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Figure S1

increasing body size

Figure S1 | Comparative anatomy of mouse, rat and human NMJs, Related to
Figure 1.

Representative confocal micrographs of NMJs from equivalent muscles in the 3
different species, arranged from left to right in order of ascending body weight and
size. There were no discernable differences between mouse and rat NMJs. Scale bar =

10 pm.



Figure S2
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Figure S2 | Validation of NMJ-enrichment in human and mouse tissue, Related
to Figure 4.

a. Samples enriched for NMJ content (NMJ) and devoid of NMJ content (muscle)
were probed to confirm the efficacy of the isolation procedure used (see Methods and
Figure 4). Representative LICOR captured images of gels stained for total protein
load, and membranes probed for a post-synaptic marker (PSD95) and a nuclear
marker (H2Ax) confirming b. equivalent protein extraction, ¢. enrichment for post-

synaptic protein and d. de-enrichment for nuclei.
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Figure S3 | Biolayout expression profile clustering identifies upregulated synaptic
proteins in NMJ-enriched tissue samples, Related to Figure 4.

Nodes (spheres) represent individual proteins and edges (lines) reflect the strength of
correlation (of expression) between proteins. Node colours represent distinct protein
clusters based on their expression profile. The 3D schematic (shown in 4 different
orientations) displays all proteins from both NMJ-enriched and NMJ-devoid human
samples; the 5 distinct synaptic protein clusters from the NMJ-enriched samples are

indicated with arrows.
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Figure S4 | Differences in protein composition between human and mouse NMJs,
Related to Figure 4.

IPA canonical pathway analysis of proteomics data identified significant alterations in
the molecular composition of NMJ-enriched samples from humans compared with
mice. Several changes in core synaptic pathways such as agrin interactions at the
NMIJ (a), CREB signaling in neurons (b) and axonal guidance signaling (¢) were
identified. Nodes in red represent proteins more abundant in human samples relative
to mouse (>20% increased in human); nodes in green represent proteins more
abundant in mouse samples relative to human (>20% decreased in human); the darker
the colour of the node, the greater the difference in protein expression. Grey nodes
represent proteins that differ by <20% between human and mouse. Note that each
pathway includes proteins that are both more and less abundant in human cf. mouse
samples, indicating that this is not simply an artefact of relative enrichment during

tissue processing.
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Table S1 | Baseline morphological data and influence of pre- and post-synaptic
cells, Related to Figure 1.

Core variables (1-11) are listed in red, derived variables (12-18) in blue and
associated nerve and muscle variables (19-21) in green. The ‘averages’ listed
(average human NMJ, average mouse NMJ) for each variable represent the mean for
the complete set of NMJs (2860 human; 960 mouse). Fold difference (between
human and mouse NMJ) is the ratio of the larger value relative to the smaller value;
most NMJ variables (but not all) were larger in mice. Correlation data is listed as
coefficient (r, numerical) and significance level (p, asterisk). [****p< 0.0001, ***p<

0.001, **p< 0.01, *p< 0.05]



Table S2

Table S2 Patient case series

case ref age sex side procedure indication DM function
1R 34 m R BKA non PVD non DM mobile
1L 34 m L BKA non PVD non DM mobile
2 42 f L BKA non PVD non DM mobile
3 49 f R BKA non PVD non DM mobile
4 49 m R BKA PVD DM mobile
5 50 m R BKA non PVD non DM n/a
6 52 f L BKA PVD DM n/a
7 56 f L BKA PVD DM n/a
8 58 m L AKA PVD DM mobile
9 64 m R BKA PVD DM n/a
10 66 m R BKA PVD DM mobile
11 68 m R BKA PVD DM mobile
12 77 m L BKA PVD DM n/a
13 79 m R BKA PVD DM mobile
14 80 m R BKA PVD non DM n/a
15 80 m R BKA PVD DM mobile
16 84 m L AKA PVD DM mobile
17 85 m R AKA PVD DM n/a
18 89 m L AKA PVD non DM n/a
19 92 f L BKA PVD non DM mobile
20 92 m L BKA PVD non DM n/a

Table S2 | Patient case series, Related to Figure 2.

Demographic and clinical details for the complete case series (20 patients). Age is in
years. Abbreviations: m, male; f, female; R, right limb; L, left limb; BKA, below
knee amputation; AKA, above knee amputation; PVD, peripheral vascular disease;

DM, diabetes mellitus; n/a, data not available.
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Table S3 | Conservation of metabolic cascades between human and mouse muscle
proteomes, Related to Figure 4.

Out of the 200 metabolic pathways identified in-silico, only 68 show differential
proteomic expression between the species (pathways with a —log,,(p value) = 1.3).
66% of the known metabolic cascades are therefore unchanged between human and
mouse muscle (NMJ-devoid) samples. Table layout and abbreviations are the same as

in Figure 4 (panel d).
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Supplemental Experimental Procedures:

Tissue harvesting

Muscle samples were obtained from the amputation specimen in the operating theatre
immediately after disconnection of the limb. Tissue was harvested from the proximal
end of the specimen, close to the line of surgical incision, in areas demonstrating good
back bleeding and muscle fasciculation, and away from areas of necrosis and
infection. Any muscle that appeared obviously devitalized on gross inspection was

not sampled.

Small blocks of tissue, containing full-length muscle fibres from origin to insertion
(approx. 2cm in length) were removed from each of the muscles selected and either
immediately fixed in 4% paraformaldehyde for 1 hour or placed on wet ice
(depending on the subsequent analyses, see below). All specimens were then

transferred from theatre to laboratory for immediate processing.

The major concern relating to the use of tissue harvested from amputation specimens
is the potential effect of chronic tissue ischaemia and diabetes mellitus (DM).
Although twelve of the twenty patients had one or other form of diabetes, the
functional status of all patients (where documented) was commensurate with standing
and some degree of walking prior to surgery (with one 92-year-old female able to

walk half a mile; Table S2).

At surgery, the level of amputation is principally determined by the likelihood of

wound healing; a more distal amputation is the preferred option from a functional

point of view, but not at the expense of healing. For the amputation stump to heal
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fully the local blood supply must be adequate; thus, tissue sampled close to the line of
incision (level of amputation) should also be of adequate health. The final decision
on the level of amputation is determined during the procedure itself, by assessing the
degree of back bleeding from the stump after disconnection of the limb. If the tissues
are clearly devitalized, the amputation is immediately revised to a level at which these
conditions are satisfied. These basic principles, along with the frequency with which
lower limb amputation is performed (over 4,000 per year in England from 2003-2009)
(Ahmad et al., 2014), provided the rationale for utilizing this method of tissue
sampling. In addition, all samples were harvested from muscle that demonstrated

visible contraction during dissection.

No significant differences were found in mean muscle fibre diameter when comparing
patients with and without PVD (Figure 1), excluding any significant sarcopenia
and/or disuse atrophy in the present case series. Furthermore, no significant
differences were noted in the majority of the core morphological variables measured,
when comparing NMJs in patients with or without either PVD (n.s. for 8 of 11
variables) or diabetes (n.s. for 10 of 11) (Figure 1). In addition, the general
appearance of NMIJs on visual inspection was remarkably conserved even when
comparing NMJs at the extremes of the case series (young, non-PVD cf. elderly,

PVD; Figure 2).

Muscle dissection and NM.J immunohistochemistry

Following muscle harvest, both human and rodent tissue was processed in an identical
manner. Small bundles of 25-30 muscle fibres were teased out from the larger

blocks/whole muscles, and of a size suitable for whole-mount preparation. NMlJs
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were then immunolabelled for presynaptic 2H3/SV2 proteins and postsynaptic AChRs
according to the following protocol (antibodies and concentrations are listed below):
a-bungarotoxin for 30 minutes; 4% Triton X for 90 minutes; ‘block’ for 30 minutes
(4% bovine serum albumin and 2% Triton X); primary antibodies (in block) for 3
nights at 4°C; 4 washes of 1xPBS; secondary antibodies for 1 night at 4°C; 4 washes
of 1xPBS. Preparations were then whole-mounted in Mowiol and stored at -20°C

prior to imaging.

Antibodies
Primary antibodies: 1:50 mouse anti-2H3 IgG and 1:50 mouse anti-SV2 IgG

(Developmental Studies Hybridoma Bank). Secondary antibodies: 1:50 Alexa Fluor
488 donkey anti-mouse IgG (Thermo Fisher Scientific). 1:500 TRITC a-

bungarotoxin (Biotium).

Confocal imaging and NMJ-morph analysis

Images were acquired and analyzed using a standardized workflow, ‘NMJ-morph’, as
previously described (Jones et al., 2016). Briefly, a Zeiss LSM 710 confocal
microscope was used to acquire z-stack projections of individual en-face NMJs,
including a short length of their pre-terminal axon. Images were then analyzed
according to the described workflow, which uses ImageJ or Fiji (and freely availably
plugins) to measure 21 individual pre- and post-synaptic morphological variables.
Again, based on the NMJ-morph recommendations, 40 NMJs per muscle were
analyzed to achieve accuracy of reported mean values. In total, we analyzed 2,860

individual human NMJs and 960 comparative mouse NMJs.
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Muscle fibre diameters

Following confocal microscopy, the teased preparations were re-imaged at x20
magnification using an Olympus IX71 microscope, Hamamatsu C4742-95 camera
and Openlab Improvision software. Measurement of muscle fibre diameter was
performed manually in ImagelJ; again, 40 individual fibres were analyzed per muscle

(3,820 fibres in total for the complete human/mouse dataset).

dSTORM super-resolution imaging and SNAP25 quantification

A subset of peroneus longus muscle fibres was selected from three human cases. For
comparison, an equivalent set of PL. muscle fibres were obtained from three CD1
mice. Muscle dissection and immunohistochemistry was performed as described
above, with the following modifications: after incubation in the primary antibodies
(rabbit anti-SNAP25 IgG, 1:100; Alomone) for 3 nights at 4°C, tissue samples were
labeled with Alexa Fluor 647 goat anti-rabbit IgG (1:100; Thermo Fisher Scientific)

at room temperature for 2 hours. Specimens were then washed and mounted in
dSTORM mounting medium (90% glycerol, 1xPBS, 100mM MEA) (Hou et al., 2015).
Human samples underwent an additional 70-minute treatment with ImM CuSO4 in
50mM ammonium acetate buffer, pH5 (Schnell et al., 1999) to remove lipofuscin-

genic autofluorescence after immunolabelling.

Imaging was performed on a customized Nikon Ti Eclipse inverted fluorescent TIRF
microscope with a 642nm laser. The lateral stage control was electronic and a piezo

focuser (P-725, Physik Instrumente, Germany) precisely controlled the axial position.
30,000-65,000 frames were recorded with a 25ms acquisition time, in a z-step format.

Z-steps were repeatedly performed at z-intervals of 200nm. Z-limits were set
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manually, slightly above and below the plane of interface between nerve terminal and
motor endplate. Only switching events in the given focal plane were accepted by a
thresholding filter as part of the PYME implemented jittered triangulation algorithm
(Hou et al., 2015). The same settings were used to capture a 550nm LED illuminated
widefield stack of TRITC-a-bungarotoxin-labeled AChRs through a Texas Red filter
set prior to dSTORM imaging. AChR stacks were used to produce a mean intensity

projection image to act as a mask.

Quantification of SNAP25 distribution was performed in an identical manner for all
images, using ImageJ. The ‘masked’ images (SNAP25/AChR overlays) were used as
a reference when determining the boundaries of individual boutons/SNAP25 puncta
on the dSTORM image, from which all measurements were made. dSTORM images
of complete NM1Js were first cropped to produce a series of images, each centred on
an individual bouton (human) or section of bouton (mouse). The cropped dASTORM
images were then converted into 8 bit grayscale counterparts, from which the mean
gray value (‘intensity’) could be measured. These grayscale images were then
converted into binary counterparts (using default thresholding) for the subsequent
quantification of puncta. Binary images produced by default thresholding provided
accurate representations of the original dASTORM images (i.e. no manual adjustments
or other thresholding algorithms were required), and this approach was applied
consistently for all images. Images were then ‘despeckled’ to sharpen the edges of
individual puncta, and used to quantify the remaining variables: the average area of
individual puncta and their density within each bouton, and the total area of all puncta
relative to that of each bouton. The derived variable ‘total area of active zones per

NMJ’ (Figure 3) was calculated by multiplying the latter variable (area of puncta :
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area of bouton, dSTORM data) by the mean area of synaptic contact for NMJs in
peroneus longus (baseline morphological data). Overall, we quantified 50 boutons (n)
from 10 NMJs, for 3 individual patients/mice (N) — a total of 2,945 (human) and

10,666 (mice) individual puncta.

Proteomics: tissue sampling

For proteomic analysis, a further subset of PL. muscle fibres was selected from four
human cases. An equivalent set of PL. muscle fibres was obtained from four CD1
mice for comparison. After tissue harvest, muscle dissection was performed on
unfixed tissue, in a manner otherwise similar to that described above, to obtain small
bundles of 25-30 muscle fibres. In order to identify the location of the endplate bands,
muscle fibres were labelled with a-bungarotoxin for 5 minutes; the NMJ-enriched
portions of the muscle fibres were then micro-dissected under a Nikon Eclipse 501
fluorescence microscope (Figure 4). NMJ-enriched samples, along with NMJ-devoid
muscle ‘ends’, were then frozen to -80°C prior to proteomic analysis. All muscle
dissection and labelling was performed within 30 minutes post-harvest to limit the

degree of protein degradation.

Proteomics: protein extraction

Dissected tissue samples were pooled in M tubes (gentle MACS Miltenyi Biotec).
Samples were homogenized in label-free extraction buffer [100 mM Tris-HCI (pH7.6)
4% (w/v) SDS] containing 1% protease cocktail inhibitor (Thermo Fisher, UK) using
gentle MACS dissociator (Miltenyi Biotec) run on the M tube protein cycle. Post
homogenization samples were spun at 300 x g for 2 minutes and left on ice for 20

minutes. Homogenates were transferred to Lo-Bind 1.5ml tubes (Sigma Aldrich) and
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centrifuged at 20,000 x g for 20 minutes at 4°C with the soluble fraction of each
sample then transferred to new Lo-Bind tubes. Protein determination using the
Bicinchoninic acid assay (Pierce, UK) was carried out according to manufacturer’s

guidelines.

Proteomics: mass spectrometry

Preparation of samples, quantification and bioinformatics was performed according to
a standardized protocol (Hughes et al., 2014). Samples were measured out to achieve
200ug/ul protein. DTT was added to give a 10mM final concentration and samples
were left on a shaker at room temperature for 30 minutes, followed by incubation with
IAA (50mM final concentration) in the dark for 30 minutes. 2ul DTT (1M) was

added before samples were frozen.

Hydrophobic and hydrophilic beads (GE HealthCare) were mixed together and
washed with MQ water. Beads were transferred to 4 tubes. Samples were then gently
added to the beads and mixed/shaken for 2 min. 1% FA was then added to each
sample (2 min mix), followed by 50% ACN (8 min mix); samples were then
transferred to a magnetic rack and the supernatant was removed. Next, 70% EtOH
was added (1 min mix), followed by removal of the supernatant. Finally, ACN was

added (1 min mix) and the supernatant again removed.

Proteins were eluted with 100mM TEAB on a shaker for 10 min. Trypsin in ImM
HCI (1ug/ul) was added to each sample and incubated on a shaker at 30°C for 4-6h.
A further portion of Trypsin was added and the samples were incubated overnight at

30°C. The tryptic peptides were then labelled with 6-plex TMT reagents (Thermo
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Fisher Scientific) using a protocol supplied by the manufacturer [TMT6plex-Nter126
& -Lys126 — Human +, TMT6plex-Nter127 & -Lys127 — Human -, TMT6plex-
Nter128 & -Lys128 — Mouse +, TMT6plex-Nter129 & -Lys129 — Mouse -]. The

labelled peptides were quenched then mixed together.

The mixed sample was fractionated into 22 fractions using High pH reverse phase
chromatography (Ultimate 3000 from Dionex). HPLC buffer A was 10mM
ammonium formate in water (pH=10); HPLC buffer B was 10mM ammonium
formate in 90% CH,CN (pH=10). An XBridge peptide BEH column (1304, 3.5 yum
2.1 X 150 mm from Waters) was used to separate peptides, with the column
temperature set to 20°C. Peptides were eluted from the column using a flow rate of
200ul/min and a linear gradient of 5% to 60% buffer B in 60min. 40 fractions were
collected and concatenated into 22 fractions based upon UV signal. All fractions

were vacuumed dried and re-suspended in 50 ul 1%FA acid prior to MS analysis.

Fractions were analyzed on a Q-exactive-HF mass spectrometer (Thermo Scientific)
equipped with Dionex Ultimate 3000 RS and Easyspray column (75 pum x 50 cm,
PepMap RSLC C18 column, 2 pm, 100 A). LC buffer A was 0.1% formic acid in MS
grade Milli-Q water; LC buffer B was 80% acetonitrile and 0.08% formic acid in MS
grade Milli-Q water. The peptides were eluted from the column using a flow rate of
300nl/min and a linear gradient of 5% to 40% buffer B in 122 min. The column

temperature was set to 50°C.

Qexactive HF was performed in data dependent mode: an MS survey scan followed

by 15 sequential dependent MS2 scans, with the 15 most intense precursor ions
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selected to be fragmented by Higher Energy Collisional Dissociation (HCD), with the
isolation window at 0.4 da. The resolution of the MS1 and MS2 was set at 120,000
and 60,000 respectively. The maximum ion injection time for MS1 and MS2 was

50ms and 200ms respectively.

Proteomics: quantification and bioinformatics analysis

The raw mass spectrometric data files obtained for each experiment were collated into
a single quantitated dataset using MaxQuant (Cox and Mann, 2008) and Andromeda
search engine software (Cox et al., 2011). Enzyme specificity was set to that of
trypsin, allowing for cleavage of N-terminal to proline residues and between aspartic
acid and proline residues. Other parameters used were: (i) variable modifications,
deamidation (NQ), oxidation (M), protein N-acetylation, gln — pyro-glu; (ii) fixed
modifications, carbamidomethylation (C); (iii) database: uniprot-
reviewed_Mus_A10090_160916 & uniprot-Human-up5640_160516; (iv) Reporter
ion MS2 — 4 TMT labels: TMT6plex-Nter126 to 129 & TMT6plex-Lys126 to 129; (v)
MS/MS tolerance: FTMS- 10ppm, ITMS- 0.02 Da; (vi) maximum peptide length, 6;
(vii) maximum missed cleavages, 2; (viii) maximum of labelled amino acids, 3; and
(ix) false discovery rate, 1%. Peptide ratios were calculated using ‘Reporter Intensity’
for Mouse +/- samples, Human +/- samples and Human/Mouse +/- samples. Data
was normalised using 1/median ratio value for each identified protein group per
labelled sample. Proteins were filtered to include candidates identified by >1 peptide
and demonstrating a >20% change between species. Filtered data was utilised for all
bioinformatics statistical analyses including Biolayout Express 3D and Ingenuity
Pathway Analyses (IPA). Expression clustering was performed in Biolayout Express

3D software by applying Markov clustering algorithms to raw proteomic data (MCL
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2.2). All graphs were clustered using Pearson correlation r=0.96. IPA was performed
as previously described (Wishart et al., 2007) with the interaction data limited as
follows: direct and indirect interactions; experimentally observed data only; 35
molecules per network; 10 networks per dataset. Prediction activation scores (z-

scores) were calculated in IPA.

Proteomics: validation of synaptic enrichment

Human and mouse pooled samples (10 pg load) were separated by SDS-
polyacrylamide gel electrophoresis on 4—12% precast NuPage Bis-Tris gradient gels
(Life technologies, UK) and then transferred to PVDF membrane using an iBlot 2 fast
transfer device (Life Technologies, UK). The membranes were then blocked using
Odyssey blocking buffer (Li-cor Biosciences, UK) and incubated with primary
antibodies according to the manufacturers' instructions. Secondary antibodies (goat
anti-rabbit IRDye 680 and donkey anti-mouse IRDye 680, Li-cor Biosciences, UK)
were added according to the manufacturers' instructions. Blots were imaged using an
Odyssey Infrared Imaging System (Li-cor Biosciences, UK). Scan resolution of the
instrument ranged from 21 to 339 um, and blots were imaged at 169 um.
Quantification was performed on single channels with the analysis software provided.
Total protein stained gels were loaded in parallel with those used for membrane
transfer. Gels were stained with InstantBlue (Expedeon) to ensure equal sample
loading and were analysed using the Odyssey Infrared Imaging system as previously

described (Eaton et al., 2013).
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