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APPENDIX A: METHODS

In this Appendix we consider the calculation of scattering amplitude fαβ(θ) via the phase-function method. The
scattering potential of a non-collinear magnetic texture is given by:

Vsc = −∆

2

(
−η(1− nz(r)) e−iκθ−iγn‖(r)
eiκθ+iγn‖(r) η(1− nz(r))

)
, (A1)

(see the parametrization introduced in the main article). Vsc commutes with operator ĵ = −i∂θ + κŜz, so the
eigenfunctions are characterised by the corresponding quantum number j having half-integer values. Throughout the
paper we label these eigenstates by the angular momentum projection m = j − 1/2 (taking integer values). The
eigenfunctions are written:
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where g
(1,2)
m (r) are the functions of radius vector r; they satisfy the system of equations:(
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)
qm = 0, (A3)

where qm ≡ (g
(1)
m (r), g

(2)
m (r))T is the two-component function of r, the matrices H

′

m, W are given by:
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)
. (A4)

The operator H
′

m corresponds to the free motion Hamiltonian, while W is the perturbation due to the magnetic
texture. Outside of the core r > a/2 the term W vanishes so that qm becomes a combination of Bessel functions:
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where Jm, Ym are the m-th order Bessel functions of the first and second kind, respectively. Km is 2 × 2 constant
matrix which determines the m-th scattering matix1,3 Sm = (1 + iKm)(1− iKm)−1. The scattering amplitude fαβ(θ)
is given by a sum over elements of Sm:
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, (A5)
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FIG. 1: An electron scattering on a three non-coplanar spins. The diagram is given for spin-conserving (spin-up) scattering
channel and shows the interference between spin-conserving scattering on scatterer 1 with magnetization direction n1 and
double spin-flip process on scatterers 2,3 with n2,3. The asymmetry of scattering cross-section arises from nonzero spin chirality
n1 · [n2 × n3] 6= 0.

The matrices Km (or Sm) are found from the exact solution of Eq. (A3) inside the skyrmion core r < a/2.
The partial scattering matrices Sm were calculated using phase-functions method2,3. This technique considers the

scattering parameters (Km(r), Sm(r)) as functions of radius vector r in the region r < a/2. The matrices Sm(r)
describe the scattering on a potential being cut off at the point r. The advantage of the approach is that instead of
solving Schrödinger equation (A3) one should solve numerically the first order matrix differential nonlinear equation3

for Sm(r):

dSm
dr

= i
πr

4

∆

2E
k2
(
R−m + SmR

+
m

)
W
(
R−m +R+

mSm
)
, (A6)

where

R±m(r) =

(
H(1,2)
m (k↑r) 0

0 H(1,2)
m+κ(k↓r)

)
,

H(1,2)
m are the m-th order Hankel functions of the first and second kind, and W (r) is the potential defined by the

magnetic texture (A4). The bondary condition is Sαβm (r = 0) = δαβ . Since we consider a chiral magnetic texture of a
finite size with uniform background magnetization outside, the value of the partial scattering matrix at the boundary
Sm(a/2) gives the scattering amplitude (A5).

APPENDIX B: 2D SCATTERING ON A TRIAD OF SPINS

In this Appendix we explain the microscopic origin of the charge Hall response due to non-zero spin chirality in
the weak-coupling regime. Let us consider a scattering of an electron on a triad of non-coplanar spins (Fig. 1).
The incident electron comes along x-direction and the scatterers forming the triad are located symmetrically with
respect to the reflection in xz plane so that their spatial arrangement does not produce any scattering asymmetry in
transversal y direction. We take the scattering potential in the form:

V =
∑

i=1,2,3

Vi, Vi = −Aniσδ (r− ri), (B1)

where ri is the radius-vector of the i-th scatterer, σ is the vector of Pauli matrices, ni are the unit length vectors
indicating magnetization directions of the three scatterers, the constant A accumulates the exchange interaction
strength and the magnitudes of the electron and the scatterers spins.

In the weak coupling case the kinetic energy difference between spin-up and spin-down electrons can be neglected
so that k↑ ≈ k↓ ≡ k. The spin-dependent scattering amplitude fαβ(θ) for scattering from a state |k, β〉 (k points
along x-direction) into a state |k′, α〉 can be expressed in terms of T -matrix as4:
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fαβ (θ) = −m∗
~2

eiπ/4√
2πk
〈k′, α|T |k, β〉 , (B2)

where θ is the scattering angle between k and k′, α, β are spin indices. In the second Born approximation the T -matrix
is given by:

T = V + V G0V,

where V is the scattering potential (Eq. B1), G0 is the 2D Green’s function of a free propagating electron.
To calculate fαβ via Eq. (B2) we need the matrix elements of T -matrix:

〈k′, α|T |k, β〉 = 〈k′, α|V |k, β〉+ 〈k′, α|V G0V |k, β〉 , (B3)

〈k′, α|V |k, β〉 = −A
∑

i=1,2,3

ei(k−k
′)rivi,αβ , (B4)
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∑
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where rij = ri − rj , rij = |rij |, H(1)
0 is Hankel function of the first kind, and vi,αβ are spin matrix elements:

vi,αβ = 〈α|niσ |β〉 =

(
niz ni−
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)
αβ

. (B6)

The scattering cross section is given by dσαβ/dθ = |fαβ |2, so we calculate
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∑
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)
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We focus on the scattering asymmetry related to the spin chirality of the magnetization field, for the considered
triad that is χc = n1 ·

[
n2 × n3

]
. Thus, any chirality related phenomena would include all three spins of the triad.

The first term in (B7) corresponding to the first Born approximation consists of combinations of only two spin matrix
elements (B6) and appears to be irrelevant to the chirality related scattering. The spin chirality χc first appears in
the third order on the exchange interaction A. Let us consider the third order terms for spin conserving scattering
channel (α = β). We obtain:

|Tk′kαα|2A3 =
A32π2m

~2
Im
∑
i,j,l

ei(krjl+k′rli)H
(1)
0 (krij) Ωijl,α,

where

Ωijl,↑↑ = nlzninj + iχlijz

Ωijl,↓↓ = −nlzninj + iχlijz . (B8)

The chirality aware term here is the imaginary part:

χlijq = nlq [ni × nj ]q q = x, y, z.

As it is clearly seen in (B8) this part appears to have the same sign for spin-up and spin-down scattering channels.
Analogously, for the spin-flip third order scattering channels we obtain:
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Ωijl,↑↓ = [nl × [ni × nj ]]z + i
(
χlijx + χlijy

)
Ωijl,↓↑ = −[nl × [ni × nj ]]z + i

(
χlijx + χlijy

)
. (B9)

Similarly to the diagonal channels (B8), the sign of the spin-chirality terms is also the same for the two opposite
spin-flip scattering channels (B9). Finally, the spin chirality aware part contributing to the cross section appears to
be the following:

|Tk′kαβ |2χ =
A32π2m

~2
Re
∑
i,j,l

ei(krjl+k′rli)H
(1)
0 (krij)

[
δαβχ

lij
z + (1− δαβ)

(
χlijx + χlijy

)]
, (B10)

where δαβ is the Kronecker delta. The spin chirality driven term does not depend on the incident electron spin:

|T↑↑|2χ = |T↓↓|2χ, |T↑↓|2χ = |T↓↑|2χ. Let us emphasize the origin of this result. The spin chirality contribution is always

due to the interference between one spin-conserving and two spin-flip scattering events. While for the spin-conserving
scattering amplitude the sign is opposite for spin-up and spin-down states (B6), it is compensated by the sign change
for the double spin flip process.
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