
Supplementary Note 1 – Supplementary Notes on Curve Fitting Against Raw Data 

 In this work, two data sets were used from studies which investigated the effects of herbivory on 

pollinator visitation across a continuous spectrum of herbivory: Kessler et al 2011 and Barber et al 2012
1, 

2
. While a number of studies have found evidence of herbivory reducing the amount of pollination 

individual plants receive, those studies often use categorical treatments of pollination measured with and 

without herbivore damage
3, 4, 5

. Few have studied pollination across on a continuous spectrum of 

herbivore damage as was done in these two studies. This data was used to curve fit and find the best 

possible support for the form of functional response of pollinator visitation rates to different levels of 

herbivory. As written in the main paper, the functional response is labeled 𝑣(𝑐, ℎ) where ℎ is the 

percentage of herbivore damaged leaves and 𝑐 is parameter which describes the intensity of the effect of ℎ. 

Statistics on the raw data from each study can be found below. Each data was fitted against 6 

models.: 1.) Type I or linear decline response, 2.) Type II declining response, 3.) Type III declining 

response, 4.) Mixed Saturating decline, 5.) Concave declining function, 6.) a generalized Poisson fit. Type 

I, II, and III functional responses are named as such due to their dynamic similarity to functional 

responses seen in predation and mutualistic interactions. The Mixed Saturating model tests the effect of a 

response model with a scalar multiplier on ℎ and a potential non-integer exponent (see Supplementary 

Table 1). The concave function allows for the testing of a potential threshold effect. These response 

models were chosen based on their established use in the theoretical literature, their shown applicability in 

other interactions (such as predation and mutualist interaction), and their ability to cover potential 

dynamic responses to herbivory. Finally, the Poisson fit allows us to compare the functional response to a 

more traditional test of this type of count data. Models were fit to the data in the statistical software R and 

compared using AICc weights given their nonlinearity. 

 

Fitting raw data from Kessler et al 2011 

 Experiments in Kessler et al 2011 were conducted in Peru. This field study measured the 

proportion of flowers with pollination marks as a proxy for pollinator visitation and as a function of 

herbivore damage in the wild tomato Solanum peruvianum. Pollination marks were measured in relation 

to herbivore leaf damage experienced by individual S. peruvianum plants. S. peruvianum is attacked by a 

diverse set of herbivorous insects and pollinated by specialist bees in the Apidae, Colletidae, and 

Halictidae families. For more information, please see the original paper
1
.  

 The results of curve fitting the 6 candidate models to Kessler’s raw data are displayed in 

Supplementary Table 1. This shows no entirely definitive support for a single model. The Linear, Type II, 

and Mixed Saturating models are all shown to have some comparable support. However, as with the 

results shown in the main paper, the Type II response has the highest support and the Mixed Saturating 



Model has a very similar form to the Type II (𝑏 = 1.196). We also note that the shape of the Poisson 

predicted fit does mimic the exponential decay relationship modeled by the Type II functional response 

(Supplementary Figure 1). While the level of support in the raw data for the Type II form is more limited, 

the above reasoning and the results described in the main paper lead us to argue that the Type II response 

is the best suited functional response form from this data set. It should also be noted that not allowing the 

y-intercept to vary and fixing it to 100% increases the AICc weight of the Type II functional response to 

0.85 and 0.62 in the averaged data fit and raw data fit respectively.  

 

Supplementary Table 1 | Curve fitting results from Kessler et al 2011 raw data. 

Model fitting to original data from Solanum peruvianum field experiments in Peru. Curve fittings of six 

candidate response models to Kessler et al 2011 raw data
1
: Type I/Linear, Type II, Type III, Mixed 

Saturating, Concave, Poisson fit. Here ℎ represents the level of herbivory. The parameters 𝑐 and 𝑏 

determine the shape of the curve and 𝑖 is the intercept. Estimated parameters that are significant have their 

p values bolded. The Type II functional response has the highest Akaike Information Criterion weight of 

0.46021. 

 

 



 
Supplementary Figure 1 | Plotted fit of the Poisson fit.  

Plotting the predicted relationship between herbivore damage and pollinator visited flowers derived from 

the generalized Poisson fit using the raw count data.  

 

Fitting raw data from Barber et al 2012 

 The flowering plant used in this was Cucumis sativus (cucumber, Cucurbitaceae), a widely 

cultivated annual, monoecious herb reliant on pollinators to vector pollen between male and female 

flowers. Cucumis sativus is pollinated by a numerous insects, including generalist bees (honey bees and 

bumble bees), a variety of solitary bees, butterflies, and hover-flies (Syrphidae). The herbivorous insect of 

interest was Acalymma vittatum, a common specialist herbivore and agricultural pest of Cucurbitacea in 

the northeast United States. Herbivory occurs by adults feeding on stems and leaves above as well as 

larvae eating roots below ground. At various levels of herbivory, per replicate plant, pollinator visits were 

recorded. For more information, please see the original paper
2
. In this data set, all pollinators listed above 

are grouped together in observations. Data for just honey bees and bumble bees was also tested separately, 

but is not displayed here. This data and the six fitted models are displayed in Supplementary Figure 2. 

Data was not averaged in this case as the coverage across leaf damage percent was not even across the 

full spectrum.  



 

Supplementary Figure 2 | Fits of candidate models to Barber et al 2012 data. 

Effects of herbivore damage (ℎ) on number of observed visits by pollinators (𝑣) on Cucumis sativus. 

Individual data points are shown as green dots. While there is a significant negative effect of herbivory on 

pollinator visits, none of the five candidate models are shown to have noticeably better fits than any 

others. The fits of five of the candidate models are overlaid over the data as different lines. The legend 

describes which line represents which model. The lack of any singular best fit model is reflected in the 

fact all five models overlap a great deal. 

 

 The results of curve fitting the six candidate models to Barber’s data are displayed in 

Supplementary Table 2. While the negative effect of increased levels of herbivory is significant
2
, this data 

set shows no support for any one out of the six candidate models tested here. The AICc weights are 

particularly even across all six models. Given that the bulk of the pollinators observed in this study are 

large generalists (honey bees and bumble bees), it is reasonable to expect different results than those 

garnered from Kessler et al’s 2011 paper, where the bees were smaller specialists
1
. While there are 

numerous speculative reasons for these differences, what this result shows is that the form of 𝑣(𝑐, 𝐻) is 

likely different across species and systems. This may be an important component when considering 

interactions among multiple pollinators on shared resource flowers.  

 



Supplementary Table 2 | Curve fitting results from Barber et al 2012 data. 

Model fitting to original data from Cucumis sativus field experiments from Barber et al 2012
2
. Curve 

fittings of six candidate response models: Type I/Linear, Type II, Type III, Mixed Saturating, Concave, 

and Poisson. Here ℎ represents the level of herbivory. The parameters 𝑐 and 𝑏 determine the shape of the 

curve and 𝑖 is the intercept. Estimated parameters that are significant have their p values bolded. While 

the Type III functional response has the highest Akaike Information Criterion weight of 0.2726, no one 

model has the clear advantage. 

 

 

Supplementary Note 2 – Fitting binned data from Kessler et al 2011 with weighted bins 

 In using the binned data, it is reasonable to also consider the effects of standard errors of the 

mean values from the bins in estimation and comparison of the curves. This can be done by counting the 

number of observations per bin and using them as weights with the “weights” argument provided in the 

nls function in R. When we do so, we see no change in the main result, the Type II functional form is still 

the best supported model from the analysis (Supplementary Table 3). However, there is more comparable 

support for the Type I/Linear form and still appreciable support for the Mixed Saturating form. These 



results provided additional prompting to study the effects of the other functional forms on the model 

results (see Supplementary Note 8 – Supplementary Note 11). 

 

Supplementary Table 3 | Curve fitting results considering bin weights.  

Table describing the results of the curve fitting to the 5 candidate response models: Type I/Linear, Type II, 

Type III, Mixed Saturating, Concave when including the weights in each bin. Here ℎ represents the level 

of herbivory. The parameters 𝑐 and 𝑏 determine the shape of the curve and 𝑖 is the intercept. Equation 

representations of each model are given along with a pictorial example of each model. Estimated 

parameters that are significant have their p values bolded. The Type II functional response has the highest 

Akaike Information Criterion weight of 0.587. 

 

 

Supplementary Note 3 - Obligate mutualism without functional HIPL 

The full effect of 𝑣(𝑐, 𝐻)on system persistence is made clear by first setting 𝑐 = 0, making 

𝑣(𝑐, 𝐻) = 1. This effectively eliminates the mechanism of herbivore-induced visitation reduction from 

the model. Doing this also allows us to quickly verify previous theoretical work and show the fragile 

nature of antagonized mutualisms in their most basic theoretical formulation.  The categories of possible 



dynamics are relatively short. The system can be sustained by both stable equilibria and stable limit 

cycles. However, the two different dynamics of system persistence are mutually exclusive across 

parameter space such that no parameter combination creates a phase space with both a stable equilibrium 

and a stable limit cycle. Antagonized obligate-mutualisms function dynamically similar to a predator-prey 

system with the prey split into two mutually dependent populations. Classic Lotka-Volterra predator-prey 

systems also result in only one dynamic category of persistence per parameter combination. Therefore, 

the lack of overlapping in dynamical categories of persistence has reasonable precedence in this and other 

models.   

The range of parameter space which creates dynamics that support persistence is quite narrow. 

Supplementary Figure 3 shows the results of a Jacobian stability analysis across {𝑏𝐹 , 𝑏𝑃 , 𝑟𝐻} parameter 

space. The results of the stability analysis are visualized as colors across parameter space. Parameter 

combinations which create locally stable equilibria are shown in green, while the blue represents space 

where equilibria are unstable and result in system extinction. The actual equilibrium values are written out 

parametrically in S1-S3. The slim orange space represents the space which creates unstable equilibria but 

stable limit cycles (sustained oscillations). The parameter space which supports limit cycles had to be 

compiled in a list of data because the surface was too thin for the available software, Mathematica, to 

render. 

𝑭∗ →
𝑑𝐻

𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻
     (S1) 

𝑯∗ → 𝑐𝐹𝐻

(

 
 

−𝑎𝑑𝐻+𝑑𝐹𝑑𝐻ℎ𝐻−𝑐𝐹𝐻𝑑𝐹𝑟𝐻

(𝑑𝐻ℎ𝐻−𝑐𝐹𝐻𝑟𝐻)
2

+
𝑏𝐹𝑑𝑃𝑣

𝑎𝑑𝐻ℎ𝐻−𝑎𝑑𝐻ℎ𝑃−𝑎𝑐𝐹𝐻𝑟𝐻

+
𝑏𝐹𝑏𝑃𝑑𝐻𝑣

2

𝑎(𝑑𝐻(ℎ𝑃−ℎ𝐻)+𝑐𝐹𝐻𝑟𝐻)
2)

 
 

    (S2) 

𝑷∗ →
−𝑑𝑃+(

𝑏𝑃𝑑𝐻𝑣

𝑑𝐻(ℎ𝑃−ℎ𝐻)+𝑐𝐹𝐻𝑟𝐻
)

𝑎
   (S3) 

It is readily apparent that, in this simple form, the system can only potentially persist at very low 

levels of herbivory (Supplementary Figure 3). Values of both 𝑏𝑃 and 𝑏𝐹 have minimal effects on the 

mutualism’s ability to persist across different levels of herbivory (i.e. different values of 𝑟𝐻). Overall, this 

simple version of the system has a narrow range of parameter space where all three variables can coexist 

without going extinct due to herbivory.  

 



 

Supplementary Figure 3 | Dynamics across parameter space for Equation 1 without HIPL. 

Exploration of the different type of model behaviors/dynamics across different parameter values in the 

obligate model with no HIPL (𝑟𝐹 = 0, 𝑐 = 0). a) A representation of different dominant asymptotic 

dynamics across {𝑏𝐹 , 𝑏𝑃 , 𝑟𝐻} parameter space. Parameter 𝑏𝐹 represents the reproductive benefit of 

pollination to the flowering plant population. Parameter 𝑏𝑃 represents the reproductive benefit of 

pollination to the pollinator population. Parameter 𝑟𝐻 represents the attack rate of the herbivore. The 

green space represents parameter combinations where the non-zero equilibrium is locally stable. The thin 

orange space represents combinations where the non-zero equilibrium is unstable but a stable limit cycle 

exists. The parameter space which supports limit cycles had to be compiled in a list of data because the 

surface was too thin for the available software, Mathematica, to render. Both limit cycles and stable 

equilibria represent system persistence. The blue space represents space where the non-zero equilibrium 

exists, but is unstable resulting in the system going extinct. Supplementary Fig 3b-3d represent example 

simulations/time series from each different parameter grouping in Supplementary Fig 3a. In the time 

series, green lines represent 𝐹, orange lines represent 𝑃, and black lines represent 𝐻. b) An example 

simulation from the extinction producing region of parameter space (blue region in Supplementary Fig 

3a). c) An example simulation from the limit cycle producing region of parameter space (orange region in 

Supplementary Fig 3a). c) An example simulation from the stable equilibrium producing region of 

parameter space (green region in Supplementary Fig 3a). The other parameter values are as follows: 

𝑑𝐻 = .25, 𝑑𝑃 = 𝑑𝐹 = .2, 𝑟𝐹 = 0, 𝑐𝐹𝐻 = 1, 𝑐 = 0, ℎ𝐻 = ℎ𝑃 = 1. See Table 1 in the main text for 

parameter and variable definitions. 



 

 In addition to the limited amount of parameter space which creates persistent systems, systems 

which do have a potential dynamic of system persistence (either equilibrium or limit cycle) can be 

perturbed into phase space which leads to system collapse. This can happen when trajectories are moved 

out of the basin of attraction of either the stable equilibrium or limit cycle and into the basin of attraction 

of the 0-equilbrium absorbing state in phase space. An example of this is given in Supplementary Figure 

4. For more detailed descriptions of the basin of attraction see Strogatz 1994
6
. Supplementary Figure 4 

shows that the basin of attraction of the stable equilibrium is limited, mainly in the 𝐻 direction, such that 

higher 𝐻 values means trajectories are caught in the basin of the 0-equilbrium and the communities goes 

extinct. This exercise corroborates past work which describes the seemingly fragile nature of these 

systems under base model formulation. 

 

 

Supplementary Figure 4 | Basins of attraction for Equilibrium 4 and the 0-equilibrium.  

Examples of basins of attraction in {𝐹, 𝐻, 𝑃} phase space and their resulting model behaviors. 𝐹-flowering 

plant population, 𝐻-herbivore population, 𝑃-pollinator population. a) The basin of attraction for a stable 

equilibrium where 𝐹∗, 𝐻∗, 𝑃∗ > 0 shown in green. All initial conditions inside this basin lead to stable 

equilibria. b) The basin of attraction for the 0-equilbrium, (0,0,0), shown in red. All initial conditions in 

this basin lead to extinction. c) Combining a) and b) shows that the basins completely fill the phase space. 

Asymptotic model behavior is shown to depend on which basin of attraction initial conditions start in. 

When initial conditions start in the green (basin of attraction of the stable equilibrium), trajectories 



experience dampened oscillations and the system persists in stable coexistence. However, when initial 

conditions start in the red (basin of attraction of the (0,0,0) state, trajectories are pulled to extinction due 

to saturation with herbivores. In the time series, green lines represent 𝐹, orange lines represent 𝑃, and 

black lines represent 𝐻. See Table 1 in the main text for parameter and variable definitions. 

 

Supplementary Note 4 - Obligate mutualism with functional HIPL 

 This section studies Equation 1 when 𝑟𝐹 = 0 and 𝑐 > 0. The expression for 𝐹∗ is written below. 

Parametric expression for 𝐻∗ and 𝑃∗ are too large for print. Please use the following Mathematica code to 

examine the equilibria.  

FHPSol = Solve[𝐹 ∗ ((bf (1 + 𝑐 ∗ 𝐻)⁄ ) ∗ (𝑃 (1 + ℎ𝑝 ∗ 𝐹)⁄ ) − 𝑎 ∗ 𝐹) − (rh ∗ 𝐹 ∗ 𝐻) (1 + ℎℎ ∗ 𝐹)⁄ − df

∗ 𝐹 == 0&&𝑐𝑓ℎ ∗ rh ∗ 𝐹 ∗ 𝐻 (1 + ℎℎ ∗ 𝐹)⁄ − dh ∗ 𝐻 =

= 0&&𝑃 ∗ ((bp (1 + 𝑐 ∗ 𝐻)⁄ ) ∗ (𝐹 (1 + ℎ𝑝 ∗ 𝐹)⁄ ) − 𝑎 ∗ 𝑃) − dp ∗ 𝑃 == 0, {𝐹, 𝐻, 𝑃}]; 

 The addition of HIPL expands the range of herbivory levels that the mutualism can withstand. 

The mechanism of this expansion and increased resilience comes from the asynchronous oscillations of 

herbivore populations (𝐻(𝑡)) and 𝑣(𝑐, 𝐻) =
1

1+𝑐𝐻
 through time (Supplementary Figure 5). When 𝑐 > 0 

increased herbivore abundance dynamically lowers the interaction rate between flowers and pollinators. 

While this does obviously reduce the population growth of both the flowering plant and the pollinator, 

this indirectly lowers 
𝑑𝐻(𝑡)

𝑑𝑡
 and causes the herbivore population growth to slow so that it never saturates 

the system as it did when 𝑐 = 0. The greater the value of 𝑐, the quicker high 𝐻 abundance lowers 

visitation rates and consequently, the more controlled the herbivore population (Figure 3).  

 

Supplementary Figure 5 | Dynamics of herbivore abundance and 𝒗 across time.  



Asynchronous oscillations of herbivore abundance (red, left axis) and pollinator visitation rates 

(blue/dashed, right axis). These asynchronous oscillations come from the form of 𝑣(𝑐, 𝐻) =
1

1+𝑐𝐻
. 

 

Analysis of this version of the model started with analysis of available equilibria and their 

stability. Unfortunately, the seemingly modest addition of function 𝑣(𝑐, 𝐻) to the model creates 

analytically incalculable equilibria. Simple algebraic manipulation of 
𝑑𝐻

𝑑𝑡
 can show that: 𝐹∗ =

𝑑𝐻

𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻
. 

On the other hand, both 𝑃∗ and 𝐻∗ cannot be written completely parametrically in a length that 

would fit within reasonably sized manuscript. Therefore, using the Jacobian and eigenvalues to identify 

all general relationships between parameter values and stability in the model was not feasible. However, it 

is possible to find an inverse relationship that exists between the values of the equilibria of 𝑃∗ and 𝐻∗. 

Starting with 
𝑑𝑃

𝑑𝑡
= 0 it is possible to show that: 

𝑑𝑃

𝑑𝑡
= 𝑃∗ (

 𝑏𝑃𝑣(𝑐)𝐹
∗

1+ℎ𝑃𝐹
∗ − 𝛼𝑃𝑃

∗) − 𝑑𝑃𝑃
∗ = 0   (S4) 

𝑃∗ (
 𝑏𝑃𝑣(𝑐)𝐹

∗

1+ℎ𝑃𝐹
∗ − 𝛼𝑃𝑃

∗) = 𝑑𝑝𝑃
∗     (S5) 

substitute: 𝐹∗ =
𝑑𝐻

(𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻)
→ 𝑃∗ (

 𝑏𝑃𝑣(𝑐)
𝑑𝐻

(𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻)

1+
ℎ𝑃𝑑𝐻

(𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻)

− 𝛼𝑃𝑃
∗) = 𝑑𝑝𝑃

∗   (S6) 

(
 𝑏𝑃𝑣(𝑐)

𝑑𝐻
(𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻)

(𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻)+ℎ𝑃𝑑𝐻
𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻

− 𝛼𝑃𝑃
∗) = 𝑑𝑝      (S7) 

(𝑏𝑃𝑣(𝑐)
𝑑𝐻

(𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻)
(

𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻

(𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻)+ℎ𝑃𝑑𝐻
) − 𝑑𝑝) = 𝛼𝑃𝑃

∗ (S8) 

1

𝛼𝑝
(

𝑏𝑝𝑣(𝑐)𝑑𝐻

(𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻)+ℎ𝑃𝑑𝐻
− 𝑑𝑝) = 𝑃

∗     (S9) 

 Since 𝑣(𝑐) =
1

1+𝑐𝐻
 it is clear to see that 𝑃∗~

1

𝐻∗
 (S9). While this is an intuitive result, the lack of 

full parametric expressions of equilibria means numeric approaches must be taken to understand the effect 

of changing model parameters. This was done using 2-dimensional bifurcation heatmaps for 𝐻 and 𝑃 

respectively as was shown in Figure 4 for 𝐹 (Supplementary Figure 6). The expanded resilience to higher 

values of 𝑟𝐻 as 𝑐 increases is clear. Despite 𝑐 representing a necessary decline in interaction between the 



mutualists, it is actually the herbivore population which has the most apparent population decline with 

higher values of 𝑐.  

 

        



Supplementary Figure 6 | 2-D heatmaps for 𝑯 and 𝑷 in obligate mutualism community.  

2-dimensional bifurcation heatmap showing the abundance for a) 𝐻 (herbivore population) and b) 𝑃 

(pollinator population) across values for parameters 𝑐 and 𝑟𝐻 in the asymptotic behavior of the model. 

Parameter 𝑐 represents the degree of herbivore-induced pollinator limitation. Parameter 𝑟𝐻 represents the 

herbivore attack rate. This figure corresponds to Figure 4 in the main text. Where parameter combinations 

create stable equilibria, abundance is shown in the green color scale. Where values create stable limit 

cycles, abundance is shown in the sunset color scale. The switch between the two color schemes 

represents the Hopf bifurcation shown in Figure 3. Values which lead to system extinction are shown in 

white. a.) Value of 𝐻 in the asymptotic behavior of the model. b.) Value of 𝑃 in the asymptotic behavior 

of the model. 𝑟𝐹 =  0; 𝑏𝐹  =  1.665; 𝑏𝑃  =  1.695; 𝑑𝐹 = 0.2; 𝑑𝐻  =  0.5; 𝑑𝑃  =  0.2;  𝑎 =  0.1, 

𝑐𝐹𝐻 = 1, ℎ𝐻 = ℎ𝑃 = 1. See Table 1 in the main text for parameter and variable definition. 

 

It is worth noting that an increase in 𝑐 (decrease in pollinator visitation), does not necessarily 

result in a negative effect on 𝐹 abundance. When the system produces a stable Equilibrium 4, there is no 

cost to 𝐹 as 𝑐 increases (Figure 4). This can be analytically verified by recalling that the parametric 

expression for 𝐹∗ =
𝑑𝐻

𝑐𝐹𝐻𝑟𝐻−𝑑𝐻ℎ𝐻
 has no reliance on the value of 𝑐. Additionally, it is also possible to show 

that both 𝑃∗ and 𝐻∗ are inversely proportional to the value of 𝑐. However, the examples given in Figure 

3a and Supplementary Figure 6b show that the effect of 𝑐 on 𝑃∗ is small. The effect of visitation reduction 

on 𝐻∗ is much more pronounced (Supplementary Figure 6a).  

Potential costs in oscillating populations due to reduction in pollinator visitations (reduced 

interaction with the mutualist) are also limited. While higher 𝑐 values decrease the maximum abundance 

in 𝐹 and 𝑃 (Figure 3a, Figure 4) when the system produces sustained population oscillations, the minima 

of these oscillations increase (Figure 3a). This reduces the system’s tendency to produce small population 

sizes during its cycles, thereby keeping a higher minimum population number of the two mutualistic 

interactors (e.g. plant and pollinator). This limits periods of exceptionally low population growth when 

one of the mutualists has low abundances. 

 Finally, we have shown that higher levels of 𝑐 can cause the system to persist in a non-zero 

attractor despite higher levels of herbivory. Additionally, for any given value of 𝑟𝐻, higher levels of 

visitation reduction can also expand the range of mutualism growth the system can support. Another 

source of system failure besides increased levels of herbivory is higher growth rates of the mutualists. In 

the same way that high 𝑟𝐻 can saturate the system with herbivores, high 𝑏𝐹 and 𝑏𝑃 can also lead to more 

available resources for herbivores, leading to herbivore saturation and system failure. Herbivore induced 

pollinator visitation decline attenuates this indirect saturation effect and expands the range of 𝑏𝐹 and 𝑏𝑃 



which doesn’t lead to system failure. Perhaps more intuitively, sufficiently low mutualism growth rates 

can also lead to system failure. If growth rates of the pollinator or flowering plant are too low, the 

mutualism may not be able to recover herbivore induced low population numbers. Higher levels of 

pollinator visitation decline allow the mutualism to recover from low population numbers while reducing 

the growth rate when herbivores are too abundant. An example of these effects is shown in 

Supplementary Figure 7. Here it is clear that as 𝑐 increases from 0, the range of 𝑏𝐹 and 𝑏𝑃 parameter 

space which leads to a non-zero dynamic (persistent communities) expands.  

 

 

Supplementary Figure 7 | Parameter space supporting persistence.  

Parameters space which supports persistence in all three populations across {𝑐, 𝑏𝐹 . 𝑏𝑃} parameter space is 

shown in translucent purple. Parameter 𝑐 represents the degree of herbivore-induced pollinator limitation. 

Parameter 𝑏𝐹 represents the reproductive benefit of pollination to the flowering plant population. 

Parameter 𝑏𝑃 represents the reproductive benefit of pollination to the pollinator population. Persistence is 

not distinguished between equilibria and limit cycles in this case. Simulations were run with 𝑟𝐻 at the 

relatively high value of 1. Other parameters were as follows: 𝑟 = 0, 𝑎=0.1, 𝑑𝐹 = 0.2, 𝑑𝐻 = 0.5, 𝑑𝑃 =

0.2, 𝑐𝐹𝐻 = 1, 𝑐 = 0, ℎ𝐻 = ℎ𝑃 = 1. See Table 1 in the main text for parameter and variable definitions. 

 

Supplementary Note 5 – Highly specialized mutualism with HIPL 

 When 𝑟𝐹 is near zero but still positive (for some small value 𝜖 such that 𝑟𝐹 ≈ 𝜖), the model can 

represent a highly specialized pollination mutualism between 𝐹 and 𝑃. In this case, the pollinator is 

dependent on the flowering plant population, but the flowering plant population is able to maintain some 



average positive growth independent of pollinator 𝑃. The model produces similar rescue and stabilization 

dynamics compared to the obligate mutualism in the Results section (Supplementary Figure 8).  

 

 

Supplementary Figure 8 | HIPL rescue effect in specialized mutualism 

Example of similar rescue and stabilization dynamic driven by HIPL with higher 𝑐 values in a highly 

specialized system where 𝑟𝐹 is slightly greater than 0 (i.e. 𝑟𝐹 = 𝜖 such that 𝜖 > 0). In this case 𝑟𝐹 = 0.21. 

a) System failure with low influence of HIPL, 𝑐 = 0.1. b) Past the rescue point and establishment of 

sustained oscillation with more influence from HIPL (𝑐 = 0.375). c) Oscillations dampen and approach 

stable equilibrium with higher 𝑐 values (𝑐 = 1.28). All other parameters: 𝑟𝐹 = 0.21; 𝑟𝐻 = 0.71; 𝑏𝑓 =

0.83; 𝑏𝑝 = 1.08; 𝑐𝐹𝐻 = 0.58; ℎ𝐻 = 1; ℎ𝑃 = 1; 𝑑𝐹 = 0.2; 𝑑𝐻 = 0.25; 𝑑𝑃  =  0.2; 𝛼 = 0.1. 

 

Supplementary Note 6 – Approximating the Volume of the Basin of Attraction in Obligate Model 

While 𝑐 values greater than 0 can induce system persistence, both rates of herbivory (𝑟𝐻) and 

pollinator aversion to herbivory (𝑐) have significant effects on the volume of the basin of attraction of 

non-zero attractors (Supplementary Figure 9). In other words, non-zero 𝑐 values can create the potential 

for system rescue, higher values of 𝑐 reduce the amount of initial conditions which move toward non-zero 

attractors. Recall that non-zero attractors in this case are the attractors (equilibria & limit cycles) which 

allow for system persistence instead of extinction (the 0-equilibrium). The basin of attraction for an 

attractor is the set of initial conditions in phase space that will eventually be iterated into the attractor over 

time. When the basin of attraction of the non-zero attractor is small, there are more initial conditions 

which will push the system into the 0-equilibrium, leading to extinction. When the basin of attraction of 

the non-zero attractors is larger, there are more initial conditions which will push the system into the non-

zero attractor and the community will persist. For further description, see Strogatz 1994
6
 and 

Supplementary Figure 4.  

We determined the approximate volume of the basin of attraction in phase space for both 

Equilibrium 4 and limit cycles (sustained oscillations) across {𝑐, 𝑟𝐻} parameter space. There is no 

analytical method to study the size of the basin of attraction so it must be investigated through numerical 



simulations. Through an extensive numerical survey of 2.7 x10
7
 initial conditions in phase space 

simulated across 2800 parameter combinations we compiled a 7.56x10
10

 point data set which develops a 

full understanding of how the size of the basin of attraction changes with different values of 𝑐 and 𝑟𝐻. 

Stable equilibria were found using standard Jacobian stability analysis on Equilibrium 4. There is no set 

method to analytically determine the existence of limit cycles. Therefore, limit cycles were verified using 

numerical means. We determined an approximate volume of the basin of attraction in phase space for 

both Equilibrium 4 and limit cycles (sustained oscillations) across {𝑐, 𝑟𝐻} parameter space 

(Supplementary Figure 9).  

Reduction in pollinator visitation (higher 𝑐) causes a sharp initial decrease in the volume of the 

basin, but then begins to have a smaller effect. Whereas the effect of increased rates of herbivory (𝑟𝐻), 

cause a more consistently steep decline in basin volume over less parameter space. This result suggests 

that while visitation reduction can facilitate 3-variable coexistence at 𝑟𝐻 levels that would otherwise cause 

system extinction, the basins of attraction for the non-zero attractors are smaller with higher 𝑟𝐻. In other 

words, the potential for persistence offered by pollinator visitation reduction comes with the caveat of 

susceptibility to perturbations. There is also a clear continuation of the non-zero attractors’ basin volume 

across the bifurcation from stable equilibrium to limit cycles. With this result, we can say that the 

prominent dynamic (equilibria or oscillations) in the model does not affect the basin volume of the non-

zero attractor. Instead, it is the parameter values themselves which lead to changes in volume. 



 

Supplementary Figure 9 | Size of Equilibrium 4’s Basin of Attraction across parameter space. 

Numerical approximation of the phase space unit volume of basins of attraction as a function of rh (the 

rate of herbivory) and c (the degree of pollinator visitation reduction due to herbivory) for a) the stable 

equilibria and b) the stable limit cycles. The volume was approximated through testing asymptotic system 

behavior across all initial conditions from 0 to 15 for each variable. This was repeated across different 

combinations of 𝑐 and 𝑟ℎ values. The number of initial conditions which result in equilibrium behavior is 

a suitable approximation of the basin of attraction’s unit area in phase space. 𝑟𝐹 =  0; 𝑏𝐹  =  1.665; 

𝑏𝑃  =  1.695; 𝑑𝐹 = 0.2; 𝑑𝐻 = 0.5; 𝑑𝑃  =  0.2; ℎ𝐹 = 1; ℎ𝑃 = 1; 𝑐𝐹𝐻 = 1; 𝛼 = 0.1. 



 

Supplementary Note 7 - Facultative mutualism with HIPL 

 Setting 𝑟𝐹 substantially greater than 0 (𝑟𝐹 greater than some small value 𝜖, 𝑟𝐹 > 𝜖 > 0) leads to 

complications in the effects of visitation reduction. As shown in the main paper, non-zero values of 𝑟𝐹 can 

lead to a population crash for the pollinator. The potential for a high growth rate of one facultative 

mutualist to crash its obligate partner has to do with the growth of the antagonist (in this case the 

herbivore). When the system is stabilized in equilibrium by visitation reduction and  𝑟𝐻 is low, with an 

overall growth rate of (𝑟𝐻 − 𝑑𝐻) of roughly 0.3, increasing 𝑟𝐹 can keep the system in equilibrium while 

pushing 𝑃∗ → 0 (Supplementary Figure 10 and Figure 5). As was shown in the main paper, inducing 

oscillations and increasing their amplitude by further increasing 𝑟𝐹 can create windows of time where 𝑟𝐻 

is low and 𝑃 is allowed time to grow.  

Additionally, the 2-parameter bifurcation diagram in Supplementary Figure 10 shows a similar 

effect is possible when 𝑟𝐻 is increased. As 𝑟𝐻 is increased, we can see an initial drop in equilibrium values 

of 𝑃∗ and an eventual rebound in peak values after the induction of limit cycles. The reasoning here is 

similar to when pollinator populations are saved by higher 𝑟𝐹. The fast growth of herbivore populations 

will induce limit cycle behavior in the plant-herbivore Lotka-Volterra consumer-resource system. This 

will cause high peaks in herbivore abundance that will lead to prolonged troughs in flowering plant 

populations. This will consequently drop the population of herbivore long enough for the small 

populations of pollinators to begin to grow in the interim. The result described here is similar to that 

described in Figure 5c.  

 



 

Supplementary Figure 10 | 2-D bifurcation for 𝑷.  

A two dimensional bifurcation plot for 𝑃 (pollinator population) across different parameter values of 𝑟𝐹 

and 𝑟𝐻 (intrinsic growth rate of flowering plant population and herbivore attack rate respectively). 

Combinations which create stable equilibria have just one 𝑃 value plotted whereas combinations which 

create limit cycles are plotted with both a 𝑃 minimum and 𝑃 maximum. Values are plotted with fitted 

curves to show contours. Maximum limit cycle values and equilibria values are shown in sunset colors. 

Minimum limit cycle values are shown in dark blue. Areas with no minimum value shown (right side of 

figure) are equilibria. At both low and high values of 𝑟𝐻an increased intrinsic growth rate of the flowering 

plant (higher 𝑟𝐹) can actually lead to reductions in pollinator abundance. 𝑏𝐹 = 1.04; 𝑏𝑃 = 0.85;  𝑐 =

1.2; 𝑑𝐹 = 0.2; 𝑑𝐻 = 0.302; 𝑑𝑃 = 0.2; 𝑎 = 0.1; ℎ𝐹 = 1; ℎ𝑃 = 1; 𝑐𝐹𝐻 = 1. See Table 1 in the main text 

for parameter and variable definitions. 

 

 This surprising benefit to the pollinator of higher herbivore growth can be hindered in two ways. 

First, and most intuitively, if 𝑟𝐻 is too high, the troughs in 𝐻 abundance are short and 𝑃 is not afforded as 

much time to grow. This results in a decline in peak 𝑃 abundance (Supplementary Figure 10). Second, 

increased intrinsic growth of 𝐹 (i.e. higher 𝑟𝐹) can speed the growth of 𝐻 populations in troughs and limit 



time available for 𝑃 population growth. All of these various conditions and tradeoffs for pollinator growth 

create a complicated condition for pollinator persistence that depends on visitation reduction, growth rate 

of the herbivore, and the intrinsic growth rate of the flowering plant (values of 𝑐, 𝑟𝐻 , 𝑟𝐹 respectively).  

In order to investigate the effect of each of these key parameters of the pollinator population, we 

compiled a large numerical analysis of 𝑃 abundance in asymptotic model behavior (Supplementary 

Figure 11). Equation 1 was simulated 76880 times across values of 𝑐, 𝑟𝐻, and 𝑟𝐹 and the depending on the 

dynamic of the model (stable equilibrium or limit cycles) the equilibrium value or peak limit cycle value 

of 𝑃 was recorded. These values of 𝑃 are presented as a color gradient. The data shown in Supplementary 

Figure 11 only represents situations where the flowering plant has a high enough 𝑟𝐹 that it can survive 

without pollination.  

 

 

Supplementary Figure 11 | Pollinator abundance across parameter space. 

The equilibrium value or peak limit cycle value of 𝑃 (pollinator population) at separate values of 𝑐, 𝑟𝐻 , 𝑟𝐹. 

Parameter 𝑐 represents the degree of herbivore-induced pollinator limitation. Parameter 𝑟𝐻 represents the 



attack rate of the herbivore population. Parameter 𝑟𝐹 represents the intrinsic reproductive rate of the 

flowering plant population. Colors represent either the equilibrium value of 𝑃 or the value it takes at the 

maximum of oscillations in limit cycles. 𝑏𝐹 = 1.04, 𝑏𝑃 = 0.85, 𝑎 = 0.1, 𝑑𝐹 = 0.2, 𝑑𝐻 = 0.302, 𝑑𝑃 = 0.2; 

ℎ𝐹 = 1; ℎ𝑃 = 1; 𝑐𝐹𝐻 = 1. See Table 1 in the main text for parameter and variable definitions. 

 

Supplementary Note 8 – HIPL driven rescue effect with Type I Functional Response   

While we argue that the Type II functional response has the most support in the available data, it 

is possible that other pollination systems may support a different functional form. Therefore, there is 

merit in investigating the consistency of the rescue effect provided through HIPL when using other 

functional responses in the model. In other words, here we will test the potential for the rescue effect with 

the Type I, Type III, Mixed Saturating, and Concave functional responses. Analysis shows that the rescue 

effect can be readily replicated across all functional response forms, with only the Concave response 

showing a noticeable reduction in the range of parameter space supporting community persistence. The 

Type I functional response for HIPL is the linear equation, 𝑣(𝑐, 𝐻) = 1 − 𝑐 ∗ 𝐻. We can incorporate this 

form of 𝑣(𝑐, 𝐻) into the model using the Piecewise function: 

𝑣(𝑐, 𝐻) = { 
1 − 𝑐 ∗ 𝐻    𝑤ℎ𝑒𝑛 1 > 𝑐 ∗ 𝐻 
0                   𝑤ℎ𝑒𝑛 1 ≤ 𝑐 ∗ 𝐻

         (S10) 

The Piecewise formulation stops 𝑣(𝑐, 𝐻) from becoming negative at any time in simulations. This 

formulation means that 𝑣(𝑐, 𝐻) decreases linearly with increased herbivore abundance (𝐻) until it reaches 

0. The value of 𝑣(𝑐, 𝐻) then remains at 0 when 𝐻 ≥ 1/𝑐. As in the main paper, the interaction rate of 

pollinators and flowering plants is assumed to be 1 when herbivore abundance and damage is zero. With 

this instantiation of the model, the linear Type I HIPL functional response can still produce the rescue 

effect. It is possible to create similar bifurcation heatmaps as shown in Figure 4 in the main paper to 

illustrate this result (Supplementary Figure 12). 

  



 

Supplementary Figure 12 | 2-D bifurcation heatmaps with TYPE I HIPL. 

A two-dimensional bifurcation heatmap showing the abundance of 𝐹 (flowering plant) in the asymptotic 

behavior of the model using a TYPE I functional response for HIPL. Different asymptotic behaviors of 

the model are shown as different colors across the {𝑟𝐻 , 𝑐} parameter space. Where parameter 

combinations create stable equilibria, 𝐹 abundance is shown in the green color scale. Where values create 

stable limit cycles, 𝐹 abundance is shown in the sunset color scale. Areas in white represent herbivore 

driven local extinction. 𝑟𝐹 =  0; 𝑏𝐹  =  1.265; 𝑏𝑃  =  1.4; 𝑐𝐹𝐻 = 0.7; 𝑑𝐹 = 0.2; 𝑑𝐻 = 0.25; 𝑑𝑃  =  0.2; 

ℎ𝐹 = ℎ𝑃 = 1.1; 𝛼 =  0.1. 

 

Supplementary Note 9 – HIPL driven rescue effect with Type III Functional Response 

Similar to the Type I and Type II functional response, the Type III form of HIPL was also found 

to produce the rescue effect. In this case, 𝑣(𝑐, 𝐻) =
1

1+𝑐𝐻2
. Again we present the results in the bifurcation 

heatmap figure (similar to Fig 3 in the main paper). The Type III functional response can allow for the 

rescue effect over similarly large subset of the parameter space (Supplementary Figure 13).  



 

Supplementary Figure 13 | 2-D bifurcation heatmaps withTYPE III HIPL. 

A two-dimensional bifurcation heatmap showing the abundance of 𝐹 (flowering plant) in the asymptotic 

behavior of the model using a TYPE III functional response for HIPL. Different asymptotic behaviors of 

the model are shown as different colors across the {𝑟𝐻 , 𝑐} parameter space. Where parameter 

combinations create stable equilibria, 𝐹 abundance is shown in the green color scale. Where values create 

stable limit cycles, 𝐹 abundance is shown in the sunset color scale. Areas in white represent herbivore 

driven local extinction. 𝑟𝐹 =  0; 𝑏𝐹  =  1.465; 𝑏𝑃  =  1.615; 𝑐𝐹𝐻 = 0.7; 𝑑𝐹 = 0.2; 𝑑𝐻 = 0.25; 𝑑𝑃  =  0.2; 

ℎ𝐹 = ℎ𝑃 = 1.1; 𝛼 =  0.1. 

 

Supplementary Note 10 – HIPL driven rescue effect with Mixed Saturating Functional Response 

 The Type III functional response is actually a subset/subcase of the Mixed Saturating form. From 

a modeling standpoint (both statistical and dynamic), the Mixed Saturating Case is a more complicated 

case because there are three parameters to test ({𝑟𝐻 , 𝑐, 𝑏}). Regardless, the Mixed Saturating form can 

produce the rescue effect result described in the main paper, but the details are more involved. The Type I, 

II, III functional responses only had one parameter per function (𝑐), so it was possible to make the 2-D 



bifurcation heatmaps. In this case, there is more than one parameter for the mixed saturating functional 

response (parameter 𝑐 and parameter 𝑏): 

𝑣(𝑐, 𝑏, 𝐻) =
1

1+𝑐𝐻𝑏
        (S11) 

 Therefore, the previous 2-D {𝑟𝐻 , 𝑐} bifurcation heatmaps do not show all the details and we will 

need to show multiple figures to describe the full dynamics. In this model we are actively changing the 

values of 𝑏 for the first time, so we initially parse through values of 𝑏 to test their comparative effects. 

The values of 𝑏 will vary from 1 to 3 allowing us to compare dynamics of a Type II response (𝑏 = 1) 

with a Type III (𝑏 = 2) and the Mixed Saturating case (𝑏 generally greater than 1). First, testing the effect 

of 𝑏 on a lower interacting system reveals that higher values of 𝑏 do not restrict the range of community 

persistence (Supplementary Figure 14a). In fact, on the lower values of 𝑐, it appears higher 𝑏 values allow 

for community persistence. Testing a more interactive system (Supplementary Figure 14b) offers clearer 

support for this idea.   



 

Supplementary Figure 14 | 2-D bifurcation heatmaps with Mixed Saturating HIPL. 



a) Two-dimensional bifurcation heatmaps showing the abundance of 𝐹 (flowering plant) in the 

asymptotic behavior of the model using a Mixed Saturating functional response for HIPL. Different 

asymptotic behaviors of the model are shown as different colors across the {𝑏, 𝑐} parameter space. Where 

parameter combinations create stable equilibria, 𝐹 abundance is shown in the green color scale. Where 

values create stable limit cycles, 𝐹 abundance is shown in the sunset color scale. Areas in white represent 

herbivore driven local extinction. a) 𝑏𝐹 = 𝑏𝑃 = 0.78, 𝑟𝐻 = 0.67, 𝑐𝐹𝐻 = 0.7; 𝑑𝐹 = 0.2; 𝑑𝐻 = 0.25; 

𝑑𝑃  =  0.2; ℎ𝐹 = ℎ𝑃 = 1.1; 𝑎 =  0.1. b) 𝑏𝐹 = 1.45, 𝑏𝑃 = 1.55, 𝑟𝐻 = 0.91, 𝑐𝐹𝐻 = 0.7; 𝑑𝐹 = 0.2; 𝑑𝐻 = 

0.25; 𝑑𝑃  =  0.2; ℎ𝐹 = ℎ𝑃 = 1.1; 𝛼 =  0.1. 

 

 To more fully understand the role of parameter 𝑏 in model dynamics and the rescue effect, we 

expanded the parameter sweep to include 𝑟𝐻 so that persistence could be measured across over 453,000 

parameter combinations in {𝑐, 𝑏, 𝑟𝐻} parameter space. The parameter sweep done to construct this graph 

was done with 𝑟𝐻 values from 0.45 to 1.0 with 0.01 steps, 𝑐 values from 0.0 to 2.0 with 0.02 steps, and 𝑏 

values from 1 to 3 with 0.02 steps. Upon completion of the analysis, we found that increased values of 𝑏 

expand the range of the HIPL derived rescue effect in {𝑟𝐻 , 𝑐} parameter space (Supplementary Figure 15). 

As indicated in Supplementary Figure 14b, this expansion largely results from the reduction in the value 

of 𝑐 required to sufficiently control the herbivore population prompting the rescue effect.  

 

 

Supplementary Figure 15 | Change in persistent parameter space across values of 𝒃.  



Measurements of the number of {𝑟𝐻 , 𝑐} parameter combinations across a range of 𝑏 values where the 

HIPL rescue effect enables persistent communities. The y-axis in the case is the actual count of distinct 

parameter combinations which HIPL supports persistent communities. This shows the range of the rescue 

effect increases with higher values of 𝑏. Parameter values are 𝑏𝐹 = 1.45, 𝑏𝑃 = 1.55, 𝑐𝐹𝐻 = 0.7, 𝑑𝐹 =

0.1, 𝑑𝑃 = 0.1, 𝑑𝐻 = 0.1, ℎ = 1.1, 𝛼 = 0.1. 

 

 Higher values of 𝑏 not only reduce the level of 𝑐 required for persistence, they also slightly 

increase the level of herbivore attack rate (i.e. higher 𝑟𝐻) that the system can withstand before local 

extinction (Supplementary Figure 16). The heatmap in Supplementary Figure 16 does not show 

asymptotic value of the flowering plant population as it does in other heatmaps. Instead it shows the 

lowest value of 𝑐 (lowest level of HIPL) that the system could withstand and still persist. Intuitively, 

lower values of 𝑟𝐻 require lower values of 𝑐 for the rescue effect. Higher values of 𝑏 also can also 

decrease the minimum value of 𝑐 needed to support community persistence. This is shown in two color 

schemes in Supplementary Figure 16 to make the point clearer. 

 

 
Supplementary Figure 16 | Minimum value of 𝒄 required for community persistence.  

Heatmap showing the minimum value of 𝑐 required to support system persistence through the rescue 

effect of HIPL across the range of all tested values of 𝑟𝐻 and 𝑏. This minimum value of 𝑐 is shown in the 

colors of each graph explained by the color legend to the right of each figure. The same figure is shown 

with two different color schemes to represent the minimum required 𝑐 value in an easily visible manner. 

Parameter values are 𝑏𝐹 = 1.45, 𝑏𝑃 = 1.55, 𝑐𝐹𝐻 = 0.7, 𝑑𝐹 = 0.1, 𝑑𝑃 = 0.1, 𝑑𝐻 = 0.1, ℎ = 1.1, 𝛼 = 0.1.  

 

 The cause of this increase in the range of community persistence across parameter space results 

from the fact that higher 𝑏 values (i.e. 𝑏 > 1) do two things to the shape of the 𝑣(𝑐, 𝐻) function. First, it 



creates a delay in the immediate effect of HIPL, such that higher herbivore abundance is required to see a 

decrease in pollinator visitation (𝑣(𝑐, 𝑏, 𝐻)). Second, once the herbivores are abundant, higher 𝑏 values 

make the resulting decrease in pollinator visitation progressively steeper, such that the decline in 

pollinator visitation is quite rapid. While the first effect would seem detrimental, when coupled with the 

second effect, it can actually be beneficial. A less immediate decline in 𝑣(𝑐, 𝑏, 𝐻) at low herbivore 

abundance can actually help the pollinator and plant populations rebound during troughs in the population 

trajectory because low herbivore abundance won’t impede pollination. This effect by itself would then 

fail to control herbivore populations as the populations rebounded, but the concurrent steep decline in 

pollination once herbivore abundance become sufficiently high (the second effect above), helps regain the 

indirect control of the herbivore population growth through greater reductions in 𝑣 (Supplementary Figure 

17).  

 



 

Supplementary Figure 17 | Changes in the shape 𝒗 for different values of 𝒃. 

 The resultant value of the pollination visitation parameter 𝑣(𝑐, 𝑏, 𝐻) (shown in blue) across herbivore 

abundance (𝐻) at different levels of the parameter 𝑏 when using the Mixed Saturating functional response 

form: a) 𝑏 = 1, b) 𝑏 = 2.2, c) 𝑏 = 3.52. The red dashed line shows the value of 𝑣(𝑐, 𝑏, 𝐻) when the 

herbivore abundance (𝐻) equals 2.0. Here, 𝑐 = 0.34. As the value of 𝑏 increases, the shape of the 



function changes such that the eventual decrease in 𝑣(𝑐, 𝑏, 𝐻) becomes very steep. Therefore, 

𝑣(0.34, 𝑏, 2) decreases resulting in more HIPL and lower pollination rates.  

 

Supplementary Note 11 – HIPL driven rescue effect with Concave functional response 

Various numerical simulations show that it is possible to recreate the rescue effect with the 

Concave Functional Response (Supplementary Figure 18). However, the Concave functional response 

generally created the smallest parameter space in which the rescue effect could be found. By creating the 

longest delays in declining the pollinator visitation rate (𝑣), the Concave functional response can 

significantly hinder any possible direct control of the herbivore population through HIPL. The concave 

model is the least supported direct curve fit we attempted, so we claim that the only functional response 

type that noticeable reduces the range of the rescue effect in the model does not seem well supported. 

With this we can claim that the main results presented in the paper are robust to most functional responses 

types.  

 

 

Supplementary Figure 18 | Rescue effect of HIPL with Concave functional response. 

Three time series showing the rescue effect using a Concave functional form of HIPL. Parameter values: 

𝑟𝐻 = 0.58, 𝑏𝐹 = 1.095, 𝑏𝑃 = 1.095, 𝑐𝐹𝐻 = 0.7, ℎ = 1.1, 𝑐 = 0.13, 0.338, 0.868, 𝛼 = 0.1, 𝑑𝐹 =

0.1, 𝑑𝑃 = 0.1, 𝑑𝐻 = 0.1,. The green line, orange line, and black line represent the flowering plant, 

pollinator, and herbivore respectively. The pink line is the value of the 𝑣(𝑐, 𝐻) function as a response to 

the herbivore abundance. 
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