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1 ROI ABBREVIATIONS

ROI abbreviations from case study are shown in Table S1.

2 IMPORTANCE-SAMPLING APPROACH TO CROSS-VALIDATION PREDICTION

In this section, we detail the importance-sampling approach to cross-validation prediction of Gelfand
(1996). The cross-validation predictive density for the ith observation may be written as

p(Yi = 1|X,Y−i) =

∫
η,β

p(Yi = 1|X,Y−i,η,β)p(η,β|X,Y−i)∂β∂η

where we use p(η,β|X,Y ) as an importance sampling density for p(η,β|X,Y −i), and Y−i denotes the
non-hold out outcomes. More specifically, we estimate the probability that the ith observation has outcome
Yi = 1 as

E[p(Yi = 1|X,Y−i)] '
∑T

t=1 p(Yi = 1|Xi,η
(t), β(t))w?(η(t), β(t))∑T

t=1w
?(η(t), β(t))

, (S1)

where the importance weights are given by

w?(η(t), β(t)) =
p(η(t), β(t)|X,Y−i)

p(η(t), β(t)|X,Y )

∝ 1

p(Yi|η(t), β(t),Xi)

and η(t), β(t) are the MCMC samples at the tth iteration.
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Region Abbreviation
Ipsilateral associative visual cortex ipsi AVC
Ipsilateral cerebellum ipsi Cbm
Ipsilateral caudate ipsi CN
Ipsilateral inf lat pos temporal cortex ipsi ipsi iLPT
Ipsilateral inf lat ant temporal cortex riLAT
Ipsilateral inf parietal cortex ipsi iPL
Ipsilateral lentiform nucleus ipsi LN
Ipsilateral ant medial temporal cortex ipsi MAT
Ipsilateral pos medial temporal cortex ipsi MPT
Ipsilateral pos cingulate cortex ripsi PCC
Ipsilateral primary visual cortex ipsi PVC
Ipsilateral sup lat temporal cortex ipsi sLT
Ipsilateral sup parietal cortex ipsi sPL
Ipsilateral thalamus ipsi Th
Ipsilateral parietotemporal cortex ipsi PTC
Ipsilateral sup frontal cortex ipsi GFs
Ipsilateral mid frontal cortex ipsi GFm
Ipsilateral inf frontal cortex ripsi Fi
Ipsilateral medial frontal cortex ipsi GFd
Ipsilateral sensorimotor cortex ipsi SM
Ipsilateral Broca’s ipsi Broca
Ipsilateral ant cingulate cortex ipsi GCa
Contralateral associative visual cortex contra AVC
Contralateral cerebellum contra Cbm
Contralateral caudate contra CN
Contralateral inf lat pos temporal cortex contra iPT
Contralateral inf lat ant temporal cortex contra iLAT
Contralateral inf parietal cortex contra iPL
Contralateral lentiform nucleus contra LN
Contralateral ant medial temporal cortex contra MAT
Contralateral pos medial temporal cortex contra MPT
Contralateral pos cingulate cortex contra PCC
Contralateral primary visual cortex contra PVC
Contralateral sup lat temporal cortex contra sLT
Contralateral sup parietal cortex contra sPL
Contralateral thalamus contra Th
Contralateral parietotemporal cortex contra PTC
Contralateral sup frontal cortex contra GFs
Contralateral mid frontal cortex contra GFm
Contralateral inf frontal cortex contra GFi
Contralateral medial frontal cortex contra GFd
Contralateral sensorimotor cortex contra SM
Contralateral Broca’s contra Broca
Contralateral ant cingulate cortex contra GCa
Vermis Vermis
Pons Pons
Midbrain MB

Table S1. Temporal lobe epilepsy dataset: Abbreviations of regions used in case study.

3 CONNECTIVITY NETWORK BASED ON RS-FMRI

Rs-fMRI imaging was acquired on a 3T MRI system (Siemens Trio, Erlangen, Germany). Functional
imaging was performed with the following parameters: TR=2000 ms, TE=30 ms, FOV=210 mm, matrix=
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Abbreviation (X,Y,Z) Abbreviation (X,Y,Z)
rAVC (29,20,43) lAVC (63,20,43)
rCbm (32,33,23) lCbm (58,33,24)
rCN (38,72,42) lCN (52,70,42)

riLPT (17,40,29) liPT (75,40,29)
riLAT (17,56,23) liLAT (75,56,23)
riPL (20,44,63) liPL (73,44,63)
rLN (33,63,37) lLN (57,63,37)

rMAT (33,55,26) lMAT (56,55,26)
rMPT (29,43,26) lMPT (61,43,26)
rPCC (42,41,47) lPCC (62,43,27)
rPVC (37,17,31) lPVC (51,17,31)
rsLT (14,48,44) lsLT (76,48,45)
rsPL (26,42,68) lsPL (63,42,68)
rTh (39,54,40) lTh (51,54,40)

rPTC (20,36,52) lPTC (71,36,52)
rGFs (35,81,59) lGFs (55,81,59)
rGFm (27,79,53) lGFm (62,79,54)
rGFi (22,78,43) lGFi (68,78,43)
rGFd (41,88,51) lGFd (50,88,51)
rSM (25,54,64) lSM (66,54,64)

rBroca (17,72,48) lBroca (74,72,48)
rGCa (41,82,45) lGCa (48,82,45)

Vermis (45,34,29)
Pons (45,52,21)
MB (45,51,30)

Table S2. Temporal lobe epilepsy dataset: Coordinates of rs-fMRI seeds in standard Montreal Neurological Institute (MNI) space.

64× 64, slice thickness 4 mm, 34 slices. The imaging sessions included multiple fMRI recordings, each
lasting 5 to 15 minutes. For resting state fMRI analysis, 20 minutes of BOLD fMRI data was used for
each subject. Preprocessing of rs-fMRI imaging was performed using FSL (fMRIB Software Library)
version 5.0.7 (Oxford, United Kingdom, www.fmrib.ox.ac.uk/fsl) and included head movement artifact
correction, non-brain tissue elimination, high-pass filtering (100 s), spatial smoothing and mean-based
intensity normalization. Tissue-type segmentation was performed on each participant’s structural image
using FAST (FMRIB’s Automated Segmentation Tool) (Zhang et al., 2001), before being aligned to their
respective BOLD images. White matter signal and cerebrospinal fluid signals were obtained using the
segmented masks. Functional connectivity between the 47 ROIs was estimated by placing a 6-mm spherical
seed in Montreal Neurological Institute (MNI) space at the location of each of the 47 ROIs. The coordinates
of each sphere in standard MNI space are listed in Table S2 below. Each patient’s fMRI BOLD image
was registered to the patient’s high-resolution structural image using FLIRT (FMRIB’s Linear Image
Registration Tool) (Jenkinson et al., 2002; Greve and Fischl, 2009), and the high-resolution structural
was registered to the standard MNI space using FNIRT (FMRIB’s Non-linear Image Registration Tool)
(Andersson et al., 2007). The transformation matrix and warpfields were inverted, and then applied to the
47 spherical seeds to obtain spherical seeds in each individual’s BOLD space. Functional connectivity
between each pair of nodes was computed as the partial Pearson correlation between the averaged regional
time-series. This provided us with a 47×47 correlation matrix. An edge was then considered as included in
the connectivity network if the correlation between the regions exceeded a given threshold. The threshold
was chosen so that the average number of neighbors for each region was approximately 5, yielding a
connectivity structure close to a three-dimensional lattice.

Frontiers 3



Chiang et al. Supplementary Material

4 COMPARISON TO PENALIZED REGRESSION METHODS THAT DO NOT
CONDITION ON A LATENT STATE

In addition to the comparison to multi-step approaches in Section 3.3, we compared to methods such as
elastic net (Zou and Hastie, 2005), ridge regression (Hoerl and Kennard, 1970), and the Least Absolute
Shrinkage and Selection Operator (LASSO) method of Tibshirani (1996) that, in particular, do not condition
on latent states, but rather use the X data as the covariates. Mixing and regularization parameters for
the elastic net using a two-dimensional grid search to minimize cross-validated error. LASSO and ridge
regression regularization parameters were chosen through 5-fold cross-validation based on the one standard
error rule. Leave-one-out cross validation was used to assess predictive performance. An AUC of 0.64 was
obtained with elastic net. Both LASSO and ridge regression failed to predict post-surgical outcome, with
all hold-out observations classified as seizure-free.

5 PERFORMANCE EVALUATION ON PET-BASED SYNTHETIC DATA

In order to assess our method we evaluate performances using synthetic data that are intended to mimic
real PET data. We also investigate comparisons with multi-step approaches as well as approaches that do
not condition on latent states.

5.1 Synthetic data

We simulated synthetic PET data based on the data we have available from the University of California,
Los Angeles Seizure Disorder Center. Our approach is similar in spirit to the simulation strategies adopted
by Zhang et al. (2014) and Quirós et al. (2010) for fMRI data. Specifically, we considered real PET data
from a single patient and obtained synthetic data on n = 20 subjects as

Xsyn,i = X + δi,

where X denotes the PET data from the selected patient from the real PET study, and δi is simulated
as described below. We generated data for K = 2 groups of subjects, with n1 = 10 subjects in group 1
and n2 = 10 subjects in group 2. For patients in group 1, we set δi to be an R-dimensional vector with
δi,j ∼ Unif(0.5, 1) for all γj = 0 and δi,j ∼ Unif(0.4, 0.7) for all γj = 1. For patients in group 2, we
set δi to be an R-dimensional vector with δi,j ∼ Unif(0.5, 1) for γj = 0 and δi,j ∼ Unif(0.8, 1.1) for
γj = 1. The true map of γ was set to define 6 ROIs with γj = 1, located in the bilateral caudate, bilateral
lentiform nuclei, and bilateral primary visual cortices, as shown in Figure S1. In order to simulate the
clinical outcome data, we set

Yi ∼ Bern

(
eξ

T
i β

1 + eξ
T
i β

)
, (S2)

with ξi = (1, I(ηi = 1)) and β = (2.3,−4.5). Our final synthetic dataset comprised data on R = 47
regions for n = 20 subjects. Data were column-centered prior to the analysis.

5.1.1 Results

As done in the case study, we set hyperparameters to be weakly informative. We set the unscaled variance
of the ICAR prior to ck = 5, for k = 1, 2. We placed a vague prior on the hyperparameters of the mixing
proportions π, that is, αk = 1, and fixed the prior shape and scale parameters of the inverse gamma priors
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Figure S1: Synthetic data: (a) True map of γ, with γj = 1 for bilateral caudate, bilateral lentiform nuclei,
and primary visual cortices; (b) Overlay of true map of γ on slice 36 of PET image.

on σk and σ0 to be non-informative with a0 = 2, b0 = 1, ak = 2, and bk = 1. We also fixed the prior mean
and covariance of β tomβ = 0 and Vβ = 5 · IK , respectively. We set the neighborhood matrix, S, of the
MRF prior and the ICAR prior to a binary matrix with the bilateral caudate, bilateral lentiform nuclei,
bilateral primary visual cortices, bilateral associative visual cortices, ipsilateral thalamus, and contralateral
Broca’s area as neighbors. We first show results we obtained by setting the MRF parameters to e = −1.4,
which implies a lower bound on the prior probability of selection of 20% of the total number of regions,
and f = 0.1, and then comment on sensitivity below.

When running the MCMC, we initialized the chain with 0.5R randomly selected regions as discriminatory
and an equal number of randomly selected observations assigned to the two clusters. We initialized the
remaining values as µ(0)

k = 0, π(0)k = 1/K, σ(0)k = 1, for k = 1, 2, and σ(0)0 = 1, β(0) = 0. We ran the
MCMC sampler for 20,000 iterations, with the first 10,000 sweeps discarded as burn-in. The Geweke
z-statistic ranged from 0.61-1.14, failing to reject the null of equality between the means of the first 10%
and last 50% of the chain. The Raftery-Lewis dependence factor, calculated on the sampled values of β,
ranged from 1.19-1.26, indicating low autocorrelation of the chain. With our R implementation, 1,000
iterations of the MCMC algorithm ran in 33.9s on an Intel Core i7 station (2.50 GHz) with 16GB RAM.

Figure S2 shows the marginal posterior probabilities of inclusion (PPIs) for each of the 47 brain regions.
The median model here results in the accurate identification of the 6 discriminatory regions. Also, a
classification of the subjects into two subgroups, based on the posterior mode of class allocation, led to
accurately classify all subjects to the correct subgroups. Finally, the posterior means and 95% credible
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Figure S2: Synthetic data: Marginal posterior probability of inclusion for each of the 47 brain regions.

intervals for β0 and β1 were estimated as 2.82 (1.13,4.88) and -4.26 (-6.46,-2.28), respectively, leading to
good estimates of these parameters, with true values contained in the 95% credible intervals.

In order to better assess the selection performances of our method, we looked at results over repeated
simulations and calculated FPR (false positive rate), FNR (false negative rate), accuracy and F1-score, all
averaged over 30 replicated datasets. Here, FPR is defined as FPR = FP

FP+TN , with FP the number of
false positives and TN the number of true negatives. FNR is defined as FNR = FN

FN+TP , with FN the
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e
-4.5 -3 -2.2 -1.4

γ FPR 0.000 0.000 0.000 0.000
FNR 0.311 0.067 0.033 0.030
Accuracy 0.960 0.991 0.996 0.996
F1-score 0.693 0.933 0.967 0.967

η Rand Index 0.91 0.96 0.98 0.98
β0 Mean (SD) 0.62 (1.11) 1.82 (0.89) 1.91 (0.83) 1.91 (0.81)
β1 Mean (SD) -1.29 (2.28) -3.58 (1.40) -3.70 (1.17) -3.67 (1.16)

Table S3. Synthetic data: Sensitivity analysis to the MRF hyperparameter e, for fixed f = 0.1. Results are averaged over 30 replicated datasets.

number of false negatives and TP the number of true positives. Accuracy is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
.

Lastly, F1-score is defined as

F1 = 2 · (TP/(TP + FP )) (TP/(TP + FN))

(TP/(TP + FP )) + (TP/(TP + FN))
.

With the hyperparameters setting described above, we obtained FPR= 0.000, FNR=0.030, accuracy of
0.996 and an F1-score of 0.967. For cluster allocation, we quantified performances via the Rand index (RI)
of (Rand, 1971). Let us define the following quantities: A =

∑
i>i′ I(zi = zi′)I(ẑi = ẑi′), the number

of pairs of observations that belong to the same group in both the true clustering and the estimated one;
B =

∑
i>i′ I(zi = zi′)I(ẑi 6= ẑi′), the number of pairs in the same group in the true clustering and in

different groups in the estimated one; C =
∑

i>i′ I(zi 6= zi′)I(ẑi = ẑi′), the number of pairs in different
groups in both the true and estimated clustering; D =

∑
i>i′ I(zi 6= zi′)I(ẑi 6= ẑi′), the number of pairs in

different groups in both truth and estimate. Then the RI is defined as

RI =
A+D

A+B + C +D
,

and takes values between 0 and 1. The larger the index, the more accurate the clustering result. We obtained
a mean Rand index of RI = 0.98, over the 30 replicates. Furthermore, the means and standard deviations
of the posterior mean estimates for β0 and β1 were 1.91 (0.81) and -3.67 (1.16), respectively.

When investigating sensitivity to the prior choices, we noticed that modest changes of the values of the
model parameters did not affect the accuracy of the estimation results while, as expected, we observed
some sensitivity of the selection results to the parameters of the Markov random field prior, e and f .
Tables S3-S4 report results on FPR, FNR, accuracy, F1-score, Rand index and estimated β’s, all calculated
over 30 replicates, for several choices of these parameters. Larger values of e lead to lower FNRs, while
larger values of f lead to higher FPRs and lower precisions. Also, as expected, lower accuracy of variable
selection was associated with a lower Rand index for cluster allocation and larger errors in the estimation
of β0 and β1.

5.2 Comparison study

For comparison, we first assessed the performance of our unified method, which performs simultaneous
clustering based on selected variables and outcome prediction, against multi-step approaches that focus
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f

0.1 0.2 0.3 0.5 0.7
γ FPR 0.000 0.018 0.091 0.097 0.098

FNR 0.030 0.067 0.067 0.000 0.000
Accuracy 0.996 0.976 0.912 0.914 0.915
F1-score 0.967 0.879 0.700 0.750 0.750

η Rand Index 0.98 0.96 0.96 0.51 0.53
β0 Mean (SD) 1.91 (0.81) 1.87 (0.89) 1.84 (0.85) 0.10 (0.44) 0.15 (0.59)
β1 Mean (SD) -3.67 (1.16) -3.62 (1.32) -3.65 (1.29) -0.25 (1.00) -0.36 (1.22)

Table S4. Synthetic data: Sensitivity analysis to the MRF hyperparameter f , for fixed e = −1.4. Results are averaged over 30 replicated datasets.

Proposed Multi-step methods
LASSO Elastic net Logistic reg

γ FPR 0.000 0.037 0.085 0.094
FNR 0.030 0.550 0.089 0.000
Accuracy 0.996 0.897 0.914 0.918
F1-score 0.967 0.516 0.784 0.754

η Rand Index 0.98 0.96 0.95 1.00
β0 Mean (SD) 1.91 (0.81) 12.35 (11.23) 12.34 (11.22) 12.44 (11.13)
β1 Mean (SD) -3.67 (1.16) -23.52 (19.12) -23.52 (19.11) 23.72 (18.86)

Table S5. Synthetic data: Performance comparison between the proposed method and multi-step approaches. Results are averaged over 30 replicated datasets.

solely on clustering or solely on outcome prediction. We considered three multi-step procedures. In the
first two approaches, regularized logistic regression through either (a) the Least Absolute Shrinkage and
Selection Operator (LASSO) method of Tibshirani (1996) or the (b) elastic net penalized regression
(Zou and Hastie, 2005) was first used to perform variable selection, using the observed outcome Y as
the dependent variable. The LASSO regularization parameter, λ, was chosen to minimize the 5-fold
cross-validation error. Regularization and mixing parameters in the elastic net were optimized using a two-
dimensional grid search to minimize cross-validated error. Imaging data were standardized by centering and
scaling prior to penalized regression, as suggested by Efron et al. (2004). A Gaussian mixture model was
then fitted to the selected regions using the expectation-maximization (EM) algorithm to obtain estimates
of the cluster memberships η (Fraley and Raftery, 2006). These estimates of η were then used as the
covariates in a logistic regression. The third multi-step approach we considered mimics an approach in
which a subset of regions is selected a priori and used in a subsequent two-stage procedure. In this approach,
for each subject, permutation p-values were calculated for each region and then the subject-level p-value
maps were combined into a group-level p-value map using Fisher’s method (Fisher, 1950). A subset of the
regions was selected by thresholding the group-level p-value map with family-wise error rate control at the
0.05 level. Then, a k-means cluster analysis was performed using the selected regions to obtain estimates of
η. Finally, a logistic regression was fitted using the estimates of η as the covariates in a logistic regression.

For all methods, we report results averaged over 30 replicated datasets. We evaluated variable selection
performance via FNR, FPR, accuracy and F1-score, and cluster allocation performance via the Rand index.
Results are reported in Table S5. Lower accuracy of selection is observed for all three multi-step methods.
Whereas the LASSO multi-step approach tends to underselect brain regions (FNR, 55.0%), the elastic
net and logistic regression approaches tend to overselect (FPR, 8.5% and 9.4%, respectively). As for the
estimation of β, our unified method achieves estimates of β with higher accuracy as well as lower variance
than all three multi-step methods. These results demonstrate that a unified and probabilistically coherent
modeling approach can achieve improved estimation performance with respect to multi-step approaches.
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Proposed Regularized methods (no latent state)
LASSO Elastic net

AUC, Mean (SD) 0.91 (0.11) 0.87 (0.15) 0.88 (0.13)
Cross-entropy, Mean (SD) 0.35 (0.16) 0.47 (0.28) 0.48 (0.12)

Table S6. Synthetic data: Comparison of predictive performance between the proposed method and approaches which do not condition on latent states. Results
are averaged over 30 replicated datasets.

Next, we demonstrate that, when predictors are characterized by a true latent structure, as in our simulated
scenario, a modeling approach that explicitly accounts for such structure is able to achieve superior
prediction performance when compared to approaches that do not properly account for such heterogeneity
in the data. As done in the case study, we focus the comparison on elastic net and LASSO, which do
not condition on latent states but rather use the X data as the covariates. However, instead of calculating
cross-validation predictions, for this comparison we simulated an additional set of ntest = 15 synthetic
observations, that comprised our validation set, and calculated posterior predictive probabilities for our
method as described in Section 2.3.5. As above, regularization and mixing parameters for elastic net
were optimized using a two-dimensional grid search to minimize cross-validated error. LASSO and ridge
regularization parameters were chosen to minimize 5-fold cross-validation error. Predictive accuracy was
assessed for all methods through hold-out validation on the set of ntest = 15 synthetic observations. We
calculated two measures of predictive performance: the AUC and the cross-entropy error measure, defined
as

Cross-entropy =
1

ntest

ntest∑
i=1

[YilogŶi + (1− Yi)log(1− Ŷi)],

where Ŷi is the predicted outcome for subject i. Mean AUC and cross-entropy error, averaged over 30
replicates, are reported in Table S6 and show that our method attains both lower cross-entropy as well as
higher AUC compared to the competing regularized techniques.

6 MCMC ALGORITHM FOR POSTERIOR INFERENCE

A generic iteration of the MCMC algorithm comprises the following steps:

1. Update σk and σ0: These are Gibbs steps, σk ∼ IG(σ
(a)
k , σ

(b)
k ) for all k, and σ0 ∼ IG(σ

(a)
0 , σ

(b)
0 ), as

given in the main paper.
2. Update π: This is a Gibbs step, with π ∼ Dirichlet(α1 + n1, α2 + n2, . . . , αK + nK).
3. Jointly update (γ, {µk}Kk=1): This is a joint Metropolis-Hastings step. To propose a new candidate
γ?, randomly choose between two transition moves:
a. Add/delete: Randomly choose one of the R indices in γ, and change its value either from 0 to 1, or

1 to 0.
b. Swap: Choose independently and at random a 0 and 1 in γ, and switch their values.
For all µk,j’s such that γ?j = 1, sample µk,j from its full conditional, i.e. µ?k,j ∼ N (ζµ, τµ), k =

1, . . . K, with ζµ and τµ as given in the main paper. The proposed candidate
(
γ?, {µ?k}Kk=1

)
is jointly
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f = 0.01 f = 0.1

Geweke z-statistic (|zG|) 0.48-2.03 0.07-1.82
Raftery-Lewis dependence factor 1.15-4.32 1.14-3.71
Gelman-Rubin PSRF 1.00-1.00 1.00-1.13

Table S7. Temporal lobe epilepsy dataset: Markov chain convergence tests.

accepted with probability

min
{

1,
p(γ?,µ?1, . . . ,µ

?
K |X,η,Σ1, . . . ,ΣK)

p(γ,µ1, . . . ,µK |X,η,Σ1, . . . ,ΣK)

}

≈ min

1,
L(X|η,µ?1, . . . ,µ?K ,Σ1, . . . ,ΣK)

[∏K
k=1 p(µ

?
k|γ?)

]
p(γ?)

L(X|η,µ1, . . . ,µK ,Σ1, . . . ,ΣK)
[∏K

k=1 p(µk|γ)
]
p(γ)


where p(µk|γ) =

∏R
j=1 p(µk,j |γj) ∀k = 1, . . . , K, and p(γ) ∝

exp
{
e1TRγ + fγTSγ

}
.

Resampling step on {µk(γ)}Kk=1: At every M th sweep, for all µk,j’s such that γj = 1, sample
µk,j ∼ N (ζµ, τµ), k = 1, . . . K. This step is done only to improve the mixing of the chain.

4. Update β: This is a Gibbs step, β ∼ N(ζβ, τβ).
5. Update ω: This is a Gibbs step, ωi ∼ PG(1, ξTi β), i = 1, . . . , n.
6. Update η: This is a Gibbs step,
p(ηi|·) ∝ πkp(Xi(γ)|ηi = k,µk,Σk)p(Yi|ηi = k,β, ωi), i = 1, . . . , n.

An identifiability problem arises in finite mixture models due to the invariance of the likelihood under K!
permutations of the component labels, resulting in equal posterior values under each permutation. This
issue is usually referred to as “label-switching” and leads to problems with estimating component-specific
quantities. In order to account for this, we adapted the post-MCMC decision-theoretic relabeling method of
Stephens (2000) to our modeling framework. This method defines an appropriate loss function based on the
Kullback-Leibler divergence, and postprocesses the MCMC output to minimize the posterior expected loss.

7 CONVERGENCE TESTS

Convergence of each individual chain was assessed using the Raftery-Lewis diagnostic (Raftery et al.,
1992) and the Geweke test (Geweke et al., 1991). Convergence of the multiple chains was assessed using
the Gelman-Rubin potential scale reduction factor, based on the implementation in the R package “coda”
(Raftery and Lewis, 1992). Values of the diagnostics tests for the results reported in the paper are given in
Table S7 and indicate convergence to the stationary distribution.
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