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SUPPLEMENTARY MATERIALS 

 

section S1. Derivation of T2S model 

 

Mask design 

Two-dimensional (2D) separable mask patterns are constructed via the outer product of two 1D 

sequences, 𝑚1and 𝑚2 of length 𝑁, where each entry in the sequences is either −1 or +1. In the resulting 

2D matrix, −1 entries are assigned to closed apertures of the mask and +1 entries are assigned to open 

apertures of the mask (14, 16). Since closed apertures block light, they are instead assigned value 0 in 

the 2D matrix. The 2D mask pattern can then be written as the following matrix of dimensions 𝑁 ×𝑁 

 

𝑀 =
1+𝑚1𝑚2

𝑇

2
       (S1) 

 

Imaging model 

Image formation for FlatScope can be described as follows. Let the scene, mask, and sensor be at the 

distances shown in fig. S7A, where 𝑑1 is the distance between scene and mask, and 𝑑2 is the distance 

between mask and sensor. Let the discretized scene be written as 𝑋, discretized mask as 𝑀 and 

discretized sensor measurement as 𝑌. For convenience, we will consider these quantities as matrices and 

index them by rows and columns. For example, 𝑋(𝑢, 𝑣) is the 𝑢𝑡ℎ row and 𝑣𝑡ℎ column of 𝑋. For 

convenience, we will assume that 𝑋,𝑀, 𝑌 are of the same dimension 𝑁 × 𝑁. In the following 

paragraphs, we will derive the image formation model for a scene at a single depth and simplify the 

notations by dropping the subscript 𝑑 in Eq. 1 of main text. 

 

When the scene element 𝑋(𝑢, 𝑣) is active (or illuminated), the sensor records a magnified version of the 

mask centered around 𝑀(𝑢, 𝑣) and scaled by the scene intensity 𝑋(𝑢, 𝑣). The magnification 𝛼 =
𝑑1+𝑑2

𝑑1
 

can be calculated using similar triangles as shown in fig. S7A. An additional term that needs to be 

considered is the sensor pixel’s response to light rays at different angles. Figure S7B shows the pixel’s 

response profile (PRP). Attenuation due to the pixel’s response causes the formation of a local pattern 

on the sensor when a point source, such as a fluorescent bead, is imaged by FlatScope (see Main Text, 

Fig. 2A,B). We will denote the pixel’s response by 𝐶. The sensor measurement at (𝑢′, 𝑣′) can then be 

written as 

 

  𝑌(𝑢′, 𝑣′) =  ∑ ∑ 𝑋(𝑢, 𝑣) 𝑀 (𝑢 +
𝑢′−𝑢

𝛼
, 𝑣 +

𝑣′−𝑣

𝛼
)  𝐶(𝑢′ − 𝑢, 𝑣′ − 𝑣)𝑣 .𝑢   (S2) 

 

The mask design procedure above enables us to write the following 

 

𝑀(𝑢 +
𝑢′ − 𝑢

𝛼
, 𝑣 +

𝑣′ − 𝑣

𝛼
) =  

1

2
+
𝑚1 (𝑢 +

𝑢′ − 𝑢
𝛼 ) 𝑚2 (𝑣 +

𝑣′ − 𝑣
𝛼 ) 

2
  

 

Since the pixels are rectangular, each pixel’s response is separable as well 

 

𝐶(𝑢′ − 𝑢, 𝑣′ − 𝑣) = 𝑐1(𝑢
′ − 𝑢) 𝑐2(𝑣

′ − 𝑣) 



 

where 𝑐1 is the pixel’s response along rows and 𝑐2 is the pixel’s response along columns (as show in fig. 

S7B). Substituting the above two equations in eq. S2 yields  

 

𝑌(𝑢′, 𝑣′) =  ∑∑[
1

2
𝑐1(𝑢

′ − 𝑢)𝑋(𝑢, 𝑣)𝑐2(𝑣
′ − 𝑣)

𝑣𝑢

+
1

2
𝑐1(𝑢

′ − 𝑢) 𝑚1 (𝑢 +
𝑢′ − 𝑢

𝛼
)  𝑋(𝑢, 𝑣) 𝑚2 (𝑣 +

𝑣′ − 𝑣

𝛼
) 𝑐2(𝑣

′ − 𝑣)]  

 

⇒ 𝑌(𝑢′, 𝑣′) =  
1

2
∑𝑐1(𝑢

′ − 𝑢) [∑𝑋(𝑢, 𝑣)𝑐2(𝑣
′ − 𝑣)

𝑣

]

𝑢 

+
1

2
∑𝑐1(𝑢

′ − 𝑢) 𝑚1 (𝑢 +
𝑢′ − 𝑢

𝛼
)

𝑢

 [∑𝑋(𝑢, 𝑣) 𝑚2 (𝑣 +
𝑣′ − 𝑣

𝛼
) 𝑐2(𝑣

′ − 𝑣)

𝑣

] 

 

Since the summation along the rows and summation along the columns have separated in the above 

equation, we can rewrite it concisely as 

 

     𝑌 = 𝑃𝑜𝑋𝑄𝑜
𝑇 + 𝑃𝑐𝑋𝑄𝑐

𝑇        (S3) 

 

where 𝑃𝑜 and 𝑄𝑜 implement the effects of 𝑐1 and 𝑐2, respectively, and 𝑃𝑐 and 𝑄𝑐 implement the effects of 

𝑚1 and 𝑚2, respectively. Equation S3 shows that the sensor measurements can be written as a 

superposition of two separable functions. We call this superposition the Texas Two-Step model (T2S).  

 

Note that 𝑃𝑜 and 𝑄𝑜 are not functions of the mask and, in fact, the first term in eq. S3 models the effect 

when an open (or no) mask is placed in front of the sensor. On the other hand, 𝑃𝑐 and 𝑄𝑐 are functions of 

the mask pattern (i.e., 𝑚1, 𝑚2) and hence the second separable term in eq. S3 models the effect due to 

the coding of the mask. The subscripts o and c refer to “open” and “coding”, respectively. This 

interpretation is visually shown in Fig. 2. Also note that, 𝑃𝑜 and 𝑄𝑜 have positive entries (since the 

sensor pixel’s response is always positive), while 𝑃𝑐 and 𝑄𝑐 have both positive and negative entries. 

 

The 1D sequences 𝑚1 and 𝑚2 are chosen to have half of their entries equal to −1/+1. Therefore, 𝑚1 

and 𝑚2 are orthogonal to a sequence with all +1 entries. Consequently, corresponding columns of 𝑃𝑜 

(no mask component) and 𝑃𝑐 (coding component) are orthogonal. The same is true for corresponding 

columns of 𝑄𝑜 and 𝑄𝑐. We exploit this fact to expedite the calibration process (see Model calibration). 

 

section S2. Computational tractability 

 

There are two aspects to consider when discussing computational tractability: memory requirements and 

runtime. Either large memory requirement or long run time is undesirable in a computational imaging 

system, particularly if real time processing is desired. In the following discussion, we will show that a 

separable mask that conforms to the T2S model requires far less memory and run time as compared to 

an arbitrary mask. 

 



First, we consider the advantages of the T2S model in terms of the total number of parameters in the 

linear mapping from the scene to the measurements. This both reduces the effort for system calibration 

and speeds up the image reconstruction run time. To be general, consider a scene 𝑋 and sensor 

measurement 𝑌 as matrices of size (or dimensions) 𝑀 ×𝑁. For an arbitrary amplitude mask, the 

following generalized linear model holds 

 

      𝑦 = Φ𝑥      (S4) 

 

where, 𝑥 and 𝑦 are the vectorized versions of 𝑋 and 𝑌, respectively, formed by concatenating the 

columns of each matrix into a single, long vector. Both 𝑦 and 𝑥 are of length 𝑀𝑁, while Φ is 𝑀𝑁 ×

𝑀𝑁. Therefore, Φ contains 𝑀2𝑁2 or O(N4) elements if 𝑀 ≅ 𝑁.  

 

In contrast, a separable mask yields to the T2S model 

 

𝑌 = 𝑃𝑜𝑋𝑄𝑜
𝑇 + 𝑃𝑐𝑋𝑄𝑐

𝑇 

 

where, 𝑃𝑜 and 𝑃𝑐 are each of size 𝑀 ×𝑀 and 𝑄𝑜 and 𝑄𝑐 are each of size 𝑁 × 𝑁. This reduces the total 

number of elements in the mapping from the scene to measurements to 2(𝑀2 + 𝑁2) or O(N2) if 𝑀 ≅ 𝑁. 

 

Second, we consider the advantages of the T2S model in terms of the amount of memory required to 

store the parameters in the linear mapping from the scene to the measurements. For the FlatScope 

prototype presented here, 𝑀 = 1000 and 𝑁 = 1300. Hence, for an arbitrary (i.e., non-separable) mask, 

the matrix Φ will contain 1.7 trillion elements. To be robust to quantization noise, we represent each 

element as a 32-bit floating point datatype. Therefore, storing the matrix Φ would require 6 TB of 

memory, which is beyond the capabilities of both commercially available desktop computers and 

memory optimized cloud computing services (e.g., Amazon EC2 X1 currently offers memory of 2TB). 

This necessitates breaking Φ into smaller chunks for computation, which drastically increases the data 

communication overhead between storage and RAM, thereby superseding any hardware speedups, 

yielding intractable run times of several weeks to months. Needless to say, multi-depth reconstruction 

that requires multiple Φ matrices becomes practically impossible. 

 

By using a separable mask, the total memory requirement for the matrices (𝑃𝑜 , 𝑄𝑜, 𝑃𝑐, 𝑄𝑐) in the T2S 

model is just 21 MB, a savings of five orders of magnitude over a non-separable approach. Due to low 

memory usage and reduced size of matrices, the gradient steps required for the iterative image 

reconstruction algorithms (see Reconstruction algorithms in Main Text) can be computed repeatedly 

with low computational cost. Additionally, we can use a parallel implementation on a GPU, which 

usually has less memory than a CPU. With a sub-optimal Nvidia Tesla GK210 GPU implementation 

using MATLAB, we achieved a single depth reconstruction in under 10 s and a 41-layer 3D 

reconstruction in under 15 min. An optimized GPU implementation will provide an even larger speedup. 

 

 

section S3. Model calibration 

 

FlatScope calibration relies on an observation that if the scene is separable (rank-1), then the FlatScope 

measurement is rank-2. For example, if the scene has only the 𝑖𝑡ℎ row active (or illuminated), then the 



scene can be written as 𝑋𝑖 = 𝑒𝑖𝟏
𝑇, where 𝑒𝑖 is a sequence of zeros with only the 𝑖𝑡ℎ element to be 1 and 

𝟏𝑇 is a sequence of all 1s. Then the FlatScope measurement can be written as 

 

𝑌𝑖 = (𝑃𝑜𝑒𝑖)(𝑄𝑜𝟏)
𝑇 + (𝑃𝑐𝑒𝑖)(𝑄𝑐𝟏)

𝑇 = 𝑝𝑜𝑖 𝑞𝑜
𝑇 + 𝑝𝑐𝑖 𝑞𝑐

𝑇 

 

Here, 𝑝𝑜𝑖 and 𝑝𝑐𝑖 are the 𝑖𝑡ℎ columns of 𝑃𝑜 and 𝑃𝑐, respectively, and 𝑞𝑜 and 𝑞𝑐 are the sums of columns 

of 𝑄𝑜 and 𝑄𝑐, respectively. As noted in the section S1, 𝑝𝑜𝑖 and 𝑝𝑐𝑖 are orthogonal and can be computed 

(up to a scaling factor) via the Singular Value Decomposition (SVD) of 𝑌𝑖 truncated to the two largest 

singular values. Since the sensor measurements are always positive, the truncated SVD of 𝑌𝑖 yields one 

vector with all positive entries and another vector with both positive and negative entries. The positive 

vector is assigned to 𝑝𝑜𝑖, and the other vector is assigned to 𝑝𝑐𝑖. By scanning the rows of the scene, we 

can compute all the entries in 𝑃𝑜 and 𝑃𝑐. Similarly, the columns of 𝑄𝑜 and 𝑄𝑐 can be calibrated by 

scanning along the columns of the scene. Scanning the rows and columns of the scene is physically done 

by translating a line slit (see Methods), as shown in fig. S1. The transfer functions {𝑃𝑜 , 𝑄𝑜, 𝑃𝑐, 𝑄𝑐} are 

dependent on the distance of the scene (𝑑1) and can be calibrated for each depth by first translating the 

line slit to the required depth and then scanning the FOV.  

 

Note that the number of calibration images needed is equal to the sum of the number of columns and 

number of rows of scene 𝑋. If the scene is of size 𝑁 ×𝑁, then the number of calibration images needed 

is 2𝑁. This is far less than the 𝑁2 number of calibration images needed for a generalized linear model 

mentioned in eq. S4. 

 

 

section S4. Gradient direction for iterative optimization 

 

Here we show the gradient direction needed for optimization problems mentioned in the methods section 

of the main text. 

 

For single depth reconstruction, let us define the forward operator 𝐴𝑑(·) and a transpose operator 𝐴𝑑
𝑇(·) 

as follows 

 

𝐴𝑑(𝑋𝑑) =  𝑃𝑜𝑑𝑋𝑑𝑄𝑜𝑑
𝑇 + 𝑃𝑐𝑑𝑋𝑑𝑄𝑐𝑑

𝑇  ,            𝐴𝑑
𝑇(𝑌) =  𝑃𝑜𝑑

𝑇 𝑌𝑄𝑜𝑑 + 𝑃𝑐𝑑
𝑇 𝑌𝑄𝑐𝑑  

 

Then the gradient direction for optimization Eq. 3 in the main text is 

 

∇ =  −2𝐴𝑇(𝑌) + 2𝐴𝑇(𝐴(𝑋𝑑)) + 2𝜆2𝑋𝑑 

 

The gradient direction for optimization Eq. 4 in the main text is 

 

∇ =  −2𝐴𝑇(𝑌) + 2𝐴𝑇(𝐴(𝑋𝑑)) 

 

For 3D reconstruction, let us define the forward operator 𝐴𝐷(·) and a transpose operator 𝐴𝐷
𝑇 (·) as 

follows 

 



𝐴𝐷(𝑋𝐷) =  ∑(𝑃𝑜𝑑𝑋𝑑𝑄𝑜𝑑
𝑇 + 𝑃𝑐𝑑𝑋𝑑𝑄𝑐𝑑

𝑇 )

𝐷

𝑑=1

 

 

𝐴𝐷
𝑇 (𝑌) =  ∑(𝑃𝑜𝑑

𝑇 𝑌𝑄𝑜𝑑 + 𝑃𝑐𝑑
𝑇 𝑌𝑄𝑐𝑑 )

𝐷

𝑑=1

 

 

Then the gradient direction for optimization Eq. 5 in the main text is 

 

∇ =  −2𝐴𝐷
𝑇 (𝑌) + 2𝐴𝐷

𝑇 (𝐴𝐷(𝑋𝐷)) 

 

 

section S5. MURA: A separable pattern 

 

Modified Uniformly Redundant Array (MURA) (27) has many attractive properties that have motivated 

the pattern’s use in astronomy, fast neutron, and gamma-ray imaging. Here we show that MURA is 

separable and hence can be used as a mask pattern for FlatScope. 

 

Let 𝑀 represent the two-dimensional MURA pattern. Given a prime number 𝑝 of the form 𝑝 = 4𝑚 + 1, 

MURA is of size 𝑝 × 𝑝. Let 𝑖 = 0,… , 𝑝 − 1 index the rows and 𝑗 = 0,… , 𝑝 − 1 index the columns of 𝑀. 

Then the MURA pattern can be written as(27) 

 

𝑀𝑖𝑗 =

{
 

 
0 if 𝑖 = 0,
1 if 𝑗 = 0, 𝑖 ≠ 0,
1 if 𝐶𝑖𝐶𝑗 = +1,

0 if 𝐶𝑖𝐶𝑗 = −1,

 

where 

 

𝐶𝑞 = {
+1 if 𝑞 is a quadratic residue modulo 𝑝,
−1 otherwise.

 

 

An integer 𝑞 is called a quadratic residue modulo 𝑝 if there exists an integer 𝑥 such that: 𝑥2 mod 𝑝 =

𝑞 mod 𝑝. 

 

To make MURA pattern 𝑀 separable, we drop the first row (𝑖 = 0) and the first column (𝑗 = 0) and 

redefine 𝑀 of size (𝑝 − 1) × (𝑝 − 1) as 

 

𝑀𝑖𝑗 = {
1 if 𝐶𝑖𝐶𝑗 = +1,

0 if 𝐶𝑖𝐶𝑗 = −1.
 

 

If we define 𝐶𝐼 = {𝐶𝑖}𝑖=1
𝑝

 and 𝐶𝐽 = {𝐶𝑖}𝑖=1
𝑝

, 𝑀 can then be written in the separable form of eq. S1 as 

follows 

 

𝑀 = 
1 + 𝐶𝐼𝐶𝐽

𝑇

2
 



 

section S6. FlatCam model: An approximation to the T2S model 

 

Given a separable mask, the T2S model applies at all scene distances. At large working distances, it can 

be simplified to the FlatCam (14, 16) imaging model, which features only one and not two separable 

terms. At large working distances, each scene element acts like a source of plane waves resulting in a 

global effect on the sensor as opposed to a localized effect. The global effect renders the open mask 

component (𝑃𝑜𝑋𝑄𝑜
𝑇 term in eq. S3) of the T2S model as a scene-dependent constant. This constant can 

be subtracted using a heuristic method (like averaging), yielding a single separable model: 𝑌FlatCam =

𝑃𝑐𝑋𝑄𝑐
𝑇 (second term in eq. S3). FlatCam’s single separable model, as proposed by Asif et al. (14), is an 

approximation to the T2S model and holds true only for large scene distances. The invariance of the T2S 

model to scene distance and the restricted capability of the FlatCam model are shown through 

simulation in fig. S3. Note that the simulated scene in the figure is fairly dense; for a sparser scene, the 

distance for a quality reconstruction using FlatCam would be far greater than the 2.5 mm shown. 

 

section S7. Diffraction effects and T2S model 

 

The derivation of the T2S model in section S1 is based on geometric optics; but at the scale of our mask 

features, diffraction effects from wave optics can have a significant impact. To quantify the errors 

caused when not incorporating wave optics, we compare the raw point spread function (PSF) of our 

prototype with the T2S approximation of the PSF. The comparison is shown in fig. S10. The raw PSF is 

captured by illuminating a 5 μm precision pinhole (Edmunds Optics, #38-537) with a wide-angle 

diffuser. The pinhole acts like a point source when illuminated with a diffuser and is placed at a depth 

250 μm from the FlatScope prototype. We see from fig. S10 that there is a small difference between the 

raw captured PSF and the T2S approximation, with an average error of 12.6%. In our experiments, we 

use the raw captured images for reconstruction. Notwithstanding the geometrical approximation, we can 

reliably reconstruct scenes (as shown in Figs. 1,3,4 and 5) using the T2S model. 

 

section S8. Light collection 

 

Fluorophores in samples often provide only a small amount of light, which lensed systems focus onto 

the sensor. We consider light collection for FlatScope compared to traditional lensed microscopes with 

comparable resolution capabilities (fig. S11). We calculate 𝐿𝑖𝑔ℎ𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 % = 0.5[1 − cos(𝜃)], 

where 𝜃 = sin−1(𝑁𝐴) for the microscope objectives and 𝜃 equal to FWHM/2 of the PRP for FlatScope. 

For microscope objectives, use of a GFP emission filter was assumed, and for FlatScope the 50% closed 

aperture amplitude mask and absorption filter were taken into consideration (509 nm wavelength used 

for calculations). It should be noted, that although FlatScope theoretically performs better than the 

lensed based systems, these calculations do not account for noise introduced during reconstruction 

which can degrade the image. 

 

section S9. Impact of sensor saturation 

 

In the absence of a focusing lens, the light from any point in a fluorescent sample is spread across 

multiple pixels. Hence, for a given exposure duration (those common in fluorescence microscopy), a 

lensed system might saturate, but FlatScope would likely not. If saturation occurs in a specific region, 



the artifacts of reconstruction are localized around that region and don’t affect farther locations. In 

practice, we want to avoid any nonlinear effects like saturation since our model and reconstructions are 

based on a linear sensor response. In the future, we may borrow ideas from high dynamic range (HDR) 

photography to combine multi-exposure captures to ensure quality reconstruction for very high contrast 

samples. 

  



 

 

 

 

 
fig. S1. Calibration setup. (A) Side view of the calibration setup (not to scale) showing the LED array, 

wide angle diffuser (~10 cm above the LEDs), target with line slit (~1 cm above the diffuser) and 

FlatScope (filter, mask, spacer & sensor). (B) Calibration of rows by translating the horizontal slit target 

along the y-axis. (C) Calibration of columns by translating the vertical slit target along the x-axis.  

 

 

 

 

 
fig. S2. Digital focusing. We perform, by simulation, a focal stack reconstruction of a resolution target 

placed at 300 μm from FlatScope. (A) Three z-slices from the focal stack are shown, 280 μm, 300 μm 

and 320 μm. We observe that the reconstructed z-slice appears sharpest at the true depth (300 μm) of the 

target. (B) Modulation Transfer Function (MTF) plot for elements 3 and 7. Note that the MTF peaks at 

the true sample depth.  

  



 

 
fig. S3. Simulation comparison of bare sensor, FlatScope, and FlatCam. Simulated 2D plane 

reconstructions are shown at depths 0.083 mm, 1.5 mm and 2.5 mm from respective systems. Images are 

reconstructed at the known depths. (A) Reconstruction of bare sensor decays rapidly with increasing 

depth. (B) Reconstruction of FlatScope shows high resolution and stays fairly stable with increasing 

depth. (C) FlatCam is unable to reconstruct at smaller depths due to limitations of the model with a 

single separable term. On the other hand, the T2S model of FlatScope can handle all depths. At larger 

depths, FlatCam and FlatScope reconstructions are comparable. 

  



 

 

fig. S4. 3D volume reconstruction accuracy. 3D reconstruction of fluorescent beads in PDMS films at 

different concentrations. (A) Maximum projection of the ground truth captured with a confocal 

microscope (10x objective). (B) Maximum projection of FlatScope 3D reconstruction. (C) Markers for 

true positives (blue), misses (red), and false discoveries (yellow) for FlatScope reconstructions. Note 

that some reconstructed beads appear smaller than ground truth due to regularization. Scale bar, 200 μm. 

(D) Plot of true positive rate and false discovery rate as a function of concentration of fluorescent beads. 

 

 

 

 

fig. S5. Fabrication of FlatScope. Steps for fabricating the amplitude mask and spacer, aligning and 

fixing to the imaging sensor, adding the absorptive filter and insulating/protecting the device. 

 

  



 

 

 

 
fig. S6. Refractive index matching. Comparison of reconstructed images captured with different media 

between the surface of the mask and the target, (A) immersion oil, (B) H2O, and (C) air. Images were 

captured at a depth of 200 μm. Note that all images for the calibration process were captured with 

immersion oil between the surface of the mask and the target. Scale bar, 100 μm. 

 

 

 

 

 
fig. S7. T2S derivation. (A) Illustration of scene, mask and sensor positions. (B) Sensor pixel’s 2D 

response profile 𝐶(𝑢, 𝑣), which can be written as an outer product of the pixel’s response along rows 

(𝑐1(𝑢)) and the pixel’s response along columns (𝑐2(𝑣)). 

 

  



 

 

 

 

 

 

 

 

 
 

fig. S8. Aberration removal using RPCA. (A) Captured FlatScope image before aberration removal. 

(B) Processed capture without aberrations. (C) Aberrations removed by using Robust PCA. (D) 

Reconstructed image prior to Robust PCA shows large artifacts. (E) Processed reconstruction with 

aberration removal results in substantially reduced artifacts. (F) Ground truth image. Scale bars, 50 μm. 

  



 

 

 

 

 

 

 
fig. S9. Removing effects from autofluorescence. (A) Captured FlatScope image before DCT removal. 

(B) Processed capture image. (C) Reconstructed image prior to DCT removal shows excessive noise. 

(D) Processed reconstruction with DCT removal results in substantially reduced noise. Scale bars, 100 

μm. 

 



 

fig. S10. T2S model error from diffraction. (A) Raw capture by FlatScope prototype of a point source 

placed at a depth of 250 μm. The raw capture is cropped to the region of interest. (B) T2S model 

approximation of the capture. (C) Mask region illuminated by the point source. The location of the point 

source was chosen such that the illuminated mask region has a diversity in aperture sizes (white 

represents open apertures; black represents closed apertures). (D) Absolute error difference between raw 

capture and T2S model approximation. Average error is 12.64%. Scale bar, 40um. 

  



 

 

 

 
fig. S11. Light collection comparison of FlatScope and microscope objectives. (A) FOV/Cross-

section area versus resolution for FlatScope and traditional lensed research microscopes with 

comparable objectives from Olympus (1.25×/2.5×/5×, NA = 0.04/0.08/0.15), Nikon (1×/2×/4×, NA = 

0.04/0.1/0.2), and Zeiss (2.5×/5×, NA = 0.12/0.25). Note that cross-section area is a physical constraint 

imposed by the pupil diameter. (B) Light collection versus resolution comparison for FlatScope and the 

same microscopes/objectives. (C) Light collection versus FOV/Sensor area comparison for FlatScope 

and the same microscopes/objectives, where FOV/Sensor area = 1/magnification2. Note that the light 

collection % for FlatScope does not account for noise introduced in reconstruction.  

 

 

 

 

 

movie S1. Digital focusing of simulated resolution target. Left shows the ground truth image of the 

simulated resolution target located at 300 μm. Right shows the z-slices through the reconstructed focal 

stack at depths ranging from 240 μm to 360 μm.  

 

movie S2. Fluorescent beads flowing in microfluidic channels of different depths. The sample is a 

3D volume containing fluorescent beads flowing through two separate microfluidics channels (captured 

at 18 FPS, playback at half-speed). The flowing beads are at estimated depths of 265 μm and 355 μm 

and are false-colored cyan and red, respectively (dashed lines indicate approximate location of 

microfluidic channels). Top left shows a render of FlatScope and the microfluidic channels. Bottom left 

shows the capture by FlatScope. Top and bottom right show the FlatScope 3D reconstructed video from 

an XY and XZ perspective, respectively. 

  

 


