m¹A-MAP protocol

1. m¹A immunoprecipitation

a. Adjust the volume of 40 μ g polyA⁺ RNA to 72 μ L with RNase free water. Add 8 μ L RNA Fragmentation Buffer (10x) and mix well by pipetting up and down. Incubate in a preheated thermal cycler for 5 minutes at 94 °C and then chill on ice immediately.

b. Add 8 μ L 10× RNA Fragmentation Stop Solution to the mixture and fragmented RNA is purified by ethanol precipitation. Dissolve the RNA pellets with 105 μ L RNase free water completely.

c. Save 5 μ L of fragmented RNA as input sample. Subject the remaining 100 μ L of fragmented RNA to m¹A immunoprecipitation.

d. Add 40 μ L 10× IPP buffer (1.5 M NaCl, 1% NP-40, 100 mM Tris, pH 7.4), 10 μ L RiboLock RNase Inhibitor (40 U/ μ L), 5 μ g anti-m1A antibody to the 100 μ L fragmented RNA and adjust the volume to 400 μ L with RNase free water. Rotate at 4 °C overnight.

e. Resuspend 40 μ L Protein A/G UltraLink Resin into 400 μ L 1× IPP buffer (150 mM NaCl, 0.1% NP-40, 10 mM Tris, pH 7.4) and then add to the RNA antibody mixture followed by rotating at 4 °C for additional 3 h.

f. Resins are washed with twice with 1 mL IPP buffer, once with 1 mL low salt buffer (75 mM NaCl, 0.1% NP-40, 10 mM Tris, pH 7.4), once with 1 mL high salt buffer (200 mM NaCl, 0.1% NP-40, 10 mM Tris, pH 7.4) and twice with 1 mL TEN buffer (10 mM Tris, pH 7.4, 1 mM EDTA, pH 8.0, 0.05% NP-40).

g. Add 200 μ L of 3 mg/mL N^1 -methyladenosine in IPP buffer and rotate at room temperature for 1 h to elute the m¹A containing RNA from resins. Repeat this step once and combine the supernatants together as immunoprecipitated sample and further purify the immunoprecipitated RNA by phenol-chloroform isolation.

h. Dissolve the RNA pellets with 30 μL RNase free water completely. Save 10 μL of immunoprecipitated RNA as (-) demethylase sample and subject the remaining 20 μL of immunoprecipitated RNA to demethylase treatment.

2. Demethylase treatment

a. Heat 20 μL of immunoprecipitated RNA at 65°C for 5 min and then chill on ice immediately to disrupt the RNA secondary structure. .

Reagents	Volume (µL)
0.5 M MES, pH 6.5	4
28.3 mM of (NH ₄) ₂ Fe(SO ₄) ₂ ·6H ₂ O	0.4
30 mM 2-ketoglutarate	0.4
200 mM L-ascorbic acid	0.4
RNase inhibitor (40 U/µL)	0.4
1 µM AlkB	0.4
RNase free water	14
Total	40

b. Prepare the demethylation mix as follow:

Mix the demethylation mix well by pipetting.

c. Add the demethylation mix into denatured RNA and incubate at 37 °C for 2 h.

d. Quench the demethylation reaction by the addition of 4 μ L 50 mM EDTA and purify the

demethylated RNA by phenol-chloroform isolation.

e. Dissolve the RNA pellets with 10 μ L RNase free water completely [as (+) demethylase sample].

3. Library construction

Input sample, (-) demethylase sample and (+) demethylase sample are subjected to library construction.

a. PNK treatment

Reagents	Volume (µL)
10× PNK buffer	2
T4 PNK (NEB)	1
RNase inhibitor (40 U/µL)	1
RNA	10
RNase free water	6
Total	20

Mix well and incubate at 37 °C for 1 h and then heat-inactivate of PNK at 65 °C for 20 min. Dephosphorylated RNAs are purified by ethanol precipitation and the RNA pellets are dissolved in 7 μ L RNase free water completely.

b. 3' RNA linker ligation

Add 1 μ L 20 μ M 3' RNA linker (5'rAPP-AGATCGGAAGAGCGTCGTG-3SpC3) into 7 μ L RNA sample, and mix well. Heat at 70°C for 2 min and then chill on ice immediately.

Prepare the ligation mix as follow:

Reagents	Volume (µL)
10× RNA ligation buffer	2
0.1M DTT	2
50% PEG8000	6
T4 RNA ligase2, truncated KQ (NEB)	1
RNase inhibitor (40 U/µL)	1
Total	12

Add the ligation mix into the RNA mix and mix well.

Incubate at 25 °C for 2 h.

Add 1 μ L 5' Deadenylase into the ligation mix followed by incubating at 30 °C for 1 h and then add 1 μ L RecJf followed by incubating at 37 °C for another 1 h to remove excess 3' RNA linker. These enzymes are then heat-inactivated at 70 °C for 20 min. RNAs are purified by ethanol precipitation and dissolved in 11 μ L RNase free water.

c. Reverse transcription

Add 1 μ L 2 μ M RT primer (ACACGACGCTCTTCCGATCT) into 10 μ L RNA sample, and mix well. Heat at 80°C for 2 min and then chill on ice immediately.

Prepare the reverse transcription mix as follow:

Reagents	Volume (µL)
10×reverse transcription buffer (500 mM Tris,	2
pH 8.3, 750 mM KCl,)	

30 mM MgCl ₂	2
10 mM dNTP mix	2
0.1M DTT	1
TGIRT	1
RNase inhibitor (40 U/µL)	1
Total	9

Add the reverse transcription mix into RNA and mix well.

Incubate at 57 °C for 2 h.

Add 1 μ L Exonuclease I (NEB) and incubate at 37 °C for 30 min to digest excess RT primers. The cDNAs are purified using silane beads.

d. 5' adaptor ligation

Add 0.8 µL 80 µM 5' adaptor (5Phos-

NNNNNNNNAGATCGGAAGAGCACACGTCTG-3SpC3) and 1 μL DMSO into 5 μL cDNA sample, and mix well. Heat at 75°C for 2 min and then chill on ice immediately.

Prepare the ligation mix as follow:

Reagents	Volume (µL)
10× RNA ligation buffer	2
0.1M ATP	0.2
50% PEG8000	9
T4 RNA ligase 1, high concentration (NEB)	1.5
H ₂ O	1.1
Total	13.8

Add the ligation mix into cDNA and mix well.

Incubate at 25 °C overnight. The cDNAs are purified using silane beads.

e. PCR amplification

Prepare PCR mix as follow:

Reagents	Volume (µL)
High-Fidelity 2X PCR Master Mix (NEB)	25
Universal primer (NEB)	1
Index primer (NEB)	1
cDNA	23
Total	50

Mix well and run the PCR amplification as follow:

Temperature	Time	Cycle
98 °C	30 s	1
98 °C	10 s	
65 °C	30 s	12-15
72 °C	30 s	
72 °C	5 min	1
4 °C	Hold	

PCR products are purified by 1.8× XP beads (Beckman) and then run on the 8% TBE gel. The

DNA bands according to 160-300 bp are excised. The gels are crushed to small pieces and DNAs are eluted from gel slices at 37 °C for 4h in 400 μ L 1×TE buffer. DNAs are purified by ethanol precipitation and subjected to high throughput sequencing on Illumina Hiseq X10 with paired-end 2×150 bp read length.