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Supporting Notes 

Sample preparation for electron microscopy imaging  

        The free-standing nanowires (NWs) still intact on the substrate were mounted on a double-tilt 

holder (Fig. S1A). A magnified image of the sample (marked by a rectangular box) is shown in Fig. 

S1B. The sample preparation is schematically illustrated in Fig. S1C. One thickness (~0.3 mm) side of 

the substrate (typical dimensions of ~2×1×0.3 mm3) was glued on a Cu O-ring. Fig. S1D shows a typical 

transmission electron microscopy (TEM) image of the NWs (with substrate). The substrate was seen as 

completely dark contrast because no electron beam was transmitted. 

 

Fig. S1. Free-standing sample preparation for electron microscopy investigation. (A) Overview of a 

sample holder. (B) Specimen was mounted on the sample holder. This magnified image was from the 

box shown in (A). (C) Schematic diagram of the free-standing NW sample preparation. (D) TEM image 

of the NWs viewed by a charge-coupled device (CCD). 
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Length change of the NW 

        Transient morphological changes of the Au/GaAs NWs were imaged in the single-pulse mode. The 

lengths of the GaAs NW (without the top bead) before and after laser pulse excitation are marked by 

white rulers (Fig. S2). In order to enhance the contrast between the top bead and the GaAs NW, and to 

make a comparison of the NW at different excitation stages, two reference images were taken with 

exposure to 100 electron pulses. One was before the arrival of a laser pulse while the other one was after 

the whole process ended (immediately after an incoming laser pulse an intermediate state at each delay 

time was captured. Then the shutter of the pump laser was closed, and we took the final reference image. 

This final image meant the one after the process ended). By such a way, the length of the GaAs NW at 

each stage was indicated by a ruler (Figs. 3 and 4 of the main text).  

 

 

Fig. S2. Length reduction of the NW during laser pulse excitation. Intermediate state of the NW at a 

specific delay time was visualized by single-pulse method. To enhance the contrast and to make a clear 

comparison, two reference images were taken with 100 electron pulses at the stage before the excitation 

and after the process ended.  

 

Width change of the NW 

  Fig. S3 shows a comparison between two TEM images of a NW. These two images correspond to 

the initial and final state of the NW, respectively. Because GaAs NW was incorporated into the top Au 
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bead that enabled the eutectic reactions, the top bead became bigger than the initial one. However, it is 

noteworthy that the width of the NW body shows no obvious change.  

 

Fig. S3. TEM images of a NW, before (A) vs. after laser excitation (B). The dashed lines indicate the 

left and right edges of the NW. 

 

Volume change of the NW 

    The volume change of the NW was estimated according to the schematics shown in Fig. S4. GaAs 

has a hexagonal shape in cross-sectional geometry (1) while the initial Au bead shows a segment shape 

of a sphere. The initial volume 𝑉𝑉0 of the Au/GaAs is, 

                     𝑉𝑉0 = 𝑆𝑆 × 𝑙𝑙 + 4 3⁄ 𝜋𝜋𝑅𝑅3 − 𝜋𝜋(𝑅𝑅 −𝑚𝑚)2 × (𝑅𝑅 − 𝑅𝑅−𝑚𝑚
3

)                                            (1) 

where 𝑙𝑙 and  𝑆𝑆 are the length and cross-sectional area of GaAs, 𝑅𝑅 is the initial radius of the Au bead and 

𝑚𝑚 is the height from the center point to the bottom of the sphere segment. Based on the hexagonal 

geometry, 𝑆𝑆 equals to  3√3
2
𝑑𝑑2, where 𝑑𝑑 is the half width of the GaAs NW. 
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        The volume reduction of the GaAs NW as a result of the length shrinkage ∆𝑙𝑙 becomes, 

                                                         ∆𝑉𝑉1 = ∆𝑙𝑙 × 𝑆𝑆                                                                                   (2) 

        The volume increase of the top bead with a final radius of 𝑅𝑅′ is given by, 

                               ∆𝑉𝑉2 = 4 3⁄ 𝜋𝜋𝑅𝑅′3 − [4 3⁄ 𝜋𝜋𝑅𝑅3 − 𝜋𝜋(𝑅𝑅 −𝑚𝑚)2 × �𝑅𝑅 − 𝑅𝑅−𝑚𝑚
3
�]                                    (3) 

 

 

Fig. S4. Schematic diagram of the NW and the bead used for estimation of the volume changes. GaAs 

has a hexagonal cross-section with an area of S. The length change ∆𝑙𝑙 of GaAs was measured by the 

difference between the initial length and the one after a laser shot. The initial Au bead shows a segment 

of a sphere with a diameter and height of 2𝑅𝑅  and (𝑅𝑅 + 𝑚𝑚), respectively. The top bead after laser 

excitation is assumed to be a sphere with a diameter of 2𝑅𝑅′.  

 

        Therefore, the total volume change of the Au/GaAs is written as, 

                                                    ∆𝑉𝑉 = ∆𝑉𝑉1 + ∆𝑉𝑉2                                                                                  (4) 
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        Substituting the parameters 𝑙𝑙, ∆𝑙𝑙, 𝑅𝑅, 𝑅𝑅′, 𝑚𝑚, and 𝑑𝑑 measured from the TEM images into equations 

(1)-(4), the volume changes of the bead and the NW are plotted in Fig. 3 of the main text.  

 

Newly formed alloy phases after laser excitation 

    We applied electron diffraction to examine the newly formed alloy phases. Fig. S5 show the 

electron microscopy (EM) micrograph and diffraction patterns of a NW took at different modes. A 

region marked by a circle in Fig. S5A was used for performing the electron diffraction patterns (Fig. 

S5B). Three modes, namely, TEM, stroboscopic (1 kHz) and single-pulse modes were used for 

comparison. When the exposure time was 5 s in the TEM mode, clear diffraction spots from the sample 

appeared. In the stroboscopic mode, similar diffraction spots were present when the exposure time was 

largely increased to 120 s (only several diffraction spots appeared at the exposure time of 10 s, but with 

much weaker intensity due to lower electron dose). In the single-pulse mode (only a single electron 

pulse), however, no clear diffraction spot was observed. The reason is shown below. There are only ~105 

electrons in a single electron pulse of the single-pulse mode (effective exposure time of only 10 ns, 

which is the duration of the electron pulse). Compared to the stroboscopic mode (showing the clear 

diffraction spots), whose repetition rate and exposure time were 1 kHz and 120 s, respectively, the 

electron dose in the single-pulse mode was about five orders of magnitude lower. Note that increasing 

the exposure time in the single-pulse mode did not help because only a single electron pulse (10 ns 

duration) was present for probing the sample. So current 4D EM facility is not accessible to the 

irreversible transient diffraction studies (single-pulse mode) of the NWs with small quantity at the 

nanometer-nanosecond spatiotemporal resolution shown in this work. Therefore, the newly formed alloy 

phases were identified in the TEM mode shown in the following part. 
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Fig. S5. Image and diffraction patterns from the top part of a NW. (A) TEM micrograph of the NW. 

Scale bar, 100 nm. (B) Diffraction patterns from a region of the NW marked by a circle. They were 

taken at three different modes: TEM, stroboscopic (1 kHz) and single-pulse modes. Different exposure 

times to the electron beam were applied, and the patterns at these exposure times were compared. For 

the single-pulse mode, the effective exposure time was only about 10 ns (duration of an electron pulse). 

 

    Fig. S6 show the diffraction patterns of the top part of a NW before and after the laser excitation. 

These images were taken under the off-axis conditions so that the diffraction intensities from the newly 

formed phases were enhanced. In the initial state (Fig. S6A), the diffraction spots were from GaAs, 

similar to that shown in Fig. 2 of the main text. After the first three laser pulses, however, additional 

diffraction spots were seen (Fig. S6B). These spots were from Au7Ga2 {112�4}  (Au7Ga2-L, low-

temperature phase) and AuGa {200}, respectively. The lattice constants used for the identification of 

these phases are listed in Table S1. In the final state (Fig. S6C), namely, as more GaAs component was 

incorporated into the top bead, new phases from AuGa2 {111} and Ga {131}  were detected besides the 

AuGa phase. Compared to the patterns in Fig. 2 of the main text, the diffraction spots from cubic zinc-

blende (ZB) segments also appeared after laser excitation (indicated by the arrows). For the As element, 

the As species may vaporize or be removed from the interface during the laser heating (6, 7). 
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Fig. S6. Diffraction patterns from the top part of a NW. (A) Initial state without any laser pulse 

excitation. (B) After the first three laser pulses. Compared to the initial state in (A), additional 

diffraction spots from Au7Ga2 and AuGa were detected. (C) Final state after 46 laser pulses. AuGa, 

AuGa2 and Ga phases were present. The hexagonal, rectangular, triangular and circular symbols 

represent the phases of Au7Ga2, AuGa, AuGa2 and Ga, respectively.  The arrows indicate the diffraction 

spots from the ZB segments of GaAs. 

 

Table S1. Lattice constants of the newly formed phases. 

Phase Structure a (Å) b (Å) c (Å) Reference 

Au7Ga2 Hexagonal 7.721 / 8.751 (2-5) 

AuGa Orthorhombic 6.397 6.262 3.463 

 AuGa2 Cubic 6.076 / / 

Ga Orthorhombic 4.519 7.657 4.526 

 

Phase diagram of Au-Ga binary system 

         From the diffraction analysis the newly formed phases in the top bead are identified as Au-Ga 

alloys. Fig. S7 presents the Au-Ga binary phase diagram (8). The melting points of Au and GaAs are 
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1337 and 1511 K, respectively. However, the temperature needed for the eutectic reaction can be much 

lower than the melting point of any pure component. For example, to obtain the phases of Au7Ga2 (low-

temperature phase, Au7Ga2-LT) and AuGa, the temperatures are ~555 and 620 K, respectively. On the 

other hand, the temperature needed for the eutectic reaction of liquid → AuGa + AuGa2 is about 725 K. 

 

Fig. S7. Au-Ga binary phase diagram redrawn from ref. 8. The horizontal axis is the atomic fraction of 

Ga component.  

 

Modeling of laser heating of gold and GaAs 

    Laser heating of a GaAs NW with a Au tip and the induced eutectic phase reaction can be modeled 

using the following theoretical approach. First, we consider laser heating of Au nanoparticle alone using 

the conventional two-temperature model (TTM) which deals with temporal and spatial temperature 

changes for both electron and phonon subsystems.  Then, we treat laser heating of a GaAs NW using a 

three-temperature model (3TM) to deal with the temporal and spatial evolution of charged carrier 

density, carrier temperature, optical phonon temperature and acoustic phonon temperature. Because the 

optical reflectivity could be influenced by the nanoparticle size (Fig. S8), in our simulations for a given 

bead size we have incorporated empirical size-dependent reflectivity reported in literature (9-15). To 
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calculate the lattice temperature for the bead with a mixture of Au and alloy, the following approach was 

used. We first calculated the lattice temperature for a bead of Au (assuming 100% Au) and also a bead 

of GaAs (100% GaAs), and then we estimated the effective lattice temperature based on their 

composition percentage within the bead. This approximation is a necessary step in the simulation 

because the actual optical and thermal parameters used in TTM and 3TM modeling for a composite 

nanoparticle have not been known in literature. 

 

Fig. S8. Top: The size-dependent reflectivity of Au and GaAs (9-15). Bottom: The reflectivity of Au 

and GaAs adjusted according to their actual size observed in the experiment. To simplify the theoretical 

modeling, a cube-shaped top bead for the corresponding spherical volume was assumed. The diameter of 

the bead was converted to the effective length of the cube. The gold percentage was estimated by the 

ratio of the initial gold volume to the final bead volume. 
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         According to the TTM with a laser beam along the z-axis, the evolution of the electron temperature 

𝑇𝑇𝑒𝑒(𝑧𝑧, 𝑡𝑡) and the lattice temperature 𝑇𝑇𝐿𝐿(𝑧𝑧, 𝑡𝑡) follows (16-18), 

𝐶𝐶𝑒𝑒
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑇𝑇𝑒𝑒(𝑧𝑧, 𝑡𝑡) =

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘𝑒𝑒

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑇𝑇𝑒𝑒(𝑧𝑧, 𝑡𝑡)� − 𝑔𝑔[𝑇𝑇𝐿𝐿(𝑧𝑧, 𝑡𝑡) − 𝑇𝑇𝑒𝑒(𝑧𝑧, 𝑡𝑡)] + 𝑆𝑆(𝑧𝑧, 𝑡𝑡) 

                                             𝐶𝐶𝐿𝐿
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑇𝑇𝐿𝐿(𝑧𝑧, 𝑡𝑡) = −𝑔𝑔[𝑇𝑇𝑒𝑒(𝑧𝑧, 𝑡𝑡)−𝑇𝑇𝐿𝐿(𝑧𝑧, 𝑡𝑡)]                                                        (5) 

where 𝐶𝐶𝐿𝐿 is the specific heat for phonons, and 𝑆𝑆(𝑧𝑧, 𝑡𝑡) is the incident laser pulse profile. At a low laser 

excitation fluence, one usually assumes that the electron/phonon coupling 𝑔𝑔 is a constant, the specific 

heat 𝐶𝐶𝑒𝑒  for electrons has linear dependence on electron temperature, and the electronic thermal 

conductivity 𝑘𝑘𝑒𝑒  is approximated by 𝐾𝐾𝑒𝑒𝑇𝑇𝑒𝑒/𝑇𝑇𝐿𝐿 . Such approximations have shown to be inaccurate for 

electron temperature beyond 3000 K. Here we use the following improved formulae for their 

temperature dependence,  

                                                   𝑘𝑘𝑒𝑒 = 4.26×1013𝑇𝑇𝑒𝑒
1.20×107𝑇𝑇𝑒𝑒2+1.23×1011𝑇𝑇𝐿𝐿

                                                    (6) 

and Padé approximation for the electron/phonon 𝑔𝑔 and 𝐶𝐶𝑒𝑒, respectively,   

                                            𝑔𝑔 = 1.0 × 1017 ∑ 𝐴𝐴1(𝑛𝑛)(𝑇𝑇𝑒𝑒 104⁄ )𝑛𝑛4
𝑛𝑛=0

1+∑ 𝐴𝐴2(𝑛𝑛)(𝑇𝑇𝑒𝑒 104⁄ )𝑛𝑛4
𝑛𝑛=1

  

                                     𝐶𝐶𝑒𝑒 = 1.0 × 1017 ∑ 𝐵𝐵1(𝑛𝑛)(𝑇𝑇𝑒𝑒 104⁄ )𝑛𝑛3
𝑛𝑛=0

1+∑ 𝐵𝐵2(𝑛𝑛)(𝑇𝑇𝑒𝑒 104⁄ )𝑛𝑛3
𝑛𝑛=1

                                                  (7) 

where A1(0) = 0.257, A1(1) = -0.549, A1(2) = 0.553, A1(3) = -0.650, and A1(3) = 6.269; A2(1) = -2.544, 

A2(2) = 4.566, A2(3) = -1.479, and A2(4) = 2.541; B1(0) = -0.043, B1(1) = 8.451, B1(2) = -28.797, and 
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B1(3) = 68.387; B2(1) = -1.645, B2(2) = 2.539, and B2(3) = 0.702. All other relevant parameters for Au 

and GaAs are listed in Fig. S8. 

 For laser heating of a GaAs NW with an incident intensity profile 𝐼𝐼(𝑧𝑧, 𝑡𝑡), we employed three-

temperature model (3TM) that describes time evolution of four subsystems, namely, the charge carrier 

density 𝑁𝑁𝐶𝐶(𝑧𝑧, 𝑡𝑡), and three subsystem temperatures such as carrier temperature, optical and acoustic 

phonon temperatures. Defining the internal energy for the charge carriers 𝑈𝑈𝐶𝐶(𝑧𝑧, 𝑡𝑡), and the internal 

energy for the longitudinal optical (LO) phonons 𝑈𝑈𝑂𝑂(𝑧𝑧, 𝑡𝑡) and the longitudinal acoustic (LA) phonons 

𝑈𝑈𝐴𝐴(𝑧𝑧, 𝑡𝑡), one has (19-21), 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑁𝑁𝐶𝐶(𝑧𝑧, 𝑡𝑡) =

𝛼𝛼1𝐼𝐼(𝑧𝑧, 𝑡𝑡)
ħω

− 𝛾𝛾𝐴𝐴𝑁𝑁𝐶𝐶3(𝑧𝑧, 𝑡𝑡) 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑈𝑈𝐶𝐶(𝑧𝑧, 𝑡𝑡) =

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘𝐶𝐶

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑇𝑇𝐶𝐶(𝑧𝑧, 𝑡𝑡)� + 𝛼𝛼1𝐼𝐼(𝑧𝑧, 𝑡𝑡) −

3𝑘𝑘𝐵𝐵𝑁𝑁𝐶𝐶(𝑧𝑧, 𝑡𝑡)
2

�
𝑇𝑇𝐶𝐶(𝑧𝑧, 𝑡𝑡) − 𝑇𝑇𝑂𝑂(𝑧𝑧, 𝑡𝑡)

𝜏𝜏𝐶𝐶−𝑂𝑂
�

−
3𝑘𝑘𝐵𝐵𝑁𝑁𝐶𝐶(𝑧𝑧, 𝑡𝑡)

2
�
𝑇𝑇𝐶𝐶(𝑧𝑧, 𝑡𝑡) − 𝑇𝑇𝐴𝐴(𝑧𝑧, 𝑡𝑡)

𝜏𝜏𝐶𝐶−𝐴𝐴
� 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑈𝑈𝑂𝑂(𝑧𝑧, 𝑡𝑡) =

3𝑘𝑘𝐵𝐵𝑁𝑁𝐶𝐶(𝑧𝑧, 𝑡𝑡)
2

�
𝑇𝑇𝐶𝐶(𝑧𝑧, 𝑡𝑡) − 𝑇𝑇𝑂𝑂(𝑧𝑧, 𝑡𝑡)

𝜏𝜏𝐶𝐶−𝑂𝑂
� − 𝐶𝐶𝑂𝑂 �

𝑇𝑇𝑂𝑂(𝑧𝑧, 𝑡𝑡) − 𝑇𝑇𝐴𝐴(𝑧𝑧, 𝑡𝑡)
𝜏𝜏𝑂𝑂−𝐴𝐴

� 

                         𝜕𝜕
𝜕𝜕𝜕𝜕
𝑈𝑈𝐴𝐴(𝑧𝑧, 𝑡𝑡) = 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑘𝑘𝐴𝐴

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑇𝑇𝐴𝐴(𝑧𝑧, 𝑡𝑡)�+3𝑘𝑘𝐵𝐵𝑁𝑁𝐶𝐶(𝑧𝑧,𝑡𝑡)

2
�𝑇𝑇𝐶𝐶(𝑧𝑧,𝑡𝑡)−𝑇𝑇𝐴𝐴(𝑧𝑧,𝑡𝑡)

𝜏𝜏𝐶𝐶−𝐴𝐴
�+𝐶𝐶𝑂𝑂 �

𝑇𝑇𝑂𝑂(𝑧𝑧,𝑡𝑡)−𝑇𝑇𝐴𝐴(𝑧𝑧,𝑡𝑡)
𝜏𝜏𝑂𝑂−𝐴𝐴

�               (8) 

where the internal energies for the carriers, the LO phonons and the acoustic phonons are given by,  

𝑈𝑈𝐶𝐶 = 𝑁𝑁𝐶𝐶𝐸𝐸𝑔𝑔 + 𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶 

𝑈𝑈𝑂𝑂 = 𝐶𝐶𝑂𝑂𝑇𝑇𝑂𝑂 

𝑈𝑈𝐴𝐴 = 𝐶𝐶𝐴𝐴𝑇𝑇𝐴𝐴                                                                      (9) 
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        The relevant physical parameters for the 3TM, their nomenclature and their dependence on 

temperature and carrier density are given in Table S2.  

 

Table S2.  The parameters of GaAs used in the three-temperature model. 

Physical Property Value Reference 

Heat capacity of carriers 

𝐶𝐶𝐶𝐶 (J/m3 K) 
𝐶𝐶𝐶𝐶 = 3𝑁𝑁𝐶𝐶𝑘𝑘𝐵𝐵 (21) 

Heat capacity of LO phonons 

𝐶𝐶𝐿𝐿𝐿𝐿 (J/m3 K) 

𝐶𝐶𝐿𝐿𝐿𝐿 = 3.06 × 105 − 2.4 × 104(𝜃𝜃𝐿𝐿𝐿𝐿 𝑇𝑇𝑂𝑂)⁄ 1.94 

where 𝜃𝜃𝐿𝐿𝐿𝐿= 344 K 
(20, 22) 

Heat capacity of acoustic phonons 

𝐶𝐶𝐴𝐴 (J/m3 K) 

𝐶𝐶𝐴𝐴 = 9.17 × 105 − 4.40 × 104(𝜃𝜃𝐷𝐷 𝑇𝑇𝐴𝐴)⁄ 1.948 

where Debye temperature  𝜃𝜃𝐷𝐷= 344 K 
(21, 22) 

Thermal conductivity of carriers 

𝑘𝑘𝐶𝐶  (W/m K) 

𝑘𝑘𝐶𝐶 = 2.5 × 𝑁𝑁𝐶𝐶 𝑘𝑘𝐵𝐵
2𝜏𝜏𝑚𝑚𝑇𝑇𝐶𝐶 𝑚𝑚∗⁄  

where 𝑚𝑚∗= 0.066 𝑚𝑚𝑒𝑒, 𝜏𝜏𝑚𝑚= 0.3 ps 
(20, 23) 

Thermal conductivity of  acoustic 

phonons   𝑘𝑘𝐴𝐴  (W/m K) 
𝑘𝑘𝐴𝐴 = 4.0 × 104 𝑇𝑇𝐴𝐴1.2⁄  (20, 24) 

Energy relaxation time between 

carriers and LO phonons 𝜏𝜏𝐶𝐶−𝑂𝑂 
𝜏𝜏𝐶𝐶−𝑂𝑂 = 0.1 × 10−12  (s) (25) 

Energy relaxation time between 

carriers and acoustic phonons 𝜏𝜏𝐶𝐶−𝐴𝐴 

            𝜏𝜏𝐶𝐶−𝐴𝐴 = 0.5 × 10−12[1 + (𝑁𝑁𝐶𝐶 𝑁𝑁𝑂𝑂)⁄ 2] 

where 𝑁𝑁𝑂𝑂 = 2 × 1027     (1/m3)   
(20, 21) 
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Energy relaxation time between 

LO and acoustic phonons 𝜏𝜏𝑂𝑂−𝐴𝐴  
𝜏𝜏𝑂𝑂−𝐴𝐴 = 8 × 10−12   (s) (20, 26) 

Absorption coefficient 𝛼𝛼1 (1/m) 𝛼𝛼1 = 3.48 × 106exp [1.71 × (𝑥𝑥 − 1.83)]  

𝑥𝑥 =ħ𝜔𝜔 + 𝐸𝐸𝑔𝑔(300) − 𝐸𝐸𝑔𝑔�𝑇𝑇𝑝𝑝�      (eV) 
(24) 

Auger coefficient  𝛾𝛾𝐴𝐴  (m6/s) 𝛾𝛾𝐴𝐴 = 1.0 × 10−43 (27, 28) 

Band gap  𝐸𝐸𝑔𝑔 (eV) 𝐸𝐸𝑔𝑔�𝑇𝑇𝑝𝑝� = 1.575 − 0.15(𝑇𝑇𝑝𝑝 300)⁄  (24, 29) 

Linear thermal expansion 

coefficient 𝛽𝛽  
𝛽𝛽 = 5.7 × 10−6  (K−1) (30) 

Ga-As interatomic distance ℓ   ℓ   =  4.00 Å (31) 

Sound velocity vs vs  = 4730 m/s (32) 

 

 

Quantitative analysis for the eutectic growth of alloy phases 

1. Laser fluence at 5.5 mJ/cm2 

From our studies we could extract some important thermal properties which have not been 

tabulated in the literature, such as latent heat and heat capacity for the alloy phases during the eutectic 

growth upon laser heating of the Au/GaAs NWs. To facilitate quantitative analysis of the experimental 

data including the length reduction of the GaAs NW and the size increment of the bead after each laser 

pulse, we have employed TTM for gold and 3TM for GaAs to estimate the heat energy absorbed by the 

NW and the bead upon each laser pulse excitation at a given fluence. According to our simulation, after 

the 1st laser pulse with a fluence of 5.5 mJ/cm2, the calculated lattice temperatures for the Au bead (566 
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K) and the GaAs NW (574 K) are above the temperature of ~555 K needed for the Au7Ga2 phase 

formation. Therefore, at this fluence those Ga atoms from the disappearing NW volume, corresponding 

to a length reduction of 25 nm and a hexagonal cross section with a side length of 54 nm, are expected to 

undergo the reaction with the encapped Au atoms at the tip to form Au7Ga2 alloy. The excessive heat 

energy above the temperature (555 K) from the tip and the NW allows us to estimate the latent heat for 

the alloy formation. Based on the parameters including the molar volumes (Au: 1.0×10-5 m3/mol, 

GaAs:2.7×10-5 m3/mol), the heat capacities (Au: 2.49×106 J/m3.K, GaAs: 1.76×106 J/m3.K) (31, 33), the 

densities (Au: 1.93×104 kg/m3, GaAs: 5.32×103 kg/m3, Au7Ga2: 1.67×104 kg/m3) (34) and the molar 

ratio of 7:2 for Au7Ga2, we obtained the latent heat of 8 kJ/mol for the Au7Ga2 alloy.  

 After the 2nd laser pulse at the same fluence but with a larger bead of a mixture of gold and alloy, 

we observed an additional 3 nm length reduction for the NW. According to the 3TM modeling, we 

obtained a lattice temperature of 574 K for the GaAs NW. For the top bead, the calculated lattice 

temperatures were 510 and 567 K when 100% gold and 100% GaAs were assumed in the bead, 

respectively. Using these temperature values and the molar percentage in the bead, we obtained the 

absorbed heat from the additional bead volume and from the NW with the values of 1.5×10-14 J and 

1.1×10-14 J, respectively. We defined the net heat as the energy needed to raise the bead for the volume 

reduction in the NW (3 nm times the hexagonal cross-section area of the NW) from room temperature to 

555 K. This net heat was calculated from the overall absorbed heat of the bead and the NW subtracting 

two parts: first, the heat for raising the temperature to 555 K for the gold molar volume (a 7/2 ratio times 

the Ga molar volume from the reduction of the NW volume); second, the latent heat of the 

corresponding Ga molar volume from the reduction of the NW volume. Knowing the density of Au7Ga2, 

the specific heat of the Au7Ga2 alloy was estimated to be 62 J/mol.K.   
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After the 3rd laser pulse at the same fluence, we observed 1 nm length reduction for the NW. 

Following the similar approach, a lattice temperature of 574 K for the GaAs NW was obtained. The 

calculated lattice temperatures of the top bead were 507 and 567 K when 100% gold and 100% GaAs 

were assumed, respectively. Using the similar procedures outlined above, we extracted the specific heat 

for the Au7Ga2 alloy to be 60 J/mol.K, which is close to the value obtained from the 2nd pulse laser 

heating.  

 

2. Laser fluence at 7 mJ/cm2 

After three laser pulses at 5.5 mJ/cm2, the NW length was shortened by 25, 3 and 1 nm 

sequentially, and the bead stopped to grow. To continue the reaction dynamics, the laser fluence was 

increased to 7 mJ/cm2. Using the similar simulation approach and the experimental observation of a 

further 10 nm length reduction of the NW, we obtained the lattice temperatures of 658 K for the GaAs 

NW, 587 K for a 100% gold bead and 649 K for a 100% GaAs bead, and the overall effective 

temperature was above the temperature of ~620 K needed for AuGa phase. The absorbed energies from 

the volume reduction of the NW and from the bead with a mixed composition are 4.8×10-14 J and 

5.3×10-14 J, respectively. To calculate the latent heat of AuGa, one needs to deduct the latent heat of 

Au7Ga2 phase and also the energy needed to raise the alloy from room temperature to 620 K for AuGa. 

These two parts of heat to be subtracted from the overall absorbed laser heat is 2.3×10-14 J. Using the 

density of 1.28×104 kg/m3 for AuGa (34), its latent heat was estimated to be about 21 kJ/mol.   

After the 2nd laser pulse at the same fluence, a 3 nm length reduction of the NW was further 

observed. Based on the 3TM modeling, the lattice temperature of the GaAs NW is found to be 658 K.  

For the top bead, the calculated lattice temperatures are 571 K for a 100% Au bead and 645 K for a 

100% GaAs bead, respectively. Using these temperature values and the molar percentage in the bead, we 
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estimated the absorbed heat from the additional bead volume and from the NW to be 6.6×10-15 J and 

4.8×10-15 J, respectively. According to the similar procedures mentioned above, we obtained the net heat 

of 4.65×10-15 J. Knowing the density of AuGa, its specific heat of about 41 J/mol.K was obtained.  
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