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SI Materials and Methods 
 
Cells. Primary CD34+ hematopoietic progenitor cells (HPCs) were isolated from de-identified 
bone marrow, which is not human subject research (1, 2). CD34+ HPCs were isolated via 
positive selection with the CD34 MicroBead Kit (MACS, Miltenyi Biotec, San Diego, CA). Pure 
populations of CD34+ HPCs were cultured in MyeloCult H5100 (Stem Cell Technologies) and 
maintained in long-term co-culture with M2-10B4 and Sl/Sl murine stromal cells lines (kind gift 
from Stem Cell Technologies on behalf of D. Hogge, Terry Fox Laboratory, University of 
British Columbia, Vancouver, BC) (2, 3). Human lung fibroblasts (MRC-5) were obtained from 
ATCC (Manassas, VA) and maintained as previously described (4). All cells were maintained at 
37°C with 5% CO2. 
 
Viruses. The TB40/E bacterial artificial chromosome (BAC) was previously engineered from the 
TB40/E strain of HCMV, which is known to exhibit a broad cell tropism including tropism for 
hematopoietic cells (5). All viruses used in the present study were previously engineered to 
express the green fluorescent protein (GFP) as a marker of infection and have been previously 
described and characterized (1, 4, 6, 7). Briefly, recombinant viruses were engineered using a 
two-step, positive/negative selection approach that leaves no trace of recombination. Desired 
mutations were confirmed via Sanger sequencing and BAC integrity was confirmed by enzyme 
digest analysis. BAC genomes were maintained in SW102 E. coli. Virus stocks were produced 
BAC genome transfection (15-20 µg), along with co-transfection of 2 µg of an UL82- encoding 
plasmid into 5 x 106 MRC-5 fibroblasts and incubating until 100% cytopathic effects (CPE) were 
observed. Virus stocks were purified, stored, and titered as previously described (1). 
 
Infection of CD34+ HPCs was performed as previously described (1). Briefly, CD34+ HPCs 
were infected with 2 MOI. At 24 hpi, cells were sorted via FACS (FACSAria, BD Biosciences 
Immunocytometry Systems, San Jose, CA) to obtain a pure population (>97%) of infected 
CD34+ HPCs by utilizing a phycoerythrin conjugated CD34 (PE-CD34) specific antibody (BD 
Biosciences) and sorting for CD34+ and GFP+ (infected) cells. Infected CD34+ cells were co-
cultured in transwells above irradiated (3000 rads, 137Cs gammacell-40 irradiator type B, Atomic 
Energy of Canada LTD, Ottawa, Canada) M2-10B4 and Sl/Sl stromal cells until harvesting at 2, 
6, and 10 days after infection. For ganciclovir (GCV; InVivoGen, San Diego, CA) treatment, a 
final concentration of 27 µM GCV was added to the media follow cell sorting. Infected CD34+ 
HPCs were harvested, counted, lysed in RNA/DNA lysis buffer (Zymo Research, Irvine, CA) 
and stored at -80C until nucleic acid was isolated.  
 
Fibroblasts were infected with 1 MOI of WT, ∆UL135, or ∆UL138 TB40/E viruses. At 12, 24, 
48, and 72 hours post infection (hpi), infected cells were washed twice with phosphate buffered 
saline (PBS) and lysed in the well with ZR-duet RNA/DNA Lysis Buffer (Zymo Research, 
Irvine, CA). Lysed samples were stored at -80°C until all samples were collected and nucleic 
acid was isolated. 
 
Variability of ∆UL135 and ∆UL138 transcriptomes. The featured kernel density variation of 
CD34+ HPC infection across different donors was quantified using gene-wise dispersion 
estimates (the metadata column dispGeneEst) in DESeq2 (8). Genes expressed within the two 



groups (wave 1 and wave 2) across all available ∆UL135_6dpi and ∆UL138_6dpi transcriptomes 
(from donor 1-NS/SS, donor 2-NS and donor 3-SS libraries) were selected.  By comparing the 
dispersion difference between the two subsets of genes using the Wilcoxon rank sum test 
provides a biological-source of variation involved but normalized measurement of the variation 
between ∆UL135 and ∆UL138 transcriptomes. Candidate genes contributing to latency-like 
(∆UL135) or replication (∆UL138) were finally restrictively identified by a shared subset 
between kernel/dispersion and DE metrics. Similar process was applied to the dataset of 
fibroblasts infection and Wilcoxon rank sum test was used to compare the low (wave 1) and 
moderate (wave 2) expression of viral genes in fibroblasts. 
 
Expression levels in FPKM. In addition to rlog normalized counts from DESeq2 (8), we 
quantified expression levels of genes by merging annotated isoforms' FPKM values from 
Cufflinks (v2.2.1)(9).  Pearson correlation coefficient of WT samples between SS and NS 
libraries from one cell donor was calculated based on log2FPKM values, and validated by 
distance metric based hierarchical clustering of multiple samples with DESeq2 (8).  For the 
comparison to clinical latency, expression levels (FPKM) from in vitro WT infection and in vivo 
human samples (both from SS libraries) were used. Furthermore, to leverage the previously 
identified viral latency- and replication-associated genes together with wave 1 and wave 2 genes, 
expression of these genes was divided by the geometric mean, using geometric.mean function 
from psych R-package (v1.6.4), of a set of concordant genes across in vitro and clinical samples, 
defined by the absolute log2FC<0.5 for the two comparisons, WT_2 or 6dpi vs. clinical latency.  
 
Detection of viral genomes.  PBMCs were thawed and lysed and DNA was isolated using the 
ZR-Duet DNA/RNA purification kit (Zymo Research). 5 replicates of 700 ng of DNA was 
analyzed by real time PCR for the presence of HCMV genomes using a highly sensitive primer 
to the b2.7 region of the genome as described previously (10). Genomes were quantified relative 
to the RNaseP cellular housekeeping gene. 
 
Detection of virus in donor plasma.  Donor plasma (1mL) from each PBMC donor was diluted 
1:2 in culture media and incubated with a monolayer of permissive fibroblasts (0.1mL per well 
of a 96 well dish) or a 0.02 MOI inoculum of TB40/E as a positive control. Ten days later, each 
well was examined by light microscopy for cytopathic effect and was immunostained for IE2 
using a primary monoclonal antibody clone 3H9 (kind gift, Tom Shenk) and a secondary goat 
anti-mouse IgG antibody fluorescently conjugated to AlexaFluor 488. Immunofluorscence 
staining methods are described in (4).  
 
Clinical vs. in vitro viral reads diversity analysis. Clinical samples together with in vitro WT 
samples of HCMV-infected CD34+ HPCs (donor 1 data) were used for this analysis. Starting 
with the Tophat alignment with two mismatches allowed per uniquely aligned read, Picard (v 
2.10.6, http://broadinstitute.github.io/picard) was used to mark and remove the duplicate 
reads, and subsequently to extract a random subsample of 11,000 reads per sample. A same 
subset of the first 10,000 reads per sample was used. These HCMV reads were blasted against 
the database of reference TB40/E sequence (blastn, e-value <1e-5) and the best blast hit was 
stored for every read. Percent identity was then reported for each sample using boxplot.  These 
reads were also pooled for clustering analysis. We used CD-HIT-EST (v4.6.8) (11) to cluster 
reads with ≥95% sequence identity over 90% of the shorter sequence. A list of cluster size per 



sample was then generated, analogous to classifying reads into OTUs based on sequence 
similarity. These lists were analyzed using entropy.empirical function of R to generate the 
Shannon entropy estimates. 
 

SNP calling. SNPs were identified using the Best Practices workflow on RNA-seq data of 
GATK (Genome Analysis Toolkit) (v3.7) (12). Briefly, for the Tophat alignment file, add read 
groups, sort, mark duplicates, and create index; Split'N'Trim and reassign mapping qualities; 
variant calling; variant filtering for clusters of at least 3 SNPs that are within a window of 35 
bases. In addition, SAMtools mpileup (v1.3) (13) was applied to the variant site identification. 
Consensus calls from both tools were further filtered using depth of read (DP) more than 10 
covered in all in vitro samples from NS and SS libraries, but they were not detected in the 
clinical samples using either of the two independent tools. 
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Fig. S1. Comparison of HCMV WT, ∆UL135 and ∆UL138 infected CD34+ HPCs. (A) The 
ratio of virus-to-human reads (V/H) in samples from NS and SS libraries. Mock-infected 
control is included in the left NS panel. The arrow indicates that two lines of two mutant 
viruses cross each other while two lines of ∆UL135 and WT are almost parallel over time 
of post infection. (B) Summary of infection patterns. (C) PCA scree plot for individual and 
cumulative (blue line) variance of PCs. (D) PC2 vs. PC3 score plot. (E) Given the 
separation between two mutant (∆UL135 and ∆UL138 ) virus infections at 6dpi along the 
PC2 projection (Fig. 2A and D panel), 30 genes with the highest absolute loadings for PC2 
are shown.  
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Fig. S2. Differential viral gene expression between ∆UL135 vs. WT and ∆UL138 vs. WT 
in HCMV-infected CD34+ HPCs. MA plot of ∆UL135 vs. WT (A) and ∆UL138 vs. WT (B) 
at 2 and 6dpi. Genes with more than fourfold change are indicated. (C) Two-dimensional 
differential expression combining A (x-axis) and B (y-axis) both at 2dpi. Red dashed 
rectangle highlights the twofold change. Green and blue dot size is proportional to the 
mean expression of individual genes in all ∆UL135 and ∆UL138 infections, respectively. 
Orange dot size is proportional to the mean expression of individual genes in all ∆UL135 
and ∆UL138 infections. See Fig.2E for 6dpi. (D) Correlation or anti-correlation of log2FC 
between the two-dimensional differential expression profiles at 2 and 6dpi using all genes 
falling into Q1, Q2, Q3 or Q4.  
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Fig. S3. Kernel density estimates of viral gene expression of HCMV-infected CD34+ HPCs 
across three cell donors. Two regions of low and moderate expression (termed wave 1 and 
wave 2) exhibit high variation. (A) Using four different bandwidth settings (0.5, 0.75,1, 
1.25). Every panel is composed of six biological samples. (B) Comparison between 24 real 
and random samples using optimal kernel density estimates.   
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Fig. S4. Dispersion vs. fold change, ∆UL135 vs. WT (left) and ∆UL138 vs. WT (right), for 
the 30 genes derived from both differential expression analysis using one donor data (see 
Fig. 2E) and kernel density estimation using three donors data (see Fig. 3A). Red: wave 
1; cyan: wave 2; grey: significantly (FDR<0.05) differential expression genes that do not 
overlap the genes in wave 1 or wave 2. 
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Fig. S5. Comparison of HCMV WT, ∆UL135 and ∆UL138 infected fibroblasts. (A) The ratio 
of virus-to-human reads (V/H). Mock-infected control is included. (B) PCA of total 12 
samples in fibroblasts. Dashed line indicates a separation of early 12, 24hpi and late 48, 
72hpi on PC1. (C) Two-dimensional differential expression, ∆UL135 vs. WT and ∆UL138 
vs. WT, both at 24 (left) and 72 (right) hpi. Red dashed rectangles highlight the twofold 
change. Green and blue dot size is proportional to the expression of individual genes in 
∆UL135 and ∆UL138 infection, respectively. Orange dot size is proportional to the mean 
expression of individual genes in both ∆UL135 and ∆UL138 infection. See Fig. 4C for 12 
and 48hpi.  
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Fig. S6. MA plots of differential viral gene expression between ∆UL135 and ∆UL138 (A), 
between ∆UL135 and WT (B) and between ∆UL138 and WT (C) in HCMV-infected 
fibroblasts. Four time points, 12, 24, 48 and 72hpi, are shown for each comparison. Genes 
with absolute log2FC > 0.5 are colored in red, and P values from DESeq2 results are 
labeled.  
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Fig. S7. Kernel density estimates of viral gene expression of HCMV-
infected fibroblasts. (A) Using different bandwidth settings (0.5, 0.75,1, 
1.25). (B) Comparison between 12 real and random samples using optimal 
kernel density estimates.   
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Fig. S8. Analysis of viremia and genome load in clinical samples. (A) 
Fibroblast monolayers in 96 well dishes were incubated with 100 µL of 
seropositive, healthy donor plasma or a low MOI inoculum (0.02) of 
TB40/E as a positive control for 10 days. Each well was examined for 
CPE and IE2 immunostaining. The number of IE-positive foci per mL of 
inoculum is shown. (B) cDNA derived from PBMCs derived from 
seropositive, healthy donors was analyzed for the presence of HCMV 
genomes using a primer recognizing the b2.7 region of the genome 
relative to a host gene, RNaseP. Relative quantitation of b2.7 is shown 
using ∆∆Ct. Salmon sperm DNA (ssDNA) and water (H2O) serve as 
negative controls. Standard deviation of five replicates is shown.
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Fig. S9. Reads diversity comparison between clinical sample and WT HCMV-infected 
CD34+ HPCs at 2 and 6dpi (Donor 1 data). (A)10,000 uniquely mapped HCMV reads 
were randomly generated from each sample. Boxplot of percent identity between those 
reads and HCMV reference sequence TB40/E. Median (thick line), first and third quartiles 
are shown. Whiskers extend to 1.5 times the interquartile range (IQR). The arrow 
indicates almost overlapped median and first quartile are below 100% in the clinical 
sample. * P<0.01, ** P<0.001; Wilcoxon rank sum test. (B) CD-hit clusters and Shannon 
entropy metrics using pooled reads in A. (C) A reliable SNP call using GATK and 
SAMtools. Alignment displaying a variant found in all in vitro samples in A but not 
detected in the clinical sample by either of the tools. DP indicates the number of filtered 
reads that support the reported SNP (the values are from GATK).   
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Fig. S10. Expression heatmap. 100 most 
highly expressed viral genes either in 
clinical latency and HCMV-infected CD34+ 
HPCs (NS, left) or fibroblasts (right) infected 
in vitro are shown.  



Fig. S11. HCMV%gene%abundance%(FPKM)%across%genome%at%10dpi%and%10dpi+GCV.%All%error%bars%
are%SEM.%% 
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Fig. S12. Distribution of read length in SS enrichment samples of HCMV-infected 
CD34+ HPCs using Illumina MiSeq. (A) From Donor 1. (B) From Donor 3. (C) 
From three clinical samples.   
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Table S1. Summary of, concordant Q1/Q3 or antagonistic Q2/Q4, regulation of 8 low expressed genes associated 
with the switch between ∆UL135 (latency-like) and ∆UL138 (replication) in CD34+ HPCs at 6dpi 

Type Gene a Log2
FC 
(5)b 

Log2
FC 
(8)c 

FDR 
(5)b 

FDR 
(8)c 

Mean 
d  

Dsp. 
d 

Function e Process/protein/gene 
family e 

mRNA 
class f 
 

Q1 UL134 0.75 1.97 0.41 0.00 4.94 2.69 Unknown   
Q3 
 

UL18 -1.96 -1.81 0.00 0.00 3.96 2.04 Immunomo
-dulation 

MHC-I homologue; 
Modulation NK cell 
signaling/function; Putative 
membrane glycoprotein; 
UL18 family  

UL59 -0.47 -1.35 0.58 0.03 4.29 0.38 Unknown   
UL120 -0.91 -2.42 0.39 7e-

04 
4.08 1.69 Unknown Putative membrane 

glycoprotein; UL120 family  
Q2 
 

UL19 -0.85 2.38 0.39 2e-
04 

4.09 1.43 Unknown  
Tr5 

UL131A -1.53 1.88 0.07 0.00 3.99 2.27 Cell 
tropism/Cell 
type-
specific 
replication; 
Virion 
protein 

Endothelial and epithelial 
cell tropism; Putative 
secreted protein 

 
Q4 UL37 0.61 -2.75 0.43 0 4.95 0.94 Unknown   

UL91 0.53 -2.39 0.48 0 5.28 0.59 Gene 
expression/
regulation 

Essential for transcription 
of viral true late (γ2) genes 

 
a Herpesvirus-common genes 
blog2FC(∆UL135/WT) and FDR using the data from donor 1 
clog2FC(∆UL138/WT) and FDR using the data from donor 1 
dMean expression and dispersion of ∆UL135_6dpi and ∆UL138_6dpi across three different donors 
eThis information was based on references reviewing gene function (14, 15). 
fThis information was based on temporal profiles of productive infection, defined in (16). Three mRNA classes, Tr1, Tr2-4 
and Tr5, represent the mRNA expression that peaked at 0 to 24hpi, 24hpi to 72hpi and 72hpi, respectively. 

 



Table S2. Summary of, concordant Q1/Q3 or antagonistic Q2/Q4, regulation of 22 moderately expressed genes 
associated with the switch between ∆UL135 (latency-like) and ∆UL138 (replication) in CD34+ HPCs at 6dpi 

Type Gene a Log2
FC 
(5)b 

Log2
FC 
(8)c 

FDR 
(5)b 

FDR 
(8)c 

Mean 
d  

Dsp. 
d 

Function e Process/protein/gene 
family e 

mRNA 
class 
 

Q1 
 

UL16 0.36 0.68 0.41 0.03 8.7 0.54 Immunomo
-dulation; 
Viral growth 

Modulation NK cell 
signaling/function; 
Membrane glycoprotein; 
Temperance in fibroblasts Tr2-4 

UL26 0.39 0.84 0.41 0.01 8.26 6e-
02 

Gene 
expression/
regulation; 
Virion 
protein; 
Virion 
stability 

Activator of MIEP; 
Tegument protein; US22 
family 

Tr2-4 
UL30 0.34 1.07 0.38 0 9.76 9e-

02 
Unknown Expressed in latency 

Tr5 
UL38 0.35 1.41 0.41 0 8.9 0.24 Apoptosis; 

Gene 
expression/
regulation; 
Virion 
protein 

Inhibitor of apoptosis; US3 
regulator (repressor); 
Glycoprotein 

Tr2-4 
UL102a 1.20 0.60 1e-

04 
0.03 8.67 0.29 (DNA) 

Replication 
Component of DNA 
helicase-primase  

UL124 0.45 0.98 0.40 0.00 8.51 1.01 Latency Membrane glycoprotein Tr5 
UL128 0.23 1.64 0.57 0 8.96 0.22 Cell 

tropism/Cell 
type-
specific 
replication; 
Immunomo
-dulation 

Involved in cell tropism 
endothelial cells; Putative 
secreted protein; 
Modulation chemo- and/or 
cytokines; Modulation of 
monocyte migration; 
Expressed in latency  

US30 0.73 0.11 0.01 0.67 8.82 0.23 Viral growth May be involved in 
temperance in fibroblasts; 
Putative membrane 
glycoprotein Tr5 

US32 0.60 0.91 0.18 0.00 8.82 0.47 Unknown US1 family  
Q3 
 

RL11 -0.11 -1.34 0.76 0 8.31 0.29 Immunomo
-dulation 

IgG Fc-binding capacity; 
Glycoprotein; RL11 family Tr5 

UL33 -0.38 -2.20 0.41 0 8.59 0.44 Immunomo
-dulation; 
Modulation 
of host cell 
cycle/protei
n synthesis; 
Virion 
protein 

Modulation of chemo- 
and/or cytokine receptor 
through binding 
(CCR5/CXCR4); Envelope 
protein; GPCR-7TM family 

Tr5 
UL70 a -0.29 -1.25 0.48 0 8.21 0.78 DNA 

Replication 
DNA helicase-primase; 
Expressed in latency  

UL89 a -0.14 -0.65 0.68 0.00 8.42 0.24 Viral growth Formation of infectious 
particles Tr5 

UL93 a -0.12 -1.39 0.80 0 8.19 0.3 Assembly/
Maturation/
Egress; 
Cellular 
trafficking; 
Virion 
protein 

Possible role in DNA 
packaging; Tegument 
protein 

 
UL95 a -0.04 -0.96 0.92 5e- 9.04 0.18 Assembly/ Required for accumulation  



04 Maturation/
Egress; 
Gene 
expression/
regulation 

late transcripts; expressed 
in latency 

US13 -1.84 -0.63 1e-
04 

0.14 7.8 0.16 Unknown Putative multiple 
transmembrane protein; 
US12 family  

US14 -1.12 -0.66 3e-
04 

0.01 7.68 0.16 Unknown Putative multiple 
transmembrane protein; 
US12 family Tr2-4 

Q2 
 

UL23 -0.52 0.96 0.23 0.00 8.25 0.16 Viral 
growth; 
Virion 
protein 

Temperance in fibroblasts; 
Tegument protein; US22 
family 

Tr5 
UL24 -0.03 0.93 0.97 0.03 7.76 0.11 Cell 

tropism/Cell 
type-
specific 
replication; 
Virion 
protein 

Involved in cell tropism in 
endothelial cells; 
Tegument protein; US22 
family 

 
UL135 -0.94 0.15 0.00 0.61 8.71 0.23 Latency/Re

activation 
Reactivation, membrane 
organization/maturation in 
endothelial; Putative 
secreted protein Tr1 

US12 -1.30 0.30 0 0.23 9.17 0.18 Unknown Putative multiple 
transmembrane protein; 
US12 family Tr2-4 

Q4 
 

UL85 a 0.01 -0.67 0.97 0.00 8.93 0.28 Assembly/
Maturation/
Egress 

Minor capsid protein 

Tr5 
a Herpesvirus-common genes 
blog2FC(∆UL135/WT) and FDR using the data from donor 1 
clog2FC(∆UL138/WT) and FDR using the data from donor 1 
dMean expression and dispersion of ∆UL135_6dpi and ∆UL138_6dpi across three different donors 
eThis information was based on references reviewing gene function (14, 15) 
fThis information was based on temporal profiles of productive infection, defined in (16). Three mRNA classes, Tr1, 
Tr2-4 and Tr5, represent the mRNA expression that peaked at 0 to 24hpi, 24hpi to 72hpi and 72hpi, respectively. 
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