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EXPERIMENTAL SYSTEM: SPINNER PHASE

Spinner phase is a dynamic state of the driven ferro-
magnetic ensemble suspended at a liquid interface and
driven out of equilibrium by a uniaxial alternating in-
plane magnetic field. This dynamic phase is charac-
terised by a well defined average length of the self-
assembled spinners and a ratio of number of spinners
NSp to single particles NSing [1, 2] that depends on the
frequency of the driving magnetic field, see Fig. S1 A,B.

The number of spinners NSp increases linearly with the
particle number density SA (Fig. S1 C), while the ratio
NSing/NSp remains constant and depends only on the
frequency of the applied magnetic field.

There are two flavors of the spinner chirality present
in the system: clockwise and counter-clockwise. No syn-
chronization was observed [2]. Spinners create vigorous
chaotic flows, that advect neighboring spinners and sin-
gle particles. Due to collisions spinners are perpetually
annihilated and created with a lifetime that could be con-
trolled by a frequency of the alternating magnetic field
fB see Fig. S2.

SIMULATION METHOD

Colloid Model

A two-dimensional disc-like colloid is modeled in anal-
ogy with a three-dimensional spherical colloid described
in Ref. [3]. Hence, we distribute 18 point particles of mass
M uniformly over the circumference of a circle of diame-
ter σ, with an additional point particle at the center (cf.
Fig. S3). The shape is maintained by strong harmonic
bonds between both, the nearest neighbors and each par-
ticle with the center. The bond potential is

Ubond(r) =
K

2
(r − r0)2 (1)

where r = |r| is the distance between the particular pair,
r0 their preferred bond length, and r the bond vector.

Each colloid carries a magnetic dipole. The dipole-
dipole interaction between a pair of colloids is given by

Udipole(R, θ) = − µ2
0

4πε0R3

[
3(µ1 · R̂)(µ2 · R̂)− µ1 · µ2

]
(2)

where µ0 is the vacuum permeability, µ1 and µ2 are the
magnetic moments of the colloids, and R̂ = R/|R| is
the center-to-center distance between the pair of colloids.
The interaction potential with the external magnetic field
B is

Uext(t) = −µ ·B(t), (3)

with the magnetic moment µ = µu/σ. Here, u is the
vector between two beads diametrically opposite on the
circle (cf. Fig. S3). In addition, excluded-volume inter-
actions between colloids are captured by the truncated
and shifted Lennard-Jones potential [4]

ULJ =

 4ε

[( σ
R

)12
−
( σ
R

)6]
− C, R < Rc

0, R > rc

, (4)

where ε is the strength of the interaction, rc = 6
√

2σ
is the cut-off distance, and C = 4ε[(σ/rc)

12 − (σ/rc)
6].

The dynamics of the colloidal mass points is described by
Newton’s equations of motion, which are solved by the
velocity Verlet algorithm [4].

Fluid: Multiparticle Collision Dynamics

The embedding fluid is modeled by the multiparti-
cle collision dynamics (MPC) approach [5–7], a particle-
based mesoscale simulation technique which correctly
captures hydrodynamic properties [8]. Thereby, the fluid
is modeled by N point particles with mass m, posi-
tions ri, and velocities vi (i = 1, · · · , N), contained in a
quadratic simulation box with periodic boundary condi-
tions. The discrete time dynamics consists of a streaming
step, for the collision-time interval h, and a subsequent
instantaneous collision. In the ballistic streaming step,
the particle positions are updated via

ri(t+ h) = ri(t) + hvi(t). (5)

In the collision step, the simulation box is partitioned
into square collision cells of length a, in which stochastic
multiparticle collisions are performed. In the stochastic
rotation dynamics (SRD) version of MPC (MPC-SRD),
the relative velocity of each particle, with respect to the
center-of-mass velocity of the cell, is rotated by an an-
gle α around an axis oriented normal to the fluid plane
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Fig. S1. A) The average ratio between the number of single particles NSing and spinners NSp depends on the alternating
magnetic field frequency fB . Measurements (blue circles) were performed at the magnetic field amplitude B0 = 3.0 mT and
the active particle number density in the spinner phase SA ≈ 0.6 mm−2. The orange dashed line is a guide for the eye.
The graph is adapted from Ref. [1]. B) The average number of particles forming a spinner NSing/Sp dependence on fB at

B0 = 2.9 mT and SA ≈ 2.0 mm−2 (blue circles). The orange dashed line is a fit following from the torque balance in the slender
body approximation. The original graph and the details of the functional dependence can be found in Ref. [2]. C) NSp is
proportional to SA. The dashed line is a linear fit to the data. fB = 60 Hz and B0 = 2.7 mT.
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Fig. S2. Lifetime of spinners τS versus fB at B0 = 3.0 mT
and SA ≈ 0.6 mm−2. The figure is adapted from measured
collision times in Ref. [1].

[9], independent for each cell. With angular momentum
conservation (MPC-SRD+a), the velocities are updates
as [10, 11]

vi(t+ h) = vcm(t) + R(α)vi,c(t)− ri,c(t+ h) (6)

×
[
mI−1

∑
j∈cell

{rj,c(t+ h)× (vj,c(t)−R(α)vj,c(t))}
]
.

Here, vi(t) and vi(t + h) are the velocities before and
after the collision, R(α) is the rotation matrix,

vcm =
1

Nc

Nc∑
j∈cell

vj (7)

Fig. S3. Two-dimensional disc-like colloid composed of mass
points connected with their neighbors. The arrow indicates
the magnetic moment µ = µu.

is the center-of-mass velocity of the particles in the con-
sidered cell, ri,c = ri−rcm is the particle position relative
to their center-of-mass rcm of a cell, I is the moment-of-
inertia tensor of the particles in the center-of-mass refer-
ence frame, and vi,c = vi − vcm. To maintain Galilean
invariance, a random shift of the collision grid is per-
formed in every collision step [12, 13]. The simulation
of a canonical ensemble is achieved by the application of
the MBS thermostat, where velocities are scaled on the
level of individual cells by a factor determined from the
Gamma distribution of cell kinetic energies [14].

The coupling between the MPC fluid and the colloids
is established in the collision step by including the point
particles of the colloid in collision step, i.e, the point-
particle velocities are updated according to Eq. (6) en-
suring momentum exchange between colloids and fluid.
Thereby, the center-of-mass velocity of a collision cells
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containing point particles is given by

vcm(t) =

∑Nc

i=1mvi(t) +
∑Np

c

k=1MVk(t)

mNc +MNp
c

(8)

where Np
c is the number of colloid point particles and Nc

is the number of fluid particles in the particular collision
cell.

Parameters

We scale lengths by the collision-cell size a, mass by
m, and energy by kBT , which yields the time unite
τ =

√
ma2/kBT . This corresponds to setting a = m =

kBT = 1 in the simulations.

The colloid diameter is σ = 6a and the mass of an con-
stituent point particle is M = 10m. A spring constant of
K = 5000kBT/a

2 is applied such that the circular shape
of the colloids is maintained. Moreover the Lennard-
Jones interaction strength is chosen as ε/kBT = 1. The
size time step ∆t = 0.01τ is used for the molecular dy-
namics simulations of the colloid dynamics.

In the MPC approach, the collision angle α = 130◦,
average number of MPC particles per collision cell Nc =
10, and collision time h = 0.1τ are applied. This yields
the kinematic viscosity ν ≈ 0.37a2/τ . The corresponding
translation and rotational diffusion coefficients are D0 =
4.4 × 10−2a2/τ and DR = 2 × 10−3/τ for a colloid in
dilute solution.

The colloid magnetic moment is set to µ =
480
√
kBTa3/µ0 and the strength of the oscillating mag-

netic field to B0 = 0.8
√
kBTµ0/a3.

For spinners at the frequency ω = 2πfB = 0.05τ−1, the
resulting average spinner length is Ls ≈ 3.51σ. The re-
spective rotational velocity of the fluid is the v ≈ Lsω/2,
which yields the the Reynolds number Re ≈ L2

sω/2ν ≈
30.

SIMULATION RESULTS

Spinner length

The dependence of the spinner length on the frequency
fB of the external magnetic field is displayed in Fig. S4.
The length is determined by the balance between the vis-
cous torque γHω and the magnetic torque M . The hydro-
dynamic friction coefficient γH for the two-dimensional
systems exhibits the spinner length dependence

γH ∼ L2
s/ ln(L̃/Ls). (9)

Here, L̃ is a characteristic length scale. The mag-
netic torque is proportional to the length of the spinner.
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Fig. S 4. Average spinner length Ls as a function of the
frequency fB of the external magnetic field. The red line is
a fit to Eq. (10). The dependance and chain lengths are in
agreement with the measurements (Fig. S1).

Hence, we find

Ls

ln L̃− lnLs
∼ 1

fB
. (10)

As shown in Fig. S4, Ls decrease nearly linearly with
increasing frequency and can well be fitted by Eq. (10)
with L̃ ≈ 4.7σ.

Spinner lifetime

Spinners are permanently created and annihilated. To
estimate a characteristic spinner life time τs, we deter-
mine the probability distribution function P (t) of spin-
ners still intact after a time t. By fitting the exponential
function P (t) ∼ et/τs , we obtain the time τs. Figure S5
displays life times as function of frequency of the exter-
nal magnetic field and shows that the life time increases
nearly linearly with frequency, similar to that obtained
in the experiments (see Fig.S 2).

Spinner and tracer mean square displacement

An example of the mean square displacement (MSD) of
spinners and tracers is displayed in Fig. S6. The MSD of
tracers is somewhat larger than that of spinners, consis-
tent with experimental observations (Fig. 3 of the main
text). Initially, the MSD increases quadratically with in-
creasing time, but turns in a linear regime for tfB & 10.
The latter regime is not fully developed for spinners due
to their finite life time. From the ballistic time regime,
we determine a characteristic velocity v by the relation

〈(rcm(t)− rcm(0))2〉 = v2t2, (11)
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Fig. S5. Average spinner life time as a function of the fre-
quency fB of the external magnetic field. The dependance is
in agreement with the experiments (Fig. S2).
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Fig. S6. Center-of-mass mean square displacement (MSD)
for spinners (blue curve) and tracers (red curve). The black
line indicates the diffusive behavior ∼ t at long times.

where rcm is the center-of-mass position of the spinner.
From the linear regime, we extract the diffusion coeffi-
cients of the tracer particles presented in the main text.

Energy spectrum dependence on packing fraction

Figure S7 shows energy spectra obtained from exper-
iments and simulations for various particle surface den-
sities. The energy spectrum E(k) approaches the hy-
drodynamic turbulence exponent, ∝ k−5/3, at low pack-
ing fractions φ, when the system is in the pure spinner
phase. At elevated packing fractions, the exponent starts
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Fig. S7. A) Experimental measurements of the energy spectra
at three different packing fractions φ (the range is equivalent
to SA spanning from 2.55 mm−2 to 4.93 mm−2) are presented
together with the forcing length range (grey area) and k de-
pendency lines to guide the eye. B0 = 2.7 mT, fB = 60 Hz.
B) Simulation results for a similar φ scope and fixed length
spinners with Ls = 4σ. In both A) and B) the curves are
multiplied by constants for better distinction.

to deviate from the hydrodynamic turbulence value (see
Fig. S7), since other interactions, e.g., steric and mag-
netic, become more relevant, and the experimental sys-
tem undergoes a transition to another dynamic phase
comprised of non-rotating aggregates. Remarkably, ex-
periments and simulations yield very similar exponents
for the various concentrations, as well as a crossover to a
larger exponent of approximately −3 at large wave num-
bers and high packing fractions.
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ESTIMATION OF CHARACTERISTIC
BALLISTIC SPINNER VELOCITY FOR

EXPERIMENTS

The rotational motion of the spinners creates a radi-
ally decaying flow field. The characteristic velocity scale
can be estimated from the Stokes flow around a rotat-
ing spherical (disk-like) particle of diameter Ls (spinner
length), which is

v(r) =
ωLs

2

(
Ls
2r

)δ−1
(12)

in δ dimension with the rotation frequency ω. The typical
distance r̄ of tracers and spinners is determined by the
spinner concentration, i.e., r̄ ∼ 1/

√
SA, where SA is the

colloid number density. Taking the distance r̄ ≈ 0.15cm
from the radial pair distribution function of Fig. 2 of
the main text and the frequency fB = 60Hz, we find
v(r̄) ≈ 0.13 cm/s for the spinner length Ls = 0.04 cm in
three dimensions (δ = 3). Evidently, the flow velocity is
larger in two than in three dimensions.
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