
Supplementary Note 1. EFFECTIVE AREA OF A PLANAR JOSEPHSON JUNCTION

The effective area Aeff of a planar junction in the thin film limit t < 2λ, with t the film thickness

and λ the London penetration depth, having a junction width, w, much smaller than the Pearl

length, λ⊥ = λ2/t, is well approximated by the following expression1

Aeff ≈ wL+ w2/1.82 . (1)

Here L is the distance between the electrodes (see Supplementary Figure 1). For junction widths

larger than the Pearl length, Supplementary Equation (1) is not anymore valid and the effective

area has to be computed numerically.

Supplementary Figure 1: Supercurrent density distribution in a planar Josephson

junction. Sketch of two superconducting electrodes (SC1, SC2) contacted to a normal

conducting channel (TI). The gray loop indicated the path integral used in Supplementary

Equation (4). Ba is the externally applied magnetic field. The white lines indicate the current

flow direction of the screening current and the color-coding in the electrodes reflects the

amplitude of the screening current density (red: large, blue: small).

The effective area can be determined numerically as it follows.

First we calculate the Meissner screening currents in the superconducting electrodes by solving

the Maxwell London equations on the junction geometry in the presence of an externally applied

magnetic field:

µ0∇× (λ2 · j) + B = 0 ; ∇× B = µ0J . (2)
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Here µ0 is the vacuum permeability, j is the supercurrent density in the electrodes, and B is the

magnetic induction containing the externally applied field, Ba, and the field generated by the

supercurrents.

Next we need to calculate the difference between the gauge invariant phase differences across

the junction at the left edge φ(0) and right edge φ(w) of the junction (see Supplementary Figure 1).

From the above calculated Meissner currents and resulting magnetic fields we can readily compute

∆φ = φ(w) − φ(0) making use of the property that the superconducting phase is single valued in

the electrodes:

∆φ =
2π

φ0

∮
A · ∂l + µ0λ

2

[∫ b

a
j · ∂l +

∫ d

c
j · ∂l

]
. (3)

Here φ0 = 2 · 10−15 Vs is the superconducting flux quantum and A is the vector potential with

B = ∇×A. The closed path integral in the first term of the right hand side of the equation is taken

along a loop enclosing the two edges of the junction at x = 0 and x = w. For the loop indicated

in Supplementary Figure 1 the closed path integral corresponds to the total magnetic flux through

the normal conductor in the junction. The line integrals in the second term of the right hand side

of the Supplementary Equation (3) are taken only within the superconducting electrodes, i.e. from

point a to b in the upper electrode, SC1, and from point c to d in the lower electrode, SC2 (see

Supplementary Figure 1).

The effective area of the junction is finally obtained using the following standard expression:

Aeff =
φ0

2π

φ(w) − φ(0)

Ba
. (4)

In the above equation we assume a 2π periodic current phase relation along the junction.

For typical values of the London penetration depth (λ ≈ 100 nm) for our 90 nm thick Al films2,

we obtain effective areas in the range 0.68−0.70 µm2, which is very close to the experimental value

of 0.75µm2. This strongly supports that a 2π periodic current phase relation mainly dominates

the magnetic pattern of the critical current in our junctions.

Supplementary Note 2. EFFECTS OF THERMAL CYCLING AND OCCURRENCE OF

0 − π TRANSITIONS IN THE MAGNETIC PATTERN

We have measured a total of 14 devices, including Josephson junctions and dc SQUIDs (see

Table 1 in the main text), all fabricated with flakes from the same Bi2Te3 film. 12 devices have

been measured in a second cool down; 5 of them showed unconventional magnetic patterns, with

a minimum at zero field.
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Supplementary Figure 2 shows another example of a high field inverted pattern for a dc SQUID

(SF8). In this case there are two different modulations of the critical current: one is determined

by the SQUID loop and the other is determined by the magnetic response of the single junctions

forming the SQUID, which gives a dip at zero magnetic field in the convolution of the maxima of

the SQUID modulation (Supplementary Figure 2A). Supplementary Figure 2B shows the magnetic

pattern of the SQUID at low fields.

Supplementary Figure 2: Critical current dependence as a function of the externally

applied magnetic field of the SQUID FS8 at T = 20 mK. Panel (A) clearly shows the

feature of the magnetic response of the single junctions forming the SQUID, while the

modulation due to the SQUID loop cannot be resolved on this scale (see text for details). The

SQUID modulation becomes visible at low external magnetic fields (panel (B)).

Supplementary Note 3. MICROSCOPIC ORIGIN OF THE THERMAL CYCLING

EFFECT

The thermal cycling effect has its origin in the role played by strain to tune the topological phase

in TIs. In our devices, the complex interplay between the thermal properties of the substrate and

the flake, the specifics of the interface between the Pt sticking layer and the Al, and the nanoscale

dimensions of the devices have a fundamental role in creating plastic deformation at the TI nanogap

separating the superconducting electrodes. The irreversible consequences of a compressive strain,

induced by thermal cycling, manifest as peculiar buckling waves at the nanogap and a dramatic

reduction of the Josephson current.

First principle calculations3,4 have demonstrated that an in-plane tensile strain (pulling) leads

to a out of plane compression where the quintuple layers are getting closer. An in plane compressive
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strain (pushing) causes instead an out of plane expansion where the distance between quintuple

layers is enhanced. The interquintuple interaction plays a dominant role in determining the topo-

logical phase: the consequence of an out of plane compression is a shift of the Dirac point closer

to the valence band while an out of plane expansion leads to a gap opening at the Dirac point3.

This argument is also used to explain why for example Sb2Se3 (with a larger c/a ratio compared

to Bi2Se3) that is expected to be a TI in many ways, is instead a trivial insulator. It also tells

that, in principle, strain can provide a tuning of the surface states of a topological insulator.

Strain is usually generated during the epitaxial growth of the material on the substrate, with

lattice parameters different from those of the topological insulator. Recent reports have shown the

tunability of the Dirac point with strain in thin topological crystalline insulator SnTe5 and at grain

boundaries in Sb2Se3 thin films6.

Our experiment is quite different since our devices employ Bi2Te3 flakes exfoliated and trans-

ferred to a SiO2/Si substrate, so a possible strain-related phenomenology cannot be attributed to

the growth process.

The physics behind the peculiar transport properties of our devices is instead related to the

enormous difference in the thermal expansion coefficient α of Bi2Te3 (≈ 13.4 × 10−6 ◦C−1) and

that of the SiO2/Si substrate (0.5× 10−6 ◦C−1/2.4× 10−6 ◦C−1) where the flake is transferred. In

our device configuration the Bi2Te3 is not grown on a SiO2/Si substrate: the flake therefore will

experience the huge difference in the thermal expansion coefficient only by the clamping to the

substrate, which occurs through the patterning of the Al electrodes forming a nanometer sized gap

junction.

At the first cool down, from room temperature to mK, the flake is prone to contract. However

the Al electrodes will anchor the flake to the substrate making it experiencing the much smaller

thermal coefficient of the SiO2/Si. This leads to a tensile strain (pulling of the flake) which strongly

concentrated in the part of the flake located at the nanogap. This important fact is related to the

thermal expansion coefficient of Al (≈ 23×10−6 ◦C−1) not much different from that of the Bi2Te3.

For a good bonding between the Al and the flake, as the one provided by the Pt sticking layer, one

can consider the Al electrodes and the flake under them as forming a quite homogenous material

with a thickness more than twice that of the flake (the thickness of Al is roughly twice that of the

flake). In this way most of the strain, provided by the Al electrodes and locking the flake to the

substrate, is located at the thin Bi2Te3 nanogap, with a smaller thickness compared to that of the

composite material Al/flake.

Since the tensile strain concentrates in the nanogap region, in this part of the flake the Dirac
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node is shifted towards the valence band which makes the Bi2Te3 channel effectively more doped.

During the warming up of the sample the Bi2Te3 at the nanogap undergoes instead a compressive

strain which opens a gap at the Dirac point. This compressive strain induces plastic deformation

(the sample properties are completely changed after thermal cycling) and, if it overcomes a critical

strain, can lead to a buckling of the Bi2Te3 channel forming the nanogap.

Supplementary Figure 3a shows a SEM top picture of one of the sample discussed in our paper.

This specific picture does not show, very clearly, possible anomalous features of the flake inside
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Supplementary Figure 3: Colored SEM and AFM images for a junction showing a 0-π

magnetic pattern. This device is one of those discussed in our main manuscript (Pt interlayer).

(a) SEM top view (scale bar: 200 nm); (b) tilted view (scale bar: 200 nm), green color represents

the electrodes; (c) AFM height image (scale bar: 150 nm); (d) height profile along the junction.

the nanogap, except a region with a slightly brighter color. However by taking a SEM picture at

an angle, shown in Supplementary Figure 3b, the brightness at the nanogap clearly manifests as

a buckling feature7. To further evaluate the characteristics of such a buckling, we have performed

AFM analysis to resolve the shape of the deformation inside the nanogap. Supplementary Figure

3c shows an AFM picture of the same junction, while Supplementary Figure 3d a line scan (orange
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dashed line) taken inside the nanogap. The line scan has a very clear sinusoidal-like shape, a

distinctive feature of a bucking phenomenon induced by compressive strain.

A. Role of the interlayer material: comparison between transport properties of

Al/Pt/Bi2Te3/Pt/Al and Al/Ti/Bi2Te3/Ti/Al

In our previous works8,9, we have studied the transport properties of Al/Pt/Bi2Se3/Pt/Al and

Al/Ti/Bi2Se3/Ti/Al where the flakes were exfoliated from single crystals. The comparison showed

much larger critical current densities and ICRN product for devices obtained with a Pt interlayer,

both facts pointing towards a higher interface transparency barrier (I) (see Supplementary Figure

4), instrumental to observe Majorana bound state physics.

Al electrode (S) Al electrode (S)

Induced p-wave (S’)TI surface (N)

TI bulk

Induced p-wave (S’)

Interface (I)

Supplementary Figure 4: Cross section schematics of the effective device under

consideration. The transport properties can be assimilated to those of a S’INIS’ Josephson

junction where S’ represent the induced chiral p-wave superconductor in the TI.

We have repeated this experiment on the Bi2Te3 flakes of this work, with the peculiar triangular

morphology, by using a Ti interlayer.

Supplementary Table 1 summarizes the main transport properties of the junctions fabricated

using both Pt and Ti. We confirm the general trend: the JC and ICRN values for the Pt interlayers

are on average more than 5 times higher than those obtained with Ti. The same trend, higher

values for Pt junctions, is observed for the average transparencies of the barrier I. This comparison

is made at the first cool down.

JC (µA/µm) ICRN (µeV) τ (transparency)

Rough flakes, Pt interlayer 2.7 ± 0.8 79 ± 19 0.67 ± 0.05

Rough flakes, Ti interlayer 0.41 ± 0.14 13 ± 3 0.49 ± 0.01

Supplementary Table 1: Main parameters extracted from the IVCs of the Bi2Te3

junctions with different interlayer metals.
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Supplementary Figure 5 compares the conductance spectra, obtained by differentiating the

current voltage characteristics (IVCs), of various junctions fabricated with Ti interlayer, with

those obtained with a Pt interlayer. The curves of Supplementary Figure 5b (Ti interlayer) clearly

show a dip at V ≈ 230µeV that we have identified as 2∆S′ , where ∆S′ is the induced gap into

the TI10,11. In the spectra of Supplementary Figure 5b no other dips can be clearly identified.

Supplementary Figure 5d shows instead various spectra relative to the IVCs of junctions fabricated

with Pt interlayer. Also in this case we can identify a well developed dip at V ≈ 230µeV (much

more pronounced than the Ti case due to the higher transparency τ of the barrier I) that we

correlate with 2∆S′ , where again ∆S′ is the induced gap (this correlation is unambiguous because

of the peculiar temperature dependence of 2∆S′10,11).

Supplementary Figure 5: IVCs and conductance spectra for different interlayer metals.

IVCs of the Bi2Te3 junctions with (a) - Ti and (c) - Pt interlayer metal; the dashed line in both

graphs represents linear fit to extract the excess current. Conductance spectra for three junctions

with (b) - Ti and (d) - Pt interlayer metals; the arrows indicate the deeps corresponding to 2∆S′ .

However the conductance curves of the junctions with Pt have many more dips at different

voltages, associated to multiple Andreev reflections and that are made visible because of the higher
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transparencies interfaces I, as we find in our experiment11. To summarize these measurements we

observe 1) the interface Bi2Te3/Pt/Al and Bi2Te3/Ti/Al have the same transparency since the

induced gap ∆S′ ≈ 115µeV is exactly the same for both kind of junctions and 2) the difference in

the JC values, ICRN and transparency τ has to be related to the higher transparent interfaces I,

between the part of the flake in the nano-channel and that under the electrodes, for the Pt junctions.

The magnetic pattern of the Josephson current for both Pt and Ti junctions are Fraunhofer-like

at the first cool down. However at the second cool down the junctions with Ti interlayer are not

affected by the thermal cycle. The IVCs and the magnetic Fraunhofer pattern do not have any

variation. We have cooled down the junctions from room to 20 mK temperature 3 times and the

transport properties are completely preserved. This fact is in line with the results obtained by

other groups working with 3DTI and using Ti as sticking layer.

What makes the junctions with Pt interlayers so different from the Ti?

We tend to exclude an origin related to a different chemistry between Pt and Ti while bonding to

the Bi2Te3. This is because the values of the induces gap ∆S′ are identical, which is a consequence

of very similar interface transparency.

Instead we will show that the completely different behavior between Ti and Pt junctions is

related to different growth habits of the two metals on Bi2Te3.

Supplementary Figure 6a shows an AFM picture of a 3 nm Pt grown on a Bi2Te3 flake. The

image shows a uniform layer that nicely wets the Bi2Te3 flake smoothening edges and corners. The

growth habits of a 3 nm Ti film are instead quite different (see Supplementary Figure 6b). The Ti

does not wet forming tiny grains (on average 20 nm in diameter) on the surface of Bi2Te3. As a

result the morphology of the Al film, which grows on top of the Ti is much more granular (data

not shown), compared to the growth on Pt.

The Al electrodes have the role of clamping the flake to the substrate so as to experience a

tensile and compressive strain. For this to happen the Al and the flake underneath need to behave

like almost the same material. The wetting properties of the Pt on the Bi2Te3 appear to promote

an excellent Al adhesion and therefore an effective clamping of the flake to the substrate. The

granular growth of the Ti interlayer on Bi2Te3 instead does not seem to be as effective in this

respect. While the interface properties of the Al and Bi2Te3 through the Ti are very similar to

the Pt junctions, the granularity of the Ti sticking layer makes the Al and the Bi2Te3 flake not

as strongly connected to each other to behave as a homogenous materials. In this way no plastic
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Supplementary Figure 6: Growth habits of Pt and Ti on a Bi2Te3 flake. AFM images of a

Bi2Te3 flake covered (a) with 3 nm Pt and (b) with 3 nm Ti.

deformations are induced. Supplementary Figure 7b shows a typical top view SEM picture for one

of the measured junction after several cool down; Supplementary Figure 7a is a SEM image of the

same device taken with a tilted angle. None of the images show signature of buckling wave that

instead we have detected in junctions with Pt interlayer.

It is worth mentioning what could be the origin of the much higher critical current densities

we observe in junctions with Pt interlayer compared with those with Ti at the first cool down.

Supplementary Figure 7: Colored SEM images for a junction with Al electrodes and Ti

interlayer. (a) Tilted view; (b) side view. The electrodes are represented in light green color.
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We believe it is a consequence of the occurrence of a tensile strain experienced by the flake in the

nanogap.

The origin of the barrier I between the flake under the Al/Pt(Ti) electrodes and the one in the

nanogap is not clearly established. One can possibly expect some doping from the metal, which

shifts the Fermi energy of the flake under the electrode, compared to the one in the nanogap. The

occurrence of a tensile strain at the nanogap while cooling the nanodevice, shift the Dirac point

toward the valence bands making it more doped. Since the effect of strain is much more dominant

in junctions with Pt, one can expect a better Fermi level matching between the two parts of the

flake, under the electrodes and at the nanogap, resulting in a higher transparency barrier and

higher JC values.

Supplementary Note 4. TWO DIMENSIONAL MAGNETO-FINGERPRINTS IN Bi2Te3

CHANNELS

In the paper by Kandala et al.12, the authors study the magneto transport of Bi2Se3 channels,

where the films have a typical growth with pyramidal domains. The authors reveal signatures

of Aharonov-Bohm (AB) orbits, manifesting as periodic magneto conductance fluctuations. The

length scale of the orbits corresponds to the typical perimeter of triangular terraces found on the

surface of these thin film devices. They conclude that the periodic magneto-fingerprint arises from

coherent scattering of electron waves from the step-edges. To demonstrate that this scenario is also

valid for the Bi2Te3 flakes, used in our work, we have preformed magneto transport measurements

down to 20 mK temperature on devices with a Hall configuration.

Supplementary Figure 8a shows the longitudinal resistance between the two voltage probes with

a distance of 0.5 µm (the classical quadratic magneto-resistance background has been subtracted for

clarity) in the range of magnetic field 1-3 T for various temperatures. From the Fourier transform of

the curves, Supplementary Figure 8b, we clearly observe a peak around 2.9 T−1 which corresponds

to an area of 0.012 µm2 in line with the morphology of our flakes and in complete agreement with

the values reported in Ref. 12 for a device of similar dimensions as ours. Moreover we clearly

see that the amplitude of the magnetoresistance oscillations decreases with temperature (inset of

Supplementary Figure 8b) in a similar fashion as in Ref. 12. This strongly suggests that also in our

case the periodic magneto-resistance oscillations arise from coherent scattering of electron wave

from the corners and/or step-edges where two pyramidal domains merge.

It is also worth discussing if one can find any apparent correlation, between the orientation of the
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Supplementary Figure 8: Two dimensional magneto-fingerprints in Bi2Se3 channels.

(a) Longitudinal resistance as a function of magnetic field for a channel length of 0.5 µm at

different temperatures. (b) Fourier transform of the curves of panel (a). The inset shows the

Fourier transform amplitude at 2.9 T−1 as a function of temperature. The data have a typical

power law dependence (with exponent -0.6). (c) Typical surface morphology of the flakes used in

the experiment. The orange lines delimitate two possible Arhonov-Bhom orbits with

approximately the same area.

nano-pyramidal domains and that of the electrodes, with the occurrence of unconventional magnetic

field pattern related to 0 and π trajectories inside the Bi2Te3 nanochannel. We have investigated

by SEM all the junctions having a 0-π transition and we do not find any clear correlation between

the orientation of the nano-pyramidal domains and that of the electrodes. However this is not

surprising if one considers that the basic mechanism to get an inverted magnetic field pattern,

with a minimum of the critical current at zero external field, is the occurrence of 0 and π facets

within the same nanogap. In our flakes the occurrence of AB oscillations supports preferential

trajectories of electrons and holes along the edges of the triangles. Supplementary Figure 9 shows



12

Supplementary Figure 9: Schematic pictures of a Josephson junction with different

orientation of the pyramidal domains in the nanogap with respect to the Al

electrodes. In the left panel, the main direction of the pyramidal domains is aligned parallel to

the Al electrodes, while it is perpendicular to them in the right panel. In the figure, 0 and π

trajectories can be found in both cases.

a sketch corresponding to two extremes cases where the main alignment direction of the pyramidal

domains is parallel (Supplementary Figure 9a) or perpendicular (Supplementary Figure 9b) to the

electrodes. We see that in both cases one can find 0 and π trajectories, which would lead to an

inverted Fraunhofer pattern.

Supplementary Note 5. PERIODICITY OF A MAGNETIC PATTERN WITH REGULAR

AND RANDOM DISTRIBUTED 0-π FACETS.

The magnetic patter of a regular 0-π faceted Josephson junction is strongly modified compared

to a Fraunhofer-like. Supplementary Figure 10 shows the IC(B) for a junction formed by a total of

10 equal in size 0 and π facets carrying the same current17. The absolute maximum of the pattern

is found at 5φ0. This is quite easy to understand since one requires a φ0 to reverse the phase sign

of every π facet. However one can still find the periodicity connected to the total junction’s width

in the position of the minima which happen at multiple of φ0 (see Supplementary Figure 10). For

a random distribution of facets the absolute maximum will always occur at finite field (which will

depend on the microscopic distribution of 0-π facets), while at zero external field one can find a

local maximum (not the absolute maximum) or a local minimum again dependent on the details

of the facets microscopic distribution.
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Supplementary Figure 10: Simulated magnetic flux dependence of the Josephson

current for an array of 10 alternating 0 and π facets.

(a) (b)

Supplementary Figure 11: Magnetic field dependence of a typical Bi2Te3 junction

compared with that of a simulated array of random distributed 0 and π facets.

(a) Critical current IC dependence on the externally applied magnetic field B for one of our

junctions at 20 mK, before (cyan) and after (blue) the thermal cycle. At the first cool down the

IC(B) dependence shows a conventional Fraunhofer dependence. After the thermal cycle (blue

points), the critical current is dramatically reduced (the data points are multiplied by a factor

1000 for clarity), and a dip at B=0 appears. (b) Numerically calculated IC(B) (blue curve) for a

random distribution of 0 and π facets (see inset) compared with a conventional Fraunhofer type

dependence calculated considering a uniform current distribution.
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The periodicity connected to the size of the junction can be still identified as local minima,

local maxima or change in slope in the IC(B). As an example in Supplementary Figure 11(b) we

show the computed magnetic field dependence IC(B) for a uniform current distribution (red curve)

compared with a random distribution of 0 and π facets (blue curve).

For the random case we can clearly identify change of slopes at φ0 and 2φ0 (indicated by the

dashed lines) which corresponds to the periodicity determined by the width of the junction. Indeed

such a scenario qualitatively reproduces what we observe in our experiment (see Supplementary

Figure 11(a)) and that is discussed in the manuscript.

Supplementary Note 6. FIT OF THE IC(T ) DEPENDENCE WITH A SINIS MODEL

The full theory of the Josephson effect in SINIS structures with chiral p-wave (px + ipy) super-

conducting leads is still lacking. In Ref. 13, Sawa et al have considered a SINIS system with px +

ipy superconducting leads and diffusive normal part, numerically solved Usadel equations and de-

termined the IC(T ) dependence. This dependence turns out to be qualitatively very similar to that

of an usual SINIS junction with s-wave leads. Moreover, in the limit of highly transparent insulat-

ing barriers IC(T ) dependence for s-wave and p-wave leads are found to be essentially identical. In

Ref. 14 the authors have considered a SINIS structure with chiral p-wave leads and short ballistic

normal metal. These authors have also found that for perfectly transmitting barriers both px +

ipy and s-wave pairing symmetries lead to the same IC(T ) dependence. In view of these previous

works, we have modeled our highly transparent junctions measured during the first cool down as

S’INIS’ structures (where S’ is the proximity induced superconductor) with conventional s-wave

superconducting leads, for which a simple analytical formula for the Josephson current exists in

the clean ballistic limit15. The same approach has been adopted in an earlier work16.

For our S’INIS’ junctions, we consider the limit of wide junction, kFw � 1, and use the following

expression for the critical current

IJ(φ) =
4ekBT

~
kFw

π
sinφ

∑
ωn>0

∫ 1

0
dµ

t1t2√
Q
(
φ,
√

1 − µ2
) . (5)

Here µ = sin θ, where θ is the angle between the velocity of an electron flying out of a lead and the

shortest line connecting the two leads,

t1 =
D1

2 −D1
, t2 =

D2

2 −D2
(6)
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are the effective Andreev transparencies of the barriers16, D1 and D2 are the usual barrier trans-

parencies in the normal state. In Eq. (5), the function Q is defined as

Q
(
φ,
√

1 − µ2
)

=

[
t1t2 cosφ+

(
1 + (1 + t1t2)

~2ω2
n

∆2

)
cosh [2ωnt0(µ)] +

+(t1 + t2)
~2Ωnωn

∆2
sinh [2ωnt0(µ)]

]2

− (1 − t21)(1 − t22)
~4Ω4

n

∆4
,

(7)

ωn =
πkBT (2n+ 1)

~
, (8)

~Ωn =
√

~2ω2
n + ∆2 , (9)

ωn are the Matsubara frequencies, and t0(µ) is the angular dependent average flight time of an

electron between the leads for a given Fermi speed vF, mean free path le, the separation between

the leads L, and

t0(µ) =
le

(1 − µ2)vF

(√
1 + l2e

L2(1−µ2)
− 1
) . (10)

Supplementary Equation (10) may be viewed as an interpolation between the clean limit (le � L),

in which case

t0(µ) =
L

vF

√
1 − µ2

, (11)

and the diffusive limit (le � L) , where t0 does not any more depend on the angle and reads

t0 =
2L2

vFle
. (12)

For the normal state resistance in this model we find

1

R
=
e2

π~
kFw

π

1
1
D1

+ 1
D2

− 1 + 2L
πle

. (13)

The model outlined above differs from the original one15 in two ways. Since we are dealing with

a two dimensional normal layer (while in Ref. 15 a three dimensional normal metal was considered),

we have replaced the integral over the two transverse components of the wave vector, ky and kz,

by the corresponding one-dimensional integral over ky, i.e. we have replaced dkydkz/(2π)2 by

dky/2πh, where h is the flake thickness. Second, we have introduced finite mean free path into the

expression for the Josephson current in a phenomenological way.

Namely, we have replaced the ballistic expression for the flight time, Supplementary Equation

(11), by a more complicated one containing the mean free path, Supplementary Equation (10). We
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have verified that this replacement correctly reproduces the known expression for the Josephson

current of a short diffusive SINIS junction.

We have performed a fit on a selection of the junction listed in Table 1 (see main text), which

covered a wide range in the magnitude of the critical current values (see Supplementary Figure 12).

We used a value for the S’ superconducting gap of ∆S′ ≈ 125µeV, which is close to the value of

the Al superconducting gap. The Fermi velocity of the electrons has be chosen to be vF = 3.5 · 105

Supplementary Figure 12: Critical current as a function of the temperature at the first

cool down. The measured IC(T ) dependencies are for samples MS1 (panel A) and FS4 (panel

B). The red line is the best fit, considering a quasi-ballistic model (Supplementary Equations (5)

and (7)). The fit parameters are listed in Supplementary Table 2.

m s−1, in agreement with literature, and the fitting parameters are: the Fermi energy, EF, the

mean free path, le, and the transparencies of the barriers, which we assumed to be identical,

D1 = D2 = D. The theoretical value of the normal state resistance, Rth, has been determined

from Supplementary Equation (13) and the Thouless energy was estimated as ETh = hvFle/L
2.

The extracted values of the mean free path (le) are typically comparable to the junction length,

thus confirming a picture of an intermediate, between ballistic and diffusive, transport regime.

The scattering centers are probably the edges of the pyramidal domains of the film, as we have

discussed in the main text.

It is known16 that the bulk of the flake should behave as a resistive shunt. From the expression

1

Rsh
=

1

Rexp
− 1

Rth
(14)

we have extracted the effective shunt resistances of the devices. In Supplementary Equation (14)

Rth is the prediction of Supplementary Equation (13) and Rexp is the resistance measured in the

experiment. The sheet resistances of the films associated with the bulk transport, R� = Rshw/L,
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vary in the range between 150 and 550 Ω/�. The corresponding resistivities, defined as ρ = R�h,

are shown in Supplementary Table 2 and change between 1000 and 5000 µΩcm, which is about one

order of magnitude larger than the bulk resistivity reported in Ref. 16, which probably indicates

a lower level of doping in our material. We believe that the scattering of the extracted values of

the bulk resistivity between different devices is mostly caused by the uncertainty in the geometry

of the samples, but it may also be explained by slightly different levels of doping.

Device le D EF ETh Rth
N Rsh R� ρ

(nm) (meV) (µeV) (Ω) (Ω) (Ω) (µΩcm)

JM1 140 .99 106 363 566 101 152 1200

JM10 130 .98 140 341 134 47 236 1900

SM4 100 .98 172 954 45 27 543 4300

SM1 95 .98 213 920 37 25 502 4000

SF4 35 .94 210 392 22 3.5 209 1670

Supplementary Table 2: Parameters extracted from the fit of the IC(T ). The mean free

path le, the transparency of the barriers D (assuming the two barriers are identical) and the

Fermi energy EF are the free parameters of the fit. From these parameters we derived the

Thouless energy ETh, the expected resistance above the gap Rth
N , the calculated shunt resistance

of the flake Rsh, and the corresponding sheet resistance R� and resistivity ρ. The induced gap at

zero temperature was taken to be ∆(0) = 125µeV and at higher temperatures the standard BCS

gap temperature dependence has been used.
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