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Other Supplementary Material for this manuscript includes the following: 

(available at advances.sciencemag.org/cgi/content/full/3/12/e1701423/DC1) 

 

 movie S1 (.mp4 format). A random delay coding mask breaks the phase 

uniformity of the ultrasound transmission to enable compressive imaging. 

 movie S2 (.mp4 format). Compressive 3D ultrasound imaging using a single 

sensor. 

 movie S3 (.mp4 format). Image reconstruction for a multisensor array and a single 

sensor with rotating coding mask. 
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text S1. On the size of the system matrix H. 

Standard measurement systems are designed to provide a large number of measurements, 

generally much larger than the number of unknowns (M >> N), while guaranteeing that the 

condition number of the system matrix H is small enough, such that the problem of estimating v 

from u (u = Hv + n) is a well-posed problem. In current ultrasound devices for instance, this can 

be done by transmitting a short pulse through the tissue as a spatial beam or plane wave 

(repeated for several spatial beams or plane waves), followed by high-rate sampling (above the 

Nyquist rate) at every sensor (see also Fig. 1a and b). In compressive sensing imaging devices, 

however, far fewer measurements are taken, thereby reducing the imaging time considerably. In 

such scenarios, the number of measurements is often smaller than the number of unknowns 

(M<=N); even when M is larger than N, the system matrix H is typically ill-conditioned in 

compressive ultrasound imaging. In our case M is typically much smaller (between 10 and 100 

times) than N. These values are highly dependent on pulse bandwidth, pulse length after the 

coding mask, number of rotations, size of imaging volume, and pixel size. In our case M is much 

smaller than N (10:1 for Fig.6 (b and d) and 100:1 for Fig. 6 (f), thus we need to constrain the 

solution space using some prior information. We describe these in the Materials and Methods 

section. 

 

We attribute the successful reconstructions with fewer measurements than pixels to the fact that 

the dependence between columns in H is typically very local in space. Keeping in mind that the 

pixel size can be chosen arbitrarily, consider a large pixel size such that H contains more 

measurements than unknowns. As a consequence, the system becomes over-determined, but the 

modelling error due to reflectors that lay in between pixel positions will be rather large. To 

reduce this type of error, one would like to increase the pixel density by adding columns to H, 

resulting in fewer measurements than unknowns. It is obvious that the columns of the pixels that 

were added will be highly correlated to neighbouring pixels. Consequently, the solution 

ambiguity related to an echo signal coming from that region will be locally restricted to that 

image region. Combined with techniques like Tikhonov regularization, the least squares 

estimator will still be able to allocate energy to the corresponding region. The reconstruction will 

not be exact, but the allocated energy will be in approximately the correct part of the image. 

 

text S2. Comparison with multisensor array imaging. 

The imaging technique we propose relies on the inversion of complicated wavefields, making it 

difficult to compare our technique one-to-one with conventional geometrical beamforming 

techniques. For instance, our transmit beam is deliberately chaotic, and we have no ability of 

focusing this beam, unlike with normal sensor arrays. However, in the context of imaging by 

inversion we are able to compare the proposed single sensor with coding mask with a multi-

sensor array. To this end we have extended our simulation analysis as described in the Materials 

and Methods section to further understand the influence of adding more sensors and the use of 

rotations on the imaging performance. In short, H was computed as described in “Approximate 

model and Cramer-Rao lower bound” of the Materials and Methods section. We pre-defined an 

image v (schematic drawing of a Toucan, in a xy-plane at a depth of 12.7 mm) and computed u 

via u = Hv + n. We then compared the estimated image 𝐯̂ with the true image v by computing 

the normalized mean square error (nsme) (𝐧𝐦𝐬𝐞 = ||𝐯 − 𝐯̂||2
2/||𝐯||2

2). For this analysis we used 



similar settings as were used for Fig. 5. We considered the same aperture and coding mask. For 

the case of the multi-sensor array we removed the coding mask and subdivided the aperture in 

multiple sensors and excited all sensor subdivisions simultaneously. We compared the nmse as a 

function of mask rotations and number of sensors. The idea is that every mask rotation provides 

one unique measurement that should be comparable with the number of spatial measurements 

that can be obtained with multiple sensors in an array. Since the degree of wavefield complexity 

largely depends on the available delays in the coding mask, we also vary the local mask 

thickness from 1 to 8 mm. The overall results of these simulations can be observed in fig. S1. 

Reconstruction examples can be seen in fig. S2 and movie S3.  

 

text S3. On the relation to CS. 

For the results in Fig. 6f we used a technique more related to common CS methods. Traditional 

CS techniques require that the image v is sparse in some domain which can be represented by a 

basis matrix G. The representation w of the image in this domain is computed as w = Gv, and 

assuming G is invertible, the measurement equation can instead be written as 

 

𝐮 = 𝐇𝐯 = 𝐇𝐆−1𝐰 

 

and solved for w. If w is sufficiently sparse in the domain represented by G, and the matrix 

𝐇𝐆−1 satisfies the restricted isometry property (RIP) (43), CS techniques using 𝑙1 based 

regularization can be used to estimate w from u, and then compute 𝐯 = 𝐆−1𝐰 to obtain an 

image. In our experiments, the image is already sparse in the spatial domain itself, so that G = I 

(where I is the identity matrix) is a sparse basis for our problem. For images that are not spatially 

sparse, bases such as the wavelet basis can be used to exploit sparsity, although we have not 

further explored this option.  For the full 3D reconstruction shown in Fig. 6f, we made use of the 

sparsity of these two letters in water by applying the sparsity promoting basis pursuit de-noising 

(BPDN) algorithm. As can be seen, this prior knowledge about the image could be effectively 

exploited to improve image quality, significantly improving the dynamic range from 9 to 29 dB.  

 

 



 
fig. S1. Imaging performance for a single sensor with coding mask and normal sensor arrays without coding 

mask. We computed a system matrix H for a normal array with varying sensor densities and for the proposed single 

sensor with coding mask with several thicknesses and varying rotations. A pre-defined image v (schematic drawing 

of a Toucan, in a xy-plane at a depth of 12.7 mm) was used to compute u via u = Hv. We then compared the 

estimated image 𝐯̂ with the true image v by computing the normalized mean square error. The results are shown 

above. A tradeoff in nmse between number of sensors in an array and number of rotations with a coding mask can 

be observed. By increasing the mask thickness more information is compressed in the measurement resulting in a 

better nmse for the same amount of measurements. 

 

 

 

 

 

 
 
fig. S2. Image reconstruction example for a sensor array and a single sensor with coding mask for a 

comparable amount of measurements. Left panel shows the true image in a xy-plane at a depth of 12.7mm that 

was used to simulate the measurements for a normal array and single sensor with mask. Middle panel shows the 

reconstruction for an array with 80 sensors. The right panel shows the reconstruction for a single sensor with a 8 mm 

mask and 81 mask rotations. 

  



Legends for movies S1 to S3 

 

movie S1. A random delay coding mask breaks the phase uniformity of the ultrasound 

transmission to enable compressive imaging. 

 

movie S2. Compressive 3D ultrasound imaging using a single sensor. 

 

movie S3. Image reconstruction for a multisensor array and a single sensor with rotating 

coding mask. 


