotic reduction; (8) Hand hygiene improvement to 55%/80% and antibiotic reduction; (9) Screening of all admissions, contact precautions with identified carriers and antibiotic reduction; (10) Screening of all admissions, cohorting of identified carriers and antibiotic reduction. Figure 3. Cost-effectiveness plane showing the incremental health benefits (infections avoided) and costs relative to the least expensive strategy (Strategy 2). Strategies 1, 3, 4, 5, 8, 9 are dominated as they have both a worse outcome and a higher cost. The efficiency frontier (grey line), joins Strategy 2 with more expensive and more efficient strategies (7 and 10). Strategy 6 is extended to this frontier and excluded by the principle of extended dominance. The slope of the efficiency frontier represents the incremental cost-effectiveness. Strategies are: (1) Base case (reference strategy with no control intervention and hand hygiene compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to 80%/80%; (3) Hand hygiene improvement to 55%/80%; (4) Antibiotic reduction; (5) Screening of all admissions and contact precautions with identified carriers; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and antibiotic reduction; (8) Hand hygiene improvement to 55%/80% and antibiotic reduction; (9) Screening of all admissions, contact precautions with identified carriers and antibiotic reduction; (10) 

Screening of all admissions, cohorting of identified carriers and antibiotic reduction. 

2 3 4	586	5 TABLES								
5 6	587	Table 1. Cost parameters, their sources and ranges for sensitivity analyses.								
7 8 9	588	Costs of control strategies were based on material and personnel. For example, the cost of the HH								
<ul> <li>improvement strategy included the cost of HH (hand-rub and HCWs' time) and the cost of a</li> </ul>										
12 13	590	infection control nurse working on the programme, i.e. HH education, observation and feedback.								
14 15 16	591									
1 <del>7</del> 18			Resource	<u>Cost (€*)</u>	<u>Cost (€[*])</u>	<u>Source</u>	<b>Distribution</b>			
19 20 21				<u>mean</u>	<u>SD</u>					
22 23			ICU bed-day	1,583	226	AP-HP ^a	Gamma			
24 25 <u> </u> 26	Universal	strategies								
27 J 27 J 28	Hand hyg	jiene	Alcohol-based hand rub	0.011	0.0055	47,48	Gamma			
29 30			HCW's time per hand hygiene	0.143	0.0714	47	Gamma			
31 32 33			Infection control nurse at half-	2,048 ^c	164	AP-HP ^a	Gamma			
34 35			time/month ^b							
36 37 ⁷	Antibioti	e stewardship	Infectious disease physician at half-	5,500 ^c	273	AP-HP ^a	Gamma			
38 39 40			time/month ^b							
41 - 42 -	<u>Fargeted</u>	strategies								
43 44 45	Screening	5	Screening test + laboratory costs	40	20	48–50	Gamma			
45 46 47	Contact	precautions	Alcohol-based hand rub	0.011	0.0055	47,48	Gamma			
48 49 (	(= hand	hygiene at	0.0714	47	Gamma					
50 51 ⁸ 52	80%/80%	with								
52 53 i 54	identified	ESBL-PE								
55 56 I	patients)									
57 58 59										
60							28			

# Page 29 of 74

# **BMJ Open**

1 2							
3 4 5 6 7 8 9	Coho (addition contact p	rting nal HCW + precautions)	Additional full-time HCW/month ^b	3,598 ^c	642	AP-HP ^a	Gamma
10 11 12			Alcohol-based hand rub	0.011	0.0055	47,48	Gamma
13 14 15			HCW's time per hand hygiene	0 143	0 0714	47	Gamma
16			The was time per hand hygicite	0.145	0.0714		Gamma
17	592	^a AP-HP: The	Assistance Publique – Hôpitaux de Pa	ris			
19 20 21	593	^b Assumption b	based on expert opinion				
22 23	594	^c Cost of staff	from a hospital perspective (salary + e	mployer cont	ributions)		
24 25 26	595	* 1€ = US \$0.9	94				
27 28	596						
29 30	597						
31 32 33	598						
34 35							
36 37							
38 39							
40 41							
42 43							
44 45							
46 47							
48							
49 50							
52							
53 54							
55 56							
57 58							
59 60							29

#### Table 2. Results of cost-effectiveness analysis. 599

1 2 3 599 <b>Table 2.</b> Results of co.	st-effectiveness a	analysis.						
6			Cost of	Cost of	Infections		Incremental	
7 8 9			infections/	intervention/	due to	Incremental	effect (ΔE	)
10 11	Number of ICU		100	100	ESBL-PE/	cost/100	(infections	ICER (ΔC/ΔE) (€
12 13	admissions	Total cost/100	admissions	admissions	100	admissions (ΔC)	avoided/100	/ infection
14 15 Strategy 16		admissions (€)	(€)	(€)	admissions	(€)	admissions)	avoided)
¹⁷ 2: HH 80%/80% 18	573	80 556	54 916	25 639	2.9	-	-	-
20 21 22 7: HH 80%/80% + ATB reduction 23	581	88 498	51 840	36 657	2.7	7 942ª	0.1619ª	49 055 °
24 10: Screening + cohorting + ATB 25 26 27 reduction	584	94 313	50 058	44 255	2.6	5 815 ^b	0.0938 ^b	61 994 ^b
28 29 30 31 3: HH 55%/80% 32	548	84 751	66 773	17 978	3.5			Dominated ^c
33 34 35 36 37								
38 6: Screening + cohorting 39	575	86 713	53 278	33 435	2.8			Dominated ^d
40 8: HH 55%/80% + ATB reduction 41 42 43	565	88 621	59 445	29 176	3.1			Dominated ^c
44 45 46 47 48	For pee	r review only - ht	tp://bmjope	n.bmj.com/site/	/about/guide	lines.xhtml		30

1 2								
3 9: Screer	ing + contact precautions							
5 5 + ATB reduction 7		546	94 309	67 560	26 749	3.6		Dominated ^c
8 9								
¹⁰ 5: Screening + contact precautions 11		519	96 716	81 582	15 134	4.3		Dominated ^c
12 13								
4 15 4: ATB reduction		528	100 128	77 641	22 486	4.1		Dominated ^c
17 1: <b>Base c</b> 18	ase	498	105 344	94 792	10 552	5.0		Dominated ^c
19 600 20	^a Relative to strategy 2		- C					
21 22 601	^b Relative to strategy 7							
23 24 602 25	^c Dominated: A strategy is dominated when it has higher cost and lower health benefit than another strategy.							
26 603 27	^d Dominated by extended dominance: Strategy is dominated by extended dominance if the linear combination of other strategies produces							
28 29 604 30	greater	bene	efit		at		lower	cost.
31 32								
33 34								
35 36								
37 38								
39 40								
41 42								
43 44								31
45 46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml							
47 48								
10								



Figure 1B

Figure 1A



Figure 1. Model of transmission of ESBL-PE between patients through contacts with health-care workers (HCWs) and impact of infection control measures in the transmission process. Solid lines represent the transitions between population groups and dashed lines represent the transmission between patients and HCWs.

A. Impact of universal (horizontal) control measures: 1) hand hygiene (reduces the transmission among patients and HCWs); 2) antibiotic restriction (reduces the risk of transmission from colonized patients receiving antibiotics to HCWs or from contaminated HCWs to uncolonized patients receiving antibiotics).

B. Impact of targeted (vertical) control measures: screening of patients on ICU admission and identification of patients who had positive screening results (patients surrounded be a shaded box). Implementation of: 1) contact precautions (hand hygiene reduces the transmission from identified ESBL-PE carriers to HCWs); 2) cohorting of identified ESBL-PE carriers and attribution of a dedicated HCW (prevents the transmission from cohorted patients to other HCWs and patients). Note that we included two categories of colonized patients:

1) who had false negative admission screening results; 2) who had positive admission screening results (patients surrounded by a shaded box).

250x338mm (300 x 300 DPI)



Figure 2. Patient outcomes after one year under the different control strategies tested. (A) New acquisitions (transmissions) of ESBL-PE per 100 admissions, (B) Total number of ESBL-PE infections per 100 admissions in patients who: 1) acquired colonization in the ICU, and 2) those who were already colonized at ICU admission.

Strategies are: (1) Base case (reference strategy with no control intervention and hand hygiene compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to 80%/80%; (3) Hand hygiene improvement to 55%/80%; (4) Antibiotic reduction; (5) Screening of all admissions and contact precautions for identified carriers; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and antibiotic reduction; (8) Hand hygiene improvement to 55%/80% and antibiotic reduction; (9) Screening of all admissions, contact precautions with identified carriers and antibiotic reduction; (10) Screening of all admissions, cohorting of identified carriers and antibiotic reduction.

269x119mm (300 x 300 DPI)





Figure 3. Cost-effectiveness plane showing the incremental health benefits (infections avoided) and costs relative to the least expensive strategy (Strategy 2). Strategies 1, 3, 4, 5, 8, 9 are dominated as they have both a worse outcome and a higher cost. The efficiency frontier (grey line), joins Strategy 2 with more expensive and more efficient strategies (7 and 10). Strategy 6 is extended to this frontier and excluded by the principle of extended dominance. The slope of the efficiency frontier represents the incremental cost-effectiveness.

Strategies are: (1) Base case (reference strategy with no control intervention and hand hygiene compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to 80%/80%; (3) Hand hygiene improvement to 55%/80%; (4) Antibiotic reduction; (5) Screening of all admissions and contact precautions with identified carriers; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and antibiotic reduction; (8) Hand hygiene improvement to 55%/80% and antibiotic reduction; (9) Screening of all admissions, contact precautions with identified carriers and antibiotic reduction; (10) Screening of all admissions, cohorting of identified carriers and antibiotic reduction.

359x229mm (300 x 300 DPI)

# **Supplementary material**

# **Supplementary Text S1**

Defining the objectives, scope and policy context of a model.					
Decision objective	To evaluate ESBL-PE control strategies				
Policy context	This analysis was used to support decision				
	makers in choosing the best strategy for				
	controlling ESBL-PE				
Funding source	PREPS Program*, Inserm**				
Disease	ESBL-PE infections				
Perspective	Hospital perspective				
Target population	ICU patients				
Health benefits	Reduction in ESBL-PE infections				
Strategies	Universal strategies (hand hygiene				
	improvement or antibiotic reduction)				
	Targeted strategies (screening of patients on				
	ICU admission and contact precaution in				
	contact with carriers or cohorting)				
Resources/costs	Staff time working on the program, materials				
Time horizon	1 year				
*PREPS - French government's program on Car	re System Performance				
**Inserm- National Institute for Health and Medical Research					

We have used an extended version of a previously developed compartmental, dynamic, stochastic model to simulate the transmission of ESBL-PE in a hypothetical ICU with 10 single-bed rooms among patients through contacts with healthcare workers (HCWs)¹.

For each simulation, we introduced a single unidentified ESBL-PE carrier receiving antibiotics within the ward and simulated the ESBL-PE dynamics for one year. In this version of the model, following the first admitted colonized patient,  $\varphi$  was the fraction of admitted patients assumed to be colonized with ESBL-PE. Patients are discharged at rate  $\gamma$  or die at rate v but bed occupancy is assumed to be 100% (the population of patients in the ward is constant).

Patients may or may not receive antibiotics at admission; antibiotics are initiated during the patient's stay at rate  $\tau$  per day and antibiotics are discontinued at rate  $\theta$  per day.

In the model, all patients were classified as 1) uncolonized receiving antibiotics  $(S_{p,a})$  or not  $(S_{p,n})$ , 2) unidentified ESBL-PE carriers receiving antibiotics  $(C_{p,a})$  or not  $(C_{p,n})$  (Figure 1A). Antibiotics in the model acted in two ways: 1) increased the risk of becoming colonized for uncolonized patients receiving antibiotics; and 2) increased the risk of transmission from colonized patients receiving antibiotics.

Initially uncontaminated HCWs ( $S_h$ ) can become transiently contaminated (and go to the compartment  $C_h$ ) after contact with a colonized patient ( $C_{p,n}$  or  $C_{p,a}$ ).
#### Mathematical model under targeted infection control measures

The model was modified to account for the effect of targeted control measures. To detect ESBL-PE carriers, we simulated the screening of patients at ICU admission. We assumed that the screening method had 95% sensitivity and 100% specificity. Thus in the model, all patients were classified as 1) uncolonized receiving antibiotics ( $S_{p,a}$ ) or not ( $S_{p,n}$ ), 2) unidentified ESBL-PE carriers receiving antibiotics ( $C_{p,a}$ ) or not ( $C_{p,n}$ ), and 3) identified ESBL-PE carriers receiving antibiotics ( $I_{p,a}$ ) or not ( $I_{p,n}$ ) (**Figure 1B**).

#### **Model parameters**

Exposure to antibiotics has been associated with increased probability of colonization for uncolonized patients^{2,3} and of transmission from colonized patients to HCWs^{4–6}. Thus, we hypothesized that: 1) the colonization probability after contact with a contaminated HCW was higher in patients on antibiotics than in untreated patients ( $b_{p,a} > b_{p,n}$ ), 2) the probability of contamination of an HCW through contact with a colonized patient was higher if the patient was treated with antibiotics ( $b_{h,a} > b_{h,n}$ ).

The transmission parameter  $\beta$  depends on the rate of HCW visits followed by contacts with the patient (*a*), the probability of ESBL-PE bacteria transmission per infectious contact (*b*_{.,.}), and the compliance with hand hygiene (HH) (*p_p* and *p_h*).

The risk of transmission from an unidentified ESBL-PE carrier to n HCW might differ from that of an identified ESBL-PE carrier, because of the implementation of targeted control measures.

Firstly, we modelled the implementation of contact precautions (improvement of HH) in contacts with identified ESBL-PE carriers. HH for other patients was maintained at baseline level. The transmission parameters were defined as follows:

$\beta_{p,a} = a \cdot b_{p,a} \cdot (1 - p_p)$ $\beta_{p,n} = a \cdot b_{p,n} \cdot (1 - p_p)$	Transmission from contaminated HCWs to uncolonized patients (receiving antibiotics or not)
$\beta_{h,a} = a \cdot b_{h,a} \cdot (1 - p_h)$ $\beta_{h,n} = a \cdot b_{h,n} \cdot (1 - p_h)$	Transmission from non-identified, colonized patients (receiving antibiotics or not) to HCWs
$\beta_{h,a,I} = a \cdot b_{h,a,I} \cdot (1 - p_{h,Is})$ $\beta_{h,n,I} = a \cdot b_{h,n,I} \cdot (1 - p_{h,Is})$	Transmission from identified, colonized patients (receiving antibiotics or not) to HCWs

Secondly, we modelled the introduction of a dedicated HCW to interact only with identified, colonized patients. The transmission parameters were defined as follows:

$\beta_{p,a} = a \cdot b_{p,a} \cdot (1 - p_p)$ $\beta_{p,n} = a \cdot b_{p,n} \cdot (1 - p_p)$	Transmission from contaminated HCWs to uncolonized patients (receiving antibiotics or not)
$\beta_{h,a} = a \cdot b_{h,a} \cdot (1 - p_h)$ $\beta_{h,n} = a \cdot b_{h,n} \cdot (1 - p_h)$	Transmission from non-identified, colonized patients (receiving antibiotics or not) to HCWs
$eta_{h,a,I}=0$ $eta_{h,n,I}=0$	Transmission from identified, colonized patients (receiving antibiotics or not) to HCWs (other than the dedicated HCW)

#### **BMJ Open**

Once colonized, patients do not clear ESBL-PE colonization before discharge. HCWs are transiently contaminated and they become decontaminated either by performing HH or after a mean waiting time of one hour.

The model parameters and their values are presented in **Supplementary Table 1**. Parameter values were derived from multicentre studies if available, and by default based on best evidence from the literature or expert opinion.

We modelled an ICU with 10 single-rooms with continuous presence of 6 HCWs⁸. We assumed 100% bed occupancy. Consequently, a shorter length of stay (LOS) implies a higher turnover and possible admission of colonized patients⁹. As reported recently, the ICU LOS of ESBL-PE carriers is longer (13 days) than uncolonized patients (5 days)¹⁰. The extended LOS in ESBL-PE carriers increases the colonization pressure in the ICU, consequently increasing the risk of cross-transmission.

When targeted control strategies were used, colonization was detected using a screening method assuming that screening results were instantaneous. We assumed that the sensitivity of the screening method was 95%¹¹. Screening results had 100% specificity.

#### **Costs of control strategies**

We estimated the costs of control strategies over the one-year simulation period. See **Table 1** for details on cost parameters.

We used gamma distribution to represent uncertainty in cost parameters. Cost data are constrained to be non-negative and gamma distribution is often used in decision modelling. To estimate the parameters of the gamma distribution to cost data, we used the method of moments. When data were available from the hospital data base, e.g. cost of ICU bed-day, we performed a

goodness of fit test (Kolmogorov-Smirnov) to assure that a random sample comes from a gamma distribution. The test was performed using  $\mathbf{R}$  software.

The cost of the base case strategy (reference strategy) was considered to be the cost of HH at baseline level, namely cost of the alcohol-based hand rub and costs associated with the time HCWs required for hand disinfection.

As reported recently, the highest cost of an HH program arose from the time people spent working on the program¹². We therefore assumed that the cost of an HH improvement strategy included the cost of HH (hand-rub and HCWs' time) and the cost of an infection control nurse working on the program, i.e. HH education, observation and feedback^{12,13}. We assumed (based on expert opinion) that improving hand HH compliance to 55/80% and to 80/80% required respectively a quarter and a half of the working time of an infection control nurse. In accordance with staffing practices common in the European Union, we assumed that one staff position requires the recruitment of three nurses¹⁴.

Antibiotic stewardship programs (ASPs) have proven efficient in reducing antibiotic use and antibiotic duration in hospitals^{15–17}. Interventions included in ASPs require additional resources associated with higher costs¹⁸. One of the resources needed and associated with the highest costs is the staff time¹⁹. We calculated the cost of an action to reduce antibiotic use as the cost of a half-time infectious disease physician working on the ASP. This assumption was based on expert opinion. The cost of antibiotics is considered to be marginal and was not considered in our study¹⁷.

#### **BMJ Open**

The cost of screening was first based on the cost of testing materials and on the cost of laboratory technician time spend on a rapid screening test (e.g. PCR).

For the strategy in which screening at admission was combined with contact precautions for identified ESBL-PE carriers, we also included the cost of contact precautions such as the cost of improved HH (i.e. the cost of the alcohol-based hand rub), and the costs associated with the time HCWs required for hand disinfection. Here we did not consider the cost of an infection control nurse. We hypothesized that knowing that the patient is an ESBL-PE carrier, HCWs would adhere more easily to HH.

For the strategy in which screening on admission was combined with cohorting of identified ESBL-PE patients, the cost of cohorting was the cost of contact precautions and the cost of additional HCWs caring for cohorted patients (based on expert opinion). For screening interventions, the cost of HH in non-carriers and unidentified carriers was considered to be identical to the costs of the baseline level.

#### Cost of hospital-acquired infections

The mean cost of an ICU bed-day was estimated at  $\notin 1,583$  (based on the average amount paid in 2015 for ICUs in Paris public hospitals (AP-HP). This amount is based on French Diagnosis-Related Groups and complementary revenues specific to ICU units and divided by the mean length of stay in ICUs in 2015²⁰. Based on published reports, the cost per day of a patient with ESBL-PE infection was 50% higher than the cost of an uninfected patient ^{21,22}. The cost of an ESBL-PE infection was estimated using the ESBL-PE-attributable LOS and the cost of a hospital bed-day for infected patients^{23,24}.

### **Model calibration**

The model was simulated stochastically. We calibrated the colonization and contamination parameters using Monte Carlo methods in order to reproduce the observed 12.9% acquisition rate in an ICU after a 6-month period⁷.

### Model simulations and outcomes

Simulations of the model were performed using Gillespie's method and programmed in C++ language. The outcomes were calculated after a period of 1 year and averaged over the 1,000 Monte Carlo simulations. Cost-effectiveness analysis and graphics were performed in  $R^{25}$ .

### TABLES

**Supplementary Table 1**. Base case values and ranges for probabilistic sensitivity analysis of input parameters used in the compartmental model of ESBL-PE transmission.

Comment. As can be seen, for some parameters the ranges for a sensitivity analysis are omitted (e.g.

d_{ATB,S}). This is because these parameters are specific to a strategy (e.g. Atb reduction) and must be fixed

in sensitivity analysis to allow the comparison of outcomes with other strategies.

				Sensitiv	ity analysis
Parameter	Description	Value	Source	Range	Distribution
Np	Number of beds	10	26		
N _h	Number of HCWs	6	27		
	Number of HCW visits				
Cp	associated with at least one	81	28–30	13.8 ³¹ -	triangular (peak
	aseptic contact per patient			160 28,32,33	at 81)

Page 45 of 74

Γ		per day				
F		Number of HCW visits				
	а	associated with at least one	13.5	c _p /N _h		
		aseptic contact per HCW per				
		day				
-		Colonization probability for				
	b _{p,n}	patients not receiving	0.0127	Calibrated,	0-0.1	triangular (peak
		antibiotics		consistent with		at 0.0127)
		Colonization probability for		data from ⁷		
	b _{p,a}	patients receiving antibiotics	0.0530		b _{p,n} -0.5	uniform
		Probability of contamination	0			
	b _{h,n}	of an HCW with ESBL-PE	0.0379	Calibrated,	0-0.6	triangular (peak
		during a contact with a		consistent with		at 0.0379)
		colonized patient not	6	data from ⁷		
		receiving antibiotics				
_		Probability of contamination		0,		
	b _{h,a}	of an HCW during a contact	0.3198	Calibrated,	b _{h,n} -0.8	uniform
		with a colonized patient		consistent with		
		receiving antibiotics		data from ⁷	5	
	ds	Mean length of stay of	5	10	<b>3-9</b> ¹⁰	triangular (peak
		uncolonized patients (days)				at 5)
	dc	Mean length of stay of	13	10	6-26 ¹⁰	triangular (peak
		colonized patients (days)				at 13)

dıs	Mean length of stay of	13	10	6-26 ¹⁰	triangular (peak
	isolated patients (days)				at 13)
γs	Discharge rate of	0.2	<b>1/d</b> s		
	uncolonized patients (/day)				
γс	Discharge rate of colonized	0.0154	1/dc		
	patients (/day)				
v	Death rate of patients (/day)	0.0027	10	0.00135-	triangular (peak
				0.0054	at 0.0027)
	Natural decontamination	0			
μο	rate for HCW (i.e. not by	24	31,34	12-48	triangular (peak
	hand hygiene) (/day)				at 24)
		9			
ψ	Prevalence of antibiotic	0.56	35,36	0.2-0.9	triangular (peak
	therapy among admitted				at 0.56)
	patients		4		
			C		
τ	Antibiotic initiation rate	0.1	assumed	0.05-0.2	triangular (peak
	(/day)				at 0.1)
L.		0	36		
Oatb,s	Antibiotic therapy duration	8	50		
	for uncolonized patients				
	(days)				
		10	36		
<b>О</b> АТВ,С	Antibiotic therapy duration	18	UC		

	for colonized patients (days)				
θs	Antibiotic therapy discontinuation rate for uncolonized patients (/day)	0.125	1/dATBs		
θς	Antibiotic therapy discontinuation rate for colonized patients (/day)	0.05556	1/dATBc		
pp	Probability of hand hygiene before contact with patient (uncolonized or colonized	0.55	37		
	Brobability of band bygiene				
p _h	after contact with patient(uncolonized or	0.6	37		
	colonized unidentified)				
p _{pls}	Probability of hand hygiene before contact with isolated patient	0.8	assumed		
Phis	Probability of hand hygiene after contact with isolated patient	0.8	assumed	2	
φ	Prevalence of ESBL-PE carriage among admitted patients	0.15	23	0.07-0.3	triangular (peak at 0.15)

рі	Probability of infection in	0.164	10	0.08- 0.32	triangular (peak
	colonized patient				at 0.164)
dı	Mean length of stay of	13	10	6-29 [12]	triangular (peak
	infected patients (days)				at 13)
Sb	Sensitivity of the screening	95	11		
	method (%)				
Sp	Specificity of the screening	100	assumed		
	method (%)				

### REFERENCES

- Pelat C, Kardaś-Słoma L, Birgand G, *et al.* Hand Hygiene, Cohorting, or Antibiotic Restriction to Control Outbreaks of Multidrug-Resistant Enterobacteriaceae. *Infect Control Hosp Epidemiol* 2016; 37: 272–80.
- 2 Nicolas-Chanoine M-H, Jarlier V, Robert J, *et al.* Patient's origin and lifestyle associated with CTX-Mproducing Escherichia coli: a case-control-control study. *PloS One* 2012; 7: e30498.
- 3 Colodner R, Rock W, Chazan B, *et al.* Risk factors for the development of extended-spectrum betalactamase-producing bacteria in nonhospitalized patients. *Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol* 2004; **23**: 163–7.
- 4 Ruppé E, Andremont A. Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. *Front Microbiol* 2013; **4**. DOI:10.3389/fmicb.2013.00129.
- 5 Lerner A, Adler A, Abu-Hanna J, Cohen Percia S, Kazma Matalon M, Carmeli Y. Spread of KPCproducing carbapenem-resistant Enterobacteriaceae: the importance of super-spreaders and rectal KPC concentration. *Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis* 2015; **21**: 470.e1-7.
- 6 Pultz MJ, Donskey CJ. Effects of Imipenem-Cilastatin, Ertapenem, Piperacillin-Tazobactam, and Ceftriaxone Treatments on Persistence of Intestinal Colonization by Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae Strains in Mice. *Antimicrob Agents Chemother* 2007; **51**: 3044–5.

### BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
აა ე⊿
34 25
20
27
30
30
39 40
40 //1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7 Derde LPG, Cooper BS, Goossens H, *et al.* Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial. *Lancet Infect Dis* 2014; **14**: 31–9.

- 8 French Ministry, of Health website. Décret n°2002-466 du 5 avril 2002 relatif aux conditions techniques de fonctionnement auxquelles doivent satisfaire les établissements de santé pour pratiquer les activités de réanimation, de soins intensifs et de surveillance continue et modifiant le code de la santé publique (troisième partie : Décrets simples). 2002.
- 9 Cooper BS, Medley GF, Scott GM. Preliminary analysis of the transmission dynamics of nosocomial infections: stochastic and management effects. *J Hosp Infect* 1999; **43**: 131–47.
- 10 Barbier F, Pommier C, Essaied W, *et al.* Colonization and infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in ICU patients: what impact on outcomes and carbapenem exposure? *J Antimicrob Chemother* 2016; **71**: 1088–97.
- 11 Chavada R, Maley M. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections. *Open Microbiol J* 2015; **9**: 125–35.
- 12 Page K, Barnett AG, Campbell M, *et al.* Costing the Australian National Hand Hygiene Initiative. *J Hosp Infect* 2014; **88**: 141–8.
- 13 World Health Organization. WHO Guidelines on Hand Hygiene in Health Care. 2009. http://apps.who.int/iris/bitstream/10665/44102/1/9789241597906_eng.pdf (accessed Sept 6, 2016).
- 14 Ferrer J, Boelle P-Y, Salomon J, *et al.* Management of nurse shortage and its impact on pathogen dissemination in the intensive care unit. *Epidemics* 2014; **9**: 62–9.
- 15 Roger P-M, Farhad R, Pulcini C, *et al.* [Elderly patients presenting with fever and respiratory problems in an intensive care unit. Diagnostic, therapeutic and prognostic impact of a systematic infectious disease consultation]. *Presse Medicale Paris Fr 1983* 2003; **32**: 1699–704.
- 16 Davey P, Brown E, Charani E, *et al.* Interventions to improve antibiotic prescribing practices for hospital inpatients. *Cochrane Database Syst Rev* 2013; : CD003543.
- 17 Rimawi RH, Mazer MA, Siraj DS, Gooch M, Cook PP. Impact of regular collaboration between infectious diseases and critical care practitioners on antimicrobial utilization and patient outcome. *Crit Care Med* 2013; **41**: 2099–107.
- 18 Dik J-WH, Vemer P, Friedrich AW, *et al.* Financial evaluations of antibiotic stewardship programs-a systematic review. *Front Microbiol* 2015; **6**: 317.
- 19 Page K, Graves N, Halton K, Barnett AG. Humans, 'things' and space: costing hospital infection control interventions. *J Hosp Infect* 2013; 84: 200–5.
- 20 Assistance publique Hôpitaux de Paris (AP-HP). Base de données PMSI. 2015.
- 21 Vasudevan A, Memon BI, Mukhopadhyay A, Li J, Tambyah PA. The costs of nosocomial resistant gram negative intensive care unit infections among patients with the systemic inflammatory response syndrome- a propensity matched case control study. *Antimicrob Resist Infect Control* 2015; **4**: 3.

- 22 MacVane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum β-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. *J Hosp Med* 2014; **9**: 232–8.
- 23 Razazi K, Derde LPG, Verachten M, Legrand P, Lesprit P, Brun-Buisson C. Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. *Intensive Care Med* 2012; **38**: 1769–78.
- 24 Viau R, Frank KM, Jacobs MR, *et al.* Intestinal Carriage of Carbapenemase-Producing Organisms: Current Status of Surveillance Methods. *Clin Microbiol Rev* 2016; **29**: 1–27.
- 25 R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (accessed Sept 15, 2016).
- 26 The French Intensive Care Society. SRLF. http://www.srlf.org/en/the-french-intensive-care-society/ (accessed Sept 15, 2016).
- 27 French Ministry, of Health website. Décret n° 2002-466 du 5 avril 2002 relatif aux conditions techniques de fonctionnement auxquelles doivent satisfaire les établissements de santé pour pratiquer les activités de réanimation, de soins intensifs et de surveillance continue et modifiant le code de la santé publique (troisième partie : Décrets simples). 2002.
- 28 Steed C, Kelly JW, Blackhurst D, *et al.* Hospital hand hygiene opportunities: where and when (HOW2)? The HOW2 Benchmark Study. *Am J Infect Control* 2011; **39**: 19–26.
- 29 Beggs CB, Noakes CJ, Shepherd SJ, Kerr KG, Sleigh PA, Banfield K. The influence of nurse cohorting on hand hygiene effectiveness. *Am J Infect Control* 2006; **34**: 621–6.
- 30 Guyot, J.M. Etude sur l'évaluation des pratiques dans le cadre de la lutte contre les infections nosocomiales sur les « frictions hydro-alcooliques par spécialités médico-chirurgicales ». Lot n°2 : Enquête sur le nombre d'opportunités d'hygiène des mains par spécialité médico-chirugicale: 2008.
- 31 Austin DJ, Bonten MJ, Weinstein RA, Slaughter S, Anderson RM. Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. *Proc Natl Acad Sci U S A* 1999; **96**: 6908–13.
- 32 McArdle FI, Lee RJ, Gibb AP, Walsh TS. How much time is needed for hand hygiene in intensive care? A prospective trained observer study of rates of contact between healthcare workers and intensive care patients. *J Hosp Infect* 2006; **62**: 304–10.
- 33 Scheithauer S, Haefner H, Schwanz T, *et al.* Compliance with hand hygiene on surgical, medical, and neurologic intensive care units: direct observation versus calculated disinfectant usage. *Am J Infect Control* 2009; **37**: 835–41.
- 34 Sypsa V, Psichogiou M, Bouzala G-A, Hadjihannas L, Hatzakis A, Daikos GL. Transmission dynamics of carbapenemase-producing Klebsiella pneumoniae and anticipated impact of infection control strategies in a surgical unit. *PloS One* 2012; **7**: e41068.
- 35 REA-Raisin network. Surveillance des infections nosocomiales en réanimation adulte / 2012 / Maladies infectieuses / Rapports et synthèses / Publications et outils / Accueil. http://invs.santepubliquefrance.fr/Publications-et-outils/Rapports-et-syntheses/Maladies-infectieuses/2012/Surveillance-des-infections-nosocomiales-en-reanimation-adulte (accessed Sept 15, 2016).

- 36 Robert J, Péan Y, Varon E, *et al.* Point prevalence survey of antibiotic use in French hospitals in 2009. *J Antimicrob Chemother* 2012; **67**: 1020–6.
  - 37 Venier AG, Zaro-Goni D, Pefau M, *et al.* Performance of hand hygiene in 214 healthcare facilities in South-Western France. *J Hosp Infect* 2009; **71**: 280–2.

# **Supplementary material**

### Supplementary Text S2- Sensitivity analyses

### 1. Impact of prevalence on admission on health outcomes and costs

The prevalence of ESBL-PE carriage on ICU admission highly influenced health outcomes and costs (**Supplementary Figure S1**) as well as the ranking of the strategies (**Supplementary Table S1**). However, improvement of HH to 80%/80% (Strategy 2) remained the most cost saving strategy. if the prevalence on admission was from 5% to 50%. If 50% of patients carried ESBL-PE on ICU admission. Strategy 2 was dominated by screening + cohorting (Strategy 6).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 **BMJ Open** 

**Figure S1** Impact of prevalence on admission on the number of ESBL-PE infections and total cost of strategies for: (1) Base Case (reference strategy with no control intervention and hand hygiene compliance of 55%/60% before/after patient contact); (2) Hand hygiene improvement to 80%/80%; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and Antibiotic reduction; (10) Screening of all admissions. cohorting of identified carriers and Antibiotic reduction.



When the prevalence on admission was less than 15% the improvement of hand hygiene to 80%/80% (Strategy 2) was the most cost-saving strategy. The second strategy on the efficiency frontier was the combination of hand hygiene 80%/80% with antibiotic reduction (Strategy 7). When the prevalence was 15% the Strategy 10 (Screening + cohorting + ATB reduction) joined the efficiency frontier too. When the prevalence varied from 20% to 45%. Hand hygiene 80%/80% was always on the top of the ranking. followed by Screening + cohorting (Strategy 6) and Screening + cohorting + ATB reduction (Strategy 10). Finally, when 50% of patients carried ESBL-PE on ICU admission. hand hygiene was dominated by screening + cohorting (Strategy 6).

Supplementary Table S1. Results of sensitivity analysis. Cost-effectiveness of strategies under different levels of ESBL-PE carriage on admission. The prevalence on admission varied from 0.05 to 0.5.

					Incremental	
		Total cost/		Incremental	effect (∆E)	
	Prevalence	100	Infections/	cost/100	(infections	
	on	admissions	100	admissions	avoided/100	
Strategy	admission	(€)	admissions	(∆C) (€)	admissions)	ICER ( $\Delta C/\Delta E$ ) ( $\in$ / infection avoided)
2: Hh 80%/80%	0.05	41 225	1.01			
7: Hh 80%/80% + ATB reduction		49 639	0.94	8 414	0.07	120 200
6: Screening + cohorting		51 542	1.09			Dominated
10: Screening + cohorting + ATB reduction		58 218	0.94			Dominated by extended dominance
1: Base case		60 031	2.68			Dominated
2: Hh 80%/80%	0.15	80 556	2.89			
7: Hh 80%/80% + ATB reduction		88 498	2.73	7 942	0.16	49 638
10: Screening + cohorting + ATB reduction		94 313	2.63	5 815	0.09	64 611
6: Screening + cohorting		86 713	2.80			Dominated by extended dominance
1: Base case		105 344	4.99			Dominated

2: Hh 80%/80%	0.0	00.040	0 77			
	0.2	98 843	3.77			
6: Screening + cohorting		103 075	3.61	4 232	0.16	26 450
10: Screening + cohorting + ATB reduction		112 565	3.49	9 490	0.12	79 083
7: Hh 80%/80% + ATB reduction		107 275	3.59			Dominated by extended dominance
1: Base case		123 231	5.90			Dominated
6: Screening + cohorting	0.5	201 668	8.43			
10: Screening + cohorting + ATB reduction		216 470	8.36	14 802	0.07	211 457
2: Hh 80%/80%		202 288	8.72			Dominated
1: Base case		210 957	10.35			Dominated
7: Hh 80%/80% + ATB reduction		215 102	8.54			Dominated

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2. Impact of **probability of infection** in patients colonized with ESBL-PE.

Results of sensitivity analysis for a lower and higher probability of infection in colonized ESBL-PE patients versus the basecase analysis are presented in **Supplementary Table S2 A and B.** Overall main results of our analysis were robust to variation in the probability of infection of

colonized patients (8% or 30% vs. 16% in our central analysis).

Strategy	Total cost/	Infections/	Incremental	Incremental	ICER (ΔC/ΔE) (€ / infection avoided)
	100	100	cost/100	effect (ΔE)	
	admissions	admissions	admissions	(infections	
	(€)		(∆C) (€)	avoided/100	
				admissions)	
3: Hh 55%/80%	50 550	1.71			
2: Hh 80%/80%	52 428	1.41	1 878	0.304	6 178
7: Hh 80%/80% + ATB reduction	61 945	1.33	9 517	0.079	120 468
10: Screening + cohorting + ATB reduction	68 673	1.29	6 728	0.046	146 261
5: Screening + contact precautions	54 930	2.10			Dominated
1: Base case	56 792	2.43			Dominated
8: Hh 55%/80% + ATB reduction	58 173	1.53			Dominated by extended dominance
6: Screening + cohorting	59 424	1.37			Dominated by extended dominance
9: Screening + contact precautions + ATB reduction	59 706	1.74			Dominated
4: ATB reduction	60 360	1.99			Dominated

Supplementary Table S2A Results of sensitivity analysis. Cost-effectiveness of strategies when the probability of infection was set at 0.08.

Strategy	Total cost/ 100 admissions (€)	Infections/ 100 admissions	Incremental cost/100 admissions (ΔC) (€)	Incremental effect (ΔE) (infections avoided/100 admissions)	ICER (ΔC/ΔE) (€ / infection avoided)
2: Hh 80%/80%	126 096	5.29			
7: Hh 80%/80% + ATB reduction	131 487	4.99	5 391	0.300	17 970
10: Screening + cohorting + ATB reduction	135 825	4.82	4 338	0.170	25 518
6: Screening + cohorting	130 896	5.13			Dominated by extended dominance
8: Hh 55%/80% + ATB reduction	137 917	5.72			Dominated
3: Hh 55%/80%	140 124	6.43			Dominated
9: Screening + contact precautions + ATB reduction	150 335	6.50			Dominated
5: Screening + contact precautions	164 370	7.85			Dominated
4: ATB reduction	164 513	7.48			Dominated
1: Base case	183 951	9.13			Dominated



3. Impact of lower compliance with HH than in the base case scenario.

If the baseline compliance with HH was lower than in our core analysis. e.g. 20% before and 40% after patient contact. HH improvement. e.g. to

50%/60% was confirmed to be cost-saving. Screening + cohorting was the second strategy with an ICER of €3 236/infection avoided vs. HH

improvement (Supplementary Table S3A).

Supplementary Table S3A Results of sensitivity analysis. Cost-effectiveness of strategies when the baseline compliance with Hand hygiene was set to 20%/40% (instead of 55%/60%).

Strategy	Total cost/ 100	Infections/	Incremental	Incremental	ICER ( $\Delta C/\Delta E$ ) ( $\in$ / infection avoided)
	admissions (€)	100	cost/100	effect (∆E)	
		admissions	admissions	(infections	
			(∆C) (€)	avoided/100	
				admissions)	
2: Hh 50%/60%	81 676	3.14			
6: Screening + cohorting	82 867	2.772	1 191	0.368	3 236
10: Screening + cohorting + ATB	91 134	2.632	8 267	0.14	59 050
reduction					
3: Hh 20%/60%	85 059	3.758			Dominated
8: Hh 20%/60% + ATB reduction	87 440	3.284			Dominated
7: Hh 50%/60% + ATB reduction	88 144	2.891			Dominated by extended dominance
9: Screening + contact precautions +	93 552	3.741			Dominated
ATB reduction					
4: ATB reduction	95 195	4.075			Dominated
5: Screening + contact precautions	97 350	4.571			Dominated
1: Base case Hh 20% 40%	100 905	5.02			Dominated

### BMJ Open

If the baseline compliance with HH was 40% before and 50% after patient contact. HH improvement. e.g. to 60%/70% was confirmed to be cost-

saving. Screening + cohorting was the second strategy with an ICER of €546/infection avoided vs. HH improvement (Supplementary Table S3B).

Supplementary Table S3B Results of sensitivity analysis. Cost-effectiveness of strategies when the baseline compliance with Hand hygiene was set to 40%/50% (instead of 55%/60%).

Strategy	Total cost/ 100 admissions (€)	Infections/ 100 admissions	Incremental cost/100 admissions (ΔC) (€)	Incremental effect (ΔE) (infections avoided/100 admissions)	ICER (ΔC/ΔE) (€ / infection avoided)
2: Hh 60%/70%	84 331	3.191			
6: Screening + cohorted staff + contact precautions	84 561	2.77	230	0.421	546
10: Screening + cohorted staff + contact precautions + ATB reduction	92 803	2.629	8 242	0.141	58 454
3: Hh 40%/70%	86 359	3.698	0	0	Dominated
8: Hh 40%/70% + ATB reduction	89 451	3.26	0	0	Dominated
7: Hh 60%/70% + ATB reduction	91 171	2.96	0	0	Dominated by extended dominance
9: Screening + contact precautions + ATB reduction	96 676	3.78	0	0	Dominated
4: ATB reduction	98 264	4.099	0	0	Dominated
5: Screening + contact precautions	98 308	4.495	0	0	Dominated
1: Base case Hh 40%/50%	102 292	4.949	0	0	Dominated

# 4. Impact of lower sensitivity to detect ESBL-PE carriage in screening strategies.

If the sensitivity to detect ESBL-PE on ICU admission was lower than in our core analysis and varied from 80% to 95%. HH 80%/80% (Strategy

2) and HH 80%/80% and antibiotic reduction (Strategy 7) always dominated the screening strategies (Strategy 6 and 10) (Supplementary Figure

**S2**).

**Figure S2** Cost-effectiveness plane showing the incremental health benefits (infections avoided) and costs of screening and cohorting strategies relative to the Strategy 2. The sensitivity of detection of ESBL carriers at ICU admission in screening and isolation strategies varied from 80% to 95%.

Strategies are: (2) Hand hygiene improvement to 80%/80%; (6) Screening of all admissions and cohorting of identified carriers; (7) Hand hygiene improvement to 80%/80% and Antibiotic reduction; (10) Screening of all admissions. cohorting of identified carriers and Antibiotic reduction.



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table S4 Impact of a lower, 30% reduction in antibiotic prescribing.

Strategy	Total cost/ 100 admissions (€)	Infections/ 100 admissions	Incremental cost/100 admissions (ΔC) (€)	Incremental effect (ΔE) (infections avoided/100 admissions)	ICER (ΔC/ΔE) (€ / infection avoided)
2: Hh 80%/80%	80 556	2.890	0		
7: Hh 80%/80% + ATB reduction 30%	89 254	2.761	8 698	0.129	67 426
10: Screening + cohorted staff + contact precautions + ATB reduction 30%	95 343	2.680	6 089	0.081	75 173
3: Hh 55%/80%	84 751	3.514	0		
6: Screening + cohorted staff + contact precautions	86 713	2.804	0		
8: Hh 55%/80% + ATB reduction 30%	91 059	3.242	0		
5: Screening + contact precautions	96 716	4.294	0		
9: Screening + contact precautions + ATB reduction 30%	97 620	3.720	0		
4: ATB reduction 30%	104 271	4.285	0		
1: Base case	105 344	4.989	0		

Supplementary Table S5A Impact of infection control nurse's time working on the hand hygiene program and the level of hand hygiene achieved on model predictions compared to the Base case strategy. The cost-effective ratio (CER) was calculated when the hand hygiene strategy was more expensive but more effective that the base case.

Level of hand hygiene	Level of hand hygiene				
before contact with	after contact with	Mean increase in hand	Number of infections	Total cost /100	
patient (%)	patient (%)	hygiene from baseline (%)	/100 admissions	admissions (€)	CER (vs base case)
Base case					
55	60	-	4.99	105 344	-
ICN working on Hh progr	am at 1/4 time				
55	60	0.0	4.99	112 783	Hh strategy dominated by the Base case
60	60	2.5	4.65	106 497	3 433
55	65	2.5	4.64	106 366	2 965
60	65	5.0	4.29	99 722	Base case dominated by the Hh strategy
:	:		:	:	Base case dominated by the Hh strategy
80	80	22.5	2.89	74 103	Base case dominated by the Hh strategy
ICN working on Hh strate	egy at 1/2 time		10		
55	60	0.0	4.99	120 222	Hh strategy dominated by the Base case
60	60	2.5	4.65	113 789	25 146
55	65	2.5	4.64	113 675	24 160
60	65	5.0	4.29	106 861	2 182
65	65	7.5	4.02	101 484	Base case dominated by the Hh strategy
:					Base case dominated by the Hh strategy
80	80	22.5	2.89	80 556	Base case dominated by the Hh strategy
ICN working on Hh strate	egy at full time				
55	60	0.0	4.99	135 100	Hh strategy dominated by the Base case
60	60	2.5	4.65	128 375	68 573
55	65	2.5	4.64	128 292	66 551
60	65	5.0	4.29	121 137	22 712
65	65	7.5	4.02	115 442	10 397

55	70	5.0	4.22	119 423	18 278
60	70	7.5	3.98	114 488	9 029
65	70	10.0	3.75	110 092	3 823
70	70	12.5	3.53	105 942	411
55	75	7.5	3.85	111 932	5 806
60	75	10.0	3.68	108 574	2 468
65	75	12.5	3.51	105 357	9
70	75	15.0	3.32	101 754	Base case dominated by the Hh strategy
:	:				Base case dominated by the Hh strategy
80	80	22.5	2.89	93 462	Base case dominated by the Hh strategy

80 22.5 2.89 95 402 Dave commen

Supplementary Table S5B Impact of infection control nurse's time working on the hand hygiene strategy and the level of hand hygiene achieved on model predictions compared to the Screenig and cohorting strategy. The cost-effective ratio (CER) was calculated when the screening and cohorting strategy was more expensive but more effective that the hand hygiene.

Level of hand hygiene	Level of hand hygiene		Number of		
before contact with	after contact with	Mean increase in hand	infections/100	Total cost/100	
patient (%)	patient (%)	hygiene from baseline (%)	admissions	admissions (€)	CER (vs Hand hygiene strategy)
Screening and cohorting					
55 (with non cohorted	60 (with non				
patients)	cohorted patients)		2.80	86 713	
ICN working on Hh strateg	y at 1/4 time				
55	60	0.0	4.99	112 783	Hh strategy dominated by Screening and cohorting
:	:		:	:	Hh strategy dominated by Screening and cohorting
70	70	12.5	3.53	85 621	1 496
55	75	7.5	3.85	91 212	Hh strategy dominated by Screening and cohorting
60	75	10.0	3.68	88 104	Hh strategy dominated by Screening and cohorting
65	75	12.5	3.51	85 102	2 283
70	75	15.0	3.32	81 748	9 554
75	75	17.5	3.15	78 568	23 561
55	80	10.0	3.51	84 751	2 763
60	80	12.5	3.38	82 408	7 507
65	80	15.0	3.24	79 993	15 442
70	80	17.5	3.12	77 946	28 012
75	80	20.0	2.99	75 742	58 203
80	80	22.5	2.89	74 103	146 278
ICN working on Hh strateg	y at 1/2 time				
55	60	0.0	4.99	120 222	Hh strategy dominated by Screening and cohorting
		:	:	:	Hh strategy dominated by Screening and cohorting
75	75	17.5	3.15	85 136	4 561 €

55					
	80	10.0	3.51	91 498	Hh strategy dominated by Screening and cohorting
60	80	12.5	3.38	89 094	Hh strategy dominated by Screening and cohorting
65	80	15.0	3.24	86 608	Hh strategy dominated by Screening and cohorting
70	80	17.5	3.12	84 516	7 023 €
75	80	20.0	2.99	82 227	23 801 €
80	80	22.5	2.89	80 556	71 424 €
ICN working on Hh strategy	y at full time				
55	60	0.0	4.99	135 100	Hh strategy dominated by Screening and cohorting
:	· · · · ·	:	:	:	Hh strategy dominated by Screening and cohorting
80	80	22.5	2.89	93 462	Hh strategy dominated by Screening and cohorting

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A)

**BMJ Open** 

**Supplementary Figure S3** Results of probabilistic sensitivity analysis. Cost-effectiveness plane shows the incremental health benefits (infections avoided) and costs for Screening and cohorting (Strategy 6). relative to horizontal strategies: A) Hand hygiene improvement to 80%/80% (Strategy 2); B) Hand hygiene improvement to 55%/80% (Strategy 3); C) Antibiotic reduction (Strategy 4). The frequency that the Strategy 6 was in one of four quadrant of CE plane is represented by "p".



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml





**Supplementary Figure S4** Results of probabilistic sensitivity analysis. Cost-effectiveness plane shows the incremental health benefits (infections avoided) and costs for Screening and contact precautions (Strategy 5). relative to horizontal strategies: A) Hand hygiene improvement to 80%/80% (Strategy 2); B) Hand hygiene improvement to 55%/80% (Strategy3); C) Antibiotic reduction (Strategy 4). The frequency that the Strategy 6 was in one of four quadrant of CE plane is represented by "p".



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A)







 Page 72 of 74

## CHEERS Checklist

Items to include when reporting economic evaluations of health interventions

# The ISPOR CHEERS Task Force Report, Consolidated Health Economic Evaluation Reporting

Standards (CHEERS)—Explanation and Elaboration: A Report of the ISPOR Health Economic Evaluations Publication Guidelines Good Reporting Practices Task Force, provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the Value in Health or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness analysis", and describe the interventions compared.	Page 1
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	Page 2
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study. Present the study question and its relevance for health policy or practice decisions.	Page 4-5
Methods			
Target population and	4	Describe characteristics of the base case population and	Dama E and
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	Supplementary Text S1
Study perspective	6	Describe the perspective of the study and relate this to the Pa costs being evaluated.	ge 7- osts" section
Comparators	7	Describe the interventions or strategies being compared and ag state why they were chosen.	e 6"Inf.control ategies" section
Time horizon	8	State the time horizon(s) over which costs and consequences _{Pa} are being evaluated and say why appropriate.	ge 5- "The model"
Discount rate	9	Report the choice of discount rate(s) used for costs and Not outcomes and say why appropriate.	applicabe- vear time horizor
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of Pa benefit in the evaluation and their relevance for the type of se analysis performed.	ge 5-"The model" ction and pp.Text S1
Measurement of effectiveness	11a	<i>Single study-based estimates:</i> Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	

	11b	<i>Synthesis-based estimates:</i> Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data.	Supp.Text S1		
Measurement and valuation of preference based outcomes	12	If applicable, describe the population and methods used to elicit preferences for outcomes.			
Estimating resources and costs	13a	<i>Single study-based economic evaluation:</i> Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity			
		costs.			
	13b	<i>Model-based economic evaluation:</i> Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research	Page 7- "Costs" section		
		methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	and Supplementary Text S1-page 7		
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the exchange rate.	Page 7- "Costs" Section, Pable 1 and Suppl.Text S1, p.5		
Choice of model	15	Describe and give reasons for the specific type of decision- analytical model used. Providing a figure to show model set structure is strongly recommended.	age 5- The model ection, Figure 1 nd Suppl.Text S1		
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	uppl.Text S1		
Analytical methods	17	Describe all analytical methods supporting the evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty.	Page 8- "Sensitivity analysis" section and Suppl.Text S1- Table 1		
Results					
Study parameters	18	Report the values, ranges, references, and, if used, probability	Table 1		
		distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is strongly	and Suppl.Text S1- Table 1		
Incremental costs and outcomes	19	For each intervention, report mean values for the main categories of estimated costs and outcomes of interest, as well as mean differences between the comparator groups. If applicable, report incremental cost affectiveness ratios	Table 2		
Characterising uncertainty	20a	Single study-based economic evaluation: Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact			
Page 75 o	ge 75 of 74		Consolidated Health Economic Evaluation Reporting Standards – CHEERS Checklist 3		
-------------------------------------------------------	-----------------------------------------	-----------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------	--
1 2 3 4 5 6 7 8 9 10 11	Characterising heterogeneity	20b 21	of methodological assumptions (such as discount rate, study perspective). <i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions. If applicable, report differences in costs, outcomes, or cost- effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information	Page 11 and Suppl.Text S2	
13 14 15 16	<b>Discussion</b> Study findings,	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the	Pages 12-17	
17 18 19	generalisability, and current knowledge		generalisability of the findings and how the findings fit with current knowledge.		
20 21 22 23 24	<b>Other</b> Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support.	Page 18	
25 26 27 28 29 30	Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	Page 18	

For consistency, the CHEERS Statement checklist format is based on the format of the CONSORT statement checklist

The **ISPOR CHEERS Task Force Report** provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the Value in Health link or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp

The citation for the CHEERS Task Force Report is:

Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS)—Explanation and elaboration: A report of the ISPOR health economic evaluations publication guidelines good reporting practices task force. Value Health 2013;16:231-50.