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1. Supplementary information: 

 

1.1 Individual improvements in DIA leading to a leap in performance: 

• The MS1 precursor scan resolution was increased from 35,000 (Bruderer et al. MCP 2015) to 

120,000 in this study. This increased the identifications by 8% for 2h DIA runs (Figure 1d) 

• To increase the dynamic range of the MS1 precursor scans, the m/z space was split into two 

segments. This increased the identifications by 4% for 4h DIA runs (Figure 3, compared to 4h DIA 

with only one MS1 segment) 

• In this study, high resolution chromatography was used in addition to an improved peak gradient 

shape resulting in a more uniform peak widths at higher acetonitrile concentrations (Suppl figure 

1). The use of Reprosil Pur 1.9um particles instead of ProntoSil 3.5um increased the identification 

by 10% for 2h DIA runs on the Q Exactive HF of HeLa using the HeLa spectral library of this 

manuscript. 

• Increased sample loading from 1ug (as in Bruderer et al. MCP 2015) to 2ug increased the 

identifications by 4% in 2h DIA runs of HeLa using the HeLa spectral library of this manuscript. 

• The algorithm for spectral library generation in Spectronaut was improved (fragment ion 

selection, fragment annotation, …). This resulted in an increase of identifications of 23% 

compared to the version of Spectronaut 5 used in Bruderer et al. MCP 2015 when the spectral 

library of the 2015 MCP publication data is regenerated with Spectronaut 9 and applied to 2h DIA 

of HEK-293. 

• The targeted analysis of DIA was improved in the new Spectronaut versions. Compared to 

Spectronaut 5 used in Bruderer et al. MCP 2015, the identifications of 4h DIA runs of HeLa (Figure 

3) increased by 12%. 
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• High field Orbitrap mass analyzer used in the Q Exactive HF improved the identifications by 25% 

for 2h DIA runs compared to the Q Exactive used Bruderer et al. MCP 2015, using comparable 

methods (35,000 resolution of QE vs 30,000 resolution of QE HF, identical DIA segments). 

• Deep spectral libraries generated by high pH reversed phase fractionation showed improved 

performance on this high quality DIA data. In HEK-293 DIA of Bruderer et al. MCP 2015 it improved 

the identifications by 30% when using the HEK-293/HeLa spectral library of this manuscript 

compared to the spectral library Bruderer et al. MCP. 

 

1.2 Precursor FDR (q-value) estimation in Spectronaut for DIA 

Spectronaut uses the mProphet algorithm for FDR estimation which was initially published for MRM data 

(1). The mProphet algorithm has been shown to be readily applicable to the targeted analysis of 

DIA/SWATH data because the data structure is identical to MRM (2, 3). In brief Spectronaut will analyze 

any DIA data not only with the peptide precursors specified in the spectral library (“targets”) but also with 

additionally, on the fly generated decoy peptide precursors (“decoys”). By default, in Spectronaut, the 

number of decoys will be the maximum of 1000 and 10% of the spectral library size (strategy and number 

can be adjusted in the Spectronaut settings schema). Due to the large size of spectral libraries used in this 

study the number of decoys was in the range of 10’000 to 20’000. Extracted ion currents for the precursor 

isotopic envelope are generated on MS1 for all targets and decoys. Extracted ion currents for the fragment 

ions are generated on MS2 for all targets and decoys. Extracted ion currents are generated in the retention 

time window where peptide elution is expected and as determined by the iRT calibration (described in 

detail in (4). For every target/decoy, candidate peak groups are determined and a discriminant score is 

computed. For every target/decoy only the candidate peak group with the highest discriminant score is 

further considered. 
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The classical assumption for FDR estimation in DDA using the target/decoy approach is: “False peptide-

spectrum matches will uniformly distribute with respect to the target and decoy database.” This 

assumption is not valid in the targeted analysis of DIA, i.e. false identifications do not uniformly distribute 

with respect to targets and decoys. Hence, the FDR is estimated with the q-value approach as described 

in the mProphet paper (5). In brief, the discriminant scores (Cscores) are converted to p-values based on 

a kernel density fit to the Cscore distribution of the decoys and q-values are estimated based on the p-

values of the targets with the Storey method using a lambda of 0.5. 

The decoy Cscore distribution should be representative of false identifications to achieve an accurate FDR 

estimation1.  We used the “mutated decoy strategy” for decoy generation for all experiments in this 

manuscript (available as of Spectronaut 11.0.15038.9 in the settings).  

The mutated decoy strategy works as follows: Pick N random peptide precursors from the spectral library 

as templates, where N is the number of decoys to generate. Exchange C-terminal amino acid from K to R, 

from R to K and from any other amino acid to a random amino acid (I to L and vice versa is avoided). 

Recalculate the precursor m/z based on this new sequence. Take the original sequence and randomly 

exchange a variable number of amino acids in the sequence (last amino acid stays the same). Recalculate 

the fragment ions based on this new sequence. The iRT and relative fragment ion intensities are kept 

identical to the template. For a more detailed description see the pseudo code below. The mutated decoy 

model was validated using a two-organism spectral library approach (see below). It was also found to be 

slightly less optimistic than the scrambled decoy model described in1 (See Suppl. Figure 1). 

1Bernhardt, O. M., Bruderer R., Gandhi, T., Miladinovic, S. M., Bober, M., Ehrenberger, T., Rinner, O., and 
Reiter, L. (2014) General guidelines for validation of decoy models for HRM/DIA/SWATH as exemplified 
using Spectronaut. Proceedings of the 62nd ASMS Conference on Mass Spectrometry and Allied Topics, 
2014, Baltimore, MD, USA. 
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1.3 Protein group FDR (q-value) estimation in Spectronaut for DIA 

Spectronaut uses a recently published strategy (Rosenberger et al. 2017) for protein group FDR estimation 

in DIA with slight adaptations. In brief, a unified scoring scale across all runs is established. Since machine 

learning is performed on a run by run bases, the Cscores which is the primary score used for precursor 

FDR calculation cannot be directly compared between runs within one experiment. In order to normalize 

the Cscores across runs a robust normalization is applied. Since the distribution of decoy scores behaves 

very similar across different runs it can be used as a means of normalization as follows 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)
𝐼𝐼𝐼𝐼𝐼𝐼(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)

, 

where DecoyCScores is the set of all Cscores associated with decoy precursors of the respective run and 

IQR is the interquartile range. 
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In contrast to using the protein grouping of the spectral library, Spectronaut typically performs its own 

protein inference on the set of identified peptides (typically performed on all the precursors with FDR of 

1%) using the ID picker algorithm (Zhang et al. 2007). That’s a small difference to what was published in 

the Rosenberger et al. approach and has the following subtle effect. Certain protein groups are being 

“stripped off” all of their peptides. These protein groups are no more representative and removed. If 

Spectronaut is not asked to perform protein inference on the set of identified peptides this step is not 

performed. The number of resulting protein groups is typically smaller if Spectronaut protein inference is 

performed. Hence, in this manuscript the more conservative approach of the two was used throughout. 

For protein group FDR estimation, scores for both targets and decoy protein groups are needed. A target 

protein group score is defined as the best nCscore across all runs associated with this protein group. A 

decoy protein group is generated for each target protein group. A decoy protein group will be a randomly 

assembled set of decoy precursors. The number of decoy precursors assigned to a decoy protein is 

corresponding to its associated target protein groups total precursor count. Similar to a target protein 

group, the best nCscore of each decoy precursor across all runs will represent the decoy protein group 

score. Having a set of target and decoy protein groups and protein scores, the Storey method (Storey et 

al. 2003) can be used to determine a q-value for each target protein group as described Rosenberger et 

al. 2017 or above for the precursor FDR. 

We validated protein group FDR as described below. 

 

1.4 Precursor FDR (q-value) validation 

In order to validate the precursor FDR a two-organism spectral library approach was used. Two spectral 

libraries derived from human Hela cell line and maize were prepared in exactly the same manner and 

applied to a DIA measurement of Hela. The number of maize precursor identifications can be used to cross 
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validate the precursor FDR estimate, because it is assumed that all precursors from the Hela library are 

identified and all maize identifications are false positives. 

A Hela and a maize sample was prepared and measured in technical triplicates each using a 2h DDA 

method on a Q Exactive HF. The Hela and maize DDA data was searched separately with standard settings 

(variable protein N-terminal acetylation and methionine oxidation, fixed carbamidomethylation of 

cysteine), UniProt release 2017.06.14 for Hela (20’217 sequences), UniProt and Trembl release 2017.06.14 

for maize (131’132 sequences) and filtered with a 0.1% PSM and protein group FDR. A human and a maize 

spectral library was generated with standard settings using Spectronaut (these libraries are called base 

libraries in the paragraph “Protein group FDR (q-value) validation”). 

Using in house software the spectral libraries were filtered for peptides that occur in both species as 

follows: Extensive sequence annotation for both species was used combining reviewed, unreviewed and 

isoforms sequences. The FASTA files comprised 159’692 sequences for human (release 12.7.2017) and 

132’460 sequences for maize (release 19.06.2017). The two FASTA files were in silico digested with semi-

tryptic specificity and allowing maximally two missed cleavages. After that all peptides occurring in both 

species were removed. Isoleucine and Leucine were treated as the same amino acid, i.e. peptides only 

differing in an I to L or L to I exchange were filtered as well. This resulted in a Hela and a maize spectral 

library with peptides occurring in only the respective species with a very high likelihood. 

The remaining precursors in both spectral libraries were sorted by evidence count (the number of PSMs 

in the DDA acquisitions) and q-value. Precursors with an m/z smaller than 350 and larger than 1650 were 

removed because this is the range we typically acquire DIA data in. The remaining top 10’000 precursors 

in the two spectral libraries were retained. 

Both spectral libraries were applied to a 2h DIA run of a Hela sample acquired on a Q Exactive HF using 

Spectronaut with standard settings, except for setting the number of decoys to 10’000. A report with 
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following columns was generated: PG.FastaFiles and EG.Qvalue without report filters (decoys not 

exported). The PG.FastaFiles column was used to count the number of maize identifications and hence to 

determine an “actual” FDR for a given estimated q-value (Suppl. Fig. 1).   

In general, a repeated analysis using Spectronaut with unchanged settings and raw data will result in 

identical results. For this specific analysis here, we performed a 250-fold bootstrap analysis in order to 

have a more accurate cross validation. This means we repeated the analysis 250 times with various 

random seeds.  

 

1.5 Protein group FDR (q-value) validation 

The base spectral libraries derived from the human Hela cell line and maize as described under “Precursor 

FDR (q-value) validation” were further filtered for protein group FDR validation as follows: Using in house 

software the spectral libraries were filtered for proteins that share any peptides between the two species 

as follows: Extensive sequence annotation for both species was used combining reviewed, unreviewed 

and isoforms sequences. The FASTA files comprised 159’692 sequences for human (release 12.7.2017) 

and 132’460 sequences for maize (release 19.06.2017). The two FASTA files were in silico digested with 

semi-tryptic specificity and allowing maximally two missed cleavages. Isoleucine and Leucine were treated 

as the same amino acid, i.e. peptides only differing in an I to L or L to I exchange were filtered as well. This 

resulted in a Hela and a maize spectral library with proteins only yielding peptides that occur in one of the 

two species with a very high likelihood. 

Further, all proteins with less than three precursors were removed. Proteins were sorted by average q-

value and the top 1000 protein groups in each library were retained. 

Both spectral libraries were applied to a technical triplicate of 2h DIA runs of a Hela sample acquired on a 

Q Exactive HF using Spectronaut with standard settings. A report with following columns was generated: 
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PG.FastaFiles, PG.ProteinGroups and PG.Qvalue without report filters (decoys not exported). Duplicated 

protein groups were removed based on the PG.ProteinGroups column. The PG.FastaFiles column was used 

to count the number of maize protein identifications for a certain cutoff and hence to determine an 

“actual” FDR for a given estimated q-value (Suppl. Figure 1).  

In general, a repeated analysis using Spectronaut with unchanged settings and raw data will result in 

identical results. For this specific analysis here, we performed a 250-fold bootstrap analysis in order to 

have a more accurate cross validation. This means we repeated the analysis 250 times with various 

random seeds.  

 

1.6 Calculation of the identified “explained” TIC of Suppl figure 10: 

First, the scans were centroid the scan. Next, all peak intensities were summed to obtain the Total ion 

current. Then feature detection was performed (minimally 2 peaks, mono isotopic +1 isotope).  Then all 

precursors that elute for a scan were obtained (Apex RT +/- FWHM *2.55) and fall within the precursor 

selection window and are identified (Prec and Protein FDR). Use all library fragments for the relevant 

assays (all detected in DDA of the runs used for the spectral library) and match each fragment to a 

detected feature (must fall within m/z tolerance from mass-calibration and match the same detected 

feature charge). Next, all features were collected that matched to any library fragment and all associated 

peak intensities were summed resulting in the Explained Ion Current 

For the control shift analysis, the identified peaks RT by three times the peak width used for explained tic 

to earlier retention time and get intensities. 

 

Supplementary references: 
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1.7 Supplementary figure legends 

Suppl Figure 1: Validation of the new decoy model based on mutated sequences 2h DIA run of a Hela 

sample acquired on a Q Exactive HF were analyzed using Spectronaut with a maize spectral library as 

described in Supplementary Information. The number of maize identifications was counted and used to 

determine an “actual” FDR for the estimated q-value (< 1%). 

Suppl Figure 2: Characterization of the chromatography (a) The line plot shows the segmented gradient 

used for the 2h acquisitions. (b) The boxplot shows the distribution of full width at half maximum height 

of the identified chromatographic peaks of the 2h HeLa acquisitions. The time interval for the boxplot 

calculation was 2.5 min. (c) The bar plot shows the average data points per peak of the identified peptides. 

The time interval for the bar calculation was 2.5 min. 

Suppl Figure 3: Identification reproducibility and quantification analysis (a) The reproducibility of 

identification of proteins was calculated for the DIA method set with differing data points per peak. (b) 

The CVs distributions for the 69,968 shared peptides were calculated for the DIA method set with differing 

data points per peak. (c) The reproducibility of identification of proteins was calculated for the DIA method 

set with varying MS1 resolutions. (d) The CV distributions for the 75,740 shared peptides were calculated 

for the DIA method set with varying MS1 resolutions. (e) The reproducibility of identification of proteins 

was calculated for the DIA method set with varying MS2 resolutions. (f) The CV distributions for the 71,570 

shared peptides were calculated for the DIA method set with varying MS2 resolutions. 
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Suppl Figure 4: MS1 quantification of DIA methods with varying MS1 resolution (a) The CVs of the DIA 

method set with varying MS1 resolutions were calculated based on peptide intensities. The average 

identifications of a DIA triplicate analysis of HeLa and the number of identified peptides CVs below defined 

thresholds were calculated. The error bars display the standard deviations. The asterisk indicates the 

highest number of peptides with CV below 20%. (b) CV comparison of MS1 and MS2 for the method with 

120,000 resolution on MS1 (c) The boxplot shows the distribution of CVs of identified peptides based on 

MS1 quantification in 2h HeLa acquisitions plotted against retention time for the method with 120,000 

resolution on MS1.  (c) The boxplot shows the distribution of MS1 based intensities of the identified 

peptides 2h HeLa acquisitions plotted against retention time for the method with 120,000 resolution on 

MS1. (d) The boxplot shows the distribution of CVs of identified peptides based on MS2 quantification in 

2h HeLa acquisitions plotted against retention time for the method with 120,000 resolution on MS1.  (e) 

The boxplot shows the distribution of MS2 based intensities of the identified peptides 2h HeLa acquisitions 

plotted against retention time for the method with 120,000 resolution on MS1. The time interval for the 

boxplot calculation was 2.5 min. 

Suppl Figure 5: MS2 Fill time analysis for the set of DIA methods with the varying MS2 resolutions The 

percentage of MS2 scans, that reached the maximal fill time during mass spectrometric acquisition was 

calculated for the set of DIA methods with the varying MS2 resolutions. 

Suppl Figure 6: Multiple organism DIA data in depth analysis (a) Reproducibility of protein identification 

in the mixed proteome sample in a DIA technical triplicate. (b) The identifications of the DIA single shot 
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acquisition with the sample containing peptides from lysates from four organisms were calculated 

according to their origin (shared peptides were counted only for one organism in this order first to E.coli, 

then S. cerevisiae followed by C. elegans). (c) Significantly differential abundant C. elegans proteins (5% 

FDR by q-value) were calculated using a one sample t-test analysis. (d) Significantly differential abundant 

S. cerevisiae proteins (5% FDR by q-value) were calculated using a one sample t-test analysis. (e) 

Significantly differential abundant E. coli proteins (5% FDR by q-value) were calculated using a one sample 

t-test analysis. (f) Box plot visualization of percent change (based on MS2 quantification for DIA) of all 

identified proteins of the large fold change mixed proteome experiment with 60%, 100% and 300% fold 

change (comparison S2/S1 for H. sapiens, C. elegans and S. cerevisiae and S1/S2 for E. coli). Only the 

overlapping identifications are shown. The theoretical fold changes are indicated for the organisms. 

Suppl Figure 7: Reproducibility of identification and quantification for project specific and resource data 

based spectral libraries (a) The reproducibility of protein identification was calculated for the analysis of 

the HEK-293 and the HeLa triplicate DIA analysis. This was performed for the targeted analysis with the 

project specific spectral library, the published repository derived spectral library (11 common cell lines, 

see methods) and the panHuman spectral library of Rosenberger et al. (b) The CV distributions were 

calculated for 52,339 shared peptides. (c) Comparison of the retention times of the Cerebellum DIA 

replicate 1 analyzed with the project specific and the Sharma resource spectral library (105,070 

overlapping assays). Pearson correlation is 0.9996. Median abs delta Retention time is 0 and average 0.11 

min. 
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Suppl Figure 8: Barrel cortex proteome profiling Four stages normal development of murine barrel cortex 

were characterized using DIA. (a) Reproducibility of identification of proteins within the developmental 

stages for the targeted analysis with the project specific spectral library. (b) Peptide and protein CV 

distributions were calculated for the developmental stages for the targeted analysis with the project 

specific spectral library. (c) A principal component analysis was performed for the targeted analysis with 

the project specific spectral library. PC1 and PC2 were plotted. (d) Visualization of candidates derived with 

significant differential abundance from sensory deprivation by postnatal bilateral whisker trimming 

(Butko et al., 2012) and candidates of the developmental study presented here. (e) Fuzzy c-means 

clustering analysis was performed for the phospho peptides. The black line in the membership bar shows 

the threshold above which proteins belong to the cluster. (f) Proteins profiled by abundance and 

phosphorylation site. The XICs of MS1 and MS2 are visualized for a phosphorylated peptide and an 

unmodified peptide. 

Suppl Figure 9: Barrel cortex proteome profiling using the mouse resource spectral library Four stages 

of murine barrel cortex development were characterized using DIA and a spectral library generated from 

published repositories (see methods). (a) The protein identifications were calculated per developmental 

stage and the average with standard deviation are shown. (b) Reproducibility of identification of proteins 

within the developmental stages for the targeted analysis. (c) Peptide and protein CV distributions were 

calculated for the developmental stages for the targeted analysis. (d) The average identifications and the 
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number of peptides CVs below defined thresholds were calculated for analysis with the project specific 

and repository based spectral library. (e) Fuzzy c-means clustering analysis was performed and visualized 

with enriched GO terms from the targeted analysis of the DIA data with a spectral library generated from 

published repositories. The black line in the membership bar shows the threshold above which proteins 

belong to the cluster. (f) The DIA-data was analyzed using a spectral library generated from published 

repositories (see methods). Scatterplot visualization of the overlap of 1,031 which were identified both in 

the analysis with the project spectral library and the repository spectral library. 

Suppl Figure 10: The TIC identified by the targeted analysis of DIA (a) A random DIA MS1 and 

corresponding MS2 spectrum was annotated by identified peptides and fragments of the mouse 

Cerebellum DIA when using the project specific spectral library. The precursor ions were annotated with 

the respective isotope envelope. The complete spectral library fragment information from the DDA runs 

(all identified fragments, not only the optimized 6) were taken, additionally, the fragment space was 

trimmed to >250 m/z, since no fragments below 250 m/z were in the spectral library allowed. Note, that 

the minimal peptide length for die spectral library DDA runs was set to 7 and a limited set of modifications 

was used. The analysis was performed as described above. (b) A random DIA MS1 and corresponding MS2 

spectrum was annotated by identified peptides and fragments of the HEK-293 DIA when using the project 

specific spectral library. The precursor ions were annotated with the respective isotope envelope. The 

analysis was performed as described above. (c) TIC and identified TIC were calculated for the mouse 

Cerebellum DIA on MS1 and MS2 level. Additionally, as a control, the identifications were shifted by 3 

peak widths to earlier retention time. The analysis was performed as described above. (d) TIC and 

identified TIC were calculated for the HEK-293 DIA on MS1 and MS2 level. The control and analysis was 

performed as described above. 
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Suppl. Table 1: Individual improvements in DIA leading to a leap in performance: 

The percent improvement on peptide level was calculated for the reported comparisons and the changes  

Individual improvements in DIA performance   
Method Improvement (%) Comparison done 
MS1 scan resolution increase from 35k to 
120k or 240k 8 2h DIA, Figure 1d 

MS1 dynamic range increase by two-fold 
slicing MS1 space 4 4h DIA runs, HeLa, Figure 3 

High resolution chromatography, improved 
peak gradient shape 10 ProntoSil 3.5 vs Reprosil Pur 1.9um beads 

2h DIA, HeLa 

Increased loading 4 2h gradient DIA, HeLa 

Spectral library generation algorithm 23 Bruderer et al. MCP 2015, 2h DIA, HEK293 

High precision iRT 13 Bruderer et al. Proteomics 2016 2h DIA 
HeLa 

Targeted analysis of DIA with new 
Spectronaut 12 

4h DIA runs, HeLa, compared Spectronaut 
9 to Spectronaut version 5 (of Bruderer et 
al. MCP 2015) 

Orbitrap HF mass analyzer 25 Bruderer et al. MCP 2015, 2h DIA QE 
classic vs QE HF, same DIA method 

Fractionation for spectral library 
generation 

30 Bruderer et al. MCP 2015, 2h- DIA, HEK-
293 
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Suppl. Table 2: Mixed proteomes sample generation: 

Single sample 
     

Ratio 
      

Human 40 
     

C.Elegans 42 
     

S.Cereviviae 12 
     

E.Coli 6 
     

       

Small Fold change sample set 
    

 
Ratios 

  
ug used per sample 

 
 

S1 S2 
  

S1 S2 
Human 1 1 

 
Human 16.00 16.00 

C.Elegans 1 1.1 
 

C.Elegans 16.80 18.48 
S.Cereviviae 1 1.2 

 
S.Cereviviae 4.80 5.76 

E.Coli 1.3 1 
 

E.Coli 3.64 2.80        

Large Fold change sample set 
    

 
Ratios 

  
ug used per sample 

 
 

S1 S2 
  

S1 S2 
Human 1 1 

 
Human 16.00 16.00 

C.Elegans 1 2 
 

C.Elegans 16.80 33.60 
S.Cereviviae 1.6 1 

 
S.Cereviviae 7.68 4.80 

E.Coli 1 4 
 

E.Coli 2.40 9.60 
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Suppl. Table 2: Chromatographic gradient profiles (in min) 

Gradient length:  30 min 1h 2h 4 h 
percent B      

1 0 0 0 0 
4 0.8 1.5 3 6 
6 1.5 3 6 12 
8 2.5 5 10 20 

10 3.8 7.5 15 30 
12 5.8 11.5 23 46 
17 10.5 21 42 84 
26 20.8 41.5 83 166 
28 23.0 46 92 184 
30 24.5 49 98 196 
32 25.8 51.5 103 206 
34 26.8 53.5 107 214 
36 27.8 55.5 111 222 
38 28.5 57 114 228 
41 29.3 58.5 117 234 
52 30 60 120 240 
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Suppl. Table 3: Spectral library overview 

 

Suppl Table 4: Data set completeness and missing values on protein level for technical replicates 

Technical replicates Hela 2h Hela 4h HEK 4h Cerebellum 4 Mixed proteomes 

Missing values proteins 0.4 2.1 1.3 0.3 1.2 

Completeness 99.6 97.9 98.7 99.7 98.8 
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Suppl. Figure 1 
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Suppl. Figure 2 
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Suppl. Figure 3 
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Suppl. Figure 4  
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Suppl. Figure 5 
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Suppl. Figure 6 
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Suppl. Figure 7 
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Suppl. Figure 8 
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Suppl. Figure 9 
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Suppl. Figure 10 
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