

Supplementary Figure 1. Transcription termination within *suhB* is dependent on Rho and Nus factors. This is an extended version of Fig. 1. RNAP (β) enrichment at regions across *suhB* was measured using ChIP-qPCR in wt MG1655, *boxA*(C4T/T6C), *ΔnusB*, *nusE*(A12E) or *rho*(R66S) mutant strains. All values are normalised to the signal at the 5' end of *suhB* gene. *x*-axis labels indicate qPCR amplicon position relative to the *suhB* ORF. Error bars represent ±1 standard deviation from the mean (n=3). A schematic depicting *suhB* gene, the transcription start site (bent arrow) and *boxA* (grey rectangle) is shown below the graph. The six horizontal black lines indicate the position of the PCR amplicon.

Providencia stuartii MRSN 2154 uid162193 Erwinia amylovora ATCC 49946 uid46943 Proteus mirabilis HI4320 uid61599 Edwardsiella ictaluri 93 146 uid59403 Pantoea ananatis AJ13355 uid162073 Klebsiella oxytoca E718 uid170256 Enterobacter 638 uid58727 Cronobacter sakazakii ATCC BAA 894 uid58145 Citrobacter koseri ATCC BAA 895 uid58143 Escherichia coli K 12 substr MG1655 uid57779 Shigella flexneri Za Z457T uid57991 Salmonella enterica serovar Typhimurium 14028S uid86059 Dickeya dadantii 3937 uid52537 Pectobacterium atrosepticum SCRI1043 uid57957 Sodalis glossinidius morsitans uid58553 Photorhabdus luminescens laumondii TTO1 uid61593 Xenorhabdus nematophila ATCC 19061 uid49133 Rahnella aquatilis CIP 78 65 ATCC 33071 uid86855 Serratia AS12 uid67315 Yersinia pestis KIM 10 uid57875

Providencia stuartii MRSN 2154 uid162193 Erwinia amylovora ATCC 49946 uid46943 Proteus mirabilis HI4320 uid61599 Edwardsiella ictaluri 93 146 uid59403 Pantoea ananatis AJ13355 uid162073 Klebsiella oxytoca E718 uid170256 Enterobacter 638 uid58727 Cronobacter sakazakii ATCC BAA 894 uid58145 Citrobacter koseri ATCC BAA 895 uid58143 Escherichia coli K 12 substr MG1655 uid57779 Shigella flexneri Za Z457T uid57991 Salmonella enterica serovar Typhimurium 14028S uid86059 Dickeya_dadantii_3937_uid52537 Pectobacterium atrosepticum SCRI1043 uid57957 Sodalis glossinidius morsitans uid58553 Photorhabdus luminescens laumondii TTO1 uid61593 Xenorhabdus nematophila ATCC 19061 uid49133 Rahnella aquatilis CIP 78 65 ATCC 33071 uid86855 Serratia AS12 uid67315 Yersinia pestis KIM 10 uid57875

ATCGCAAGAGTCTAACACAAAATTGCTTATTGTGACGAACAT	
CCTGCATCTTGCGGTGCAGAAAAGGGAAAAACCTTGCGCCGTA	CC
ATCCATCTATTTTATCACAAATGTAGCCAAAAACGCGAACGC	CI
TGCCAACGAGTATAAAAACGGCATGGTTGTTTGCCGCACAC	TTI
-ATGATGACGCGTACTCTAACATAAAGC-AGGACATTTACCGAACAC	CCI
TTATTCGTGCATGCTATCATAAAACGAAGACATAAGGAGATTTC	ACI
TCCGGCATATTATCATAAACGAGAGACATGATCCGAACTC	GCI
GCATCTTATCATAAACCTGAGACATATTCCGAACCC	TCI
GGCATATTATCATAAAACGGAGACATATTCCGAACTC	GCI
-GATTATTCACGCATCTTATCATAAAACGAAGACAGATGCCGATCTC	GCI
-GATTATTCACGCATCTTATCATAAAACGAAGACAGATGCCGATCTC	GCI
-GATTATTCTGACATCTTACCATAAAACCAAGACAGATTCCGATCTC	GCI
CCGGCGTATGTTAACACAAACTTCTCTGTTTTCTCTTTCTCCC	GCTATCI
AGGAAACCGCCATACCTTAACACAAACTTAGCTATTTTACTTTTCTA	CI
GTGGGCAATATCGTAGCATAGCCGTAGGTTTTTCGCTGACGCT	C1
ATCAAATATCTTAACACAGCATTAGTCATTTTTCCGAATTA	CI
GCCGAATATCTTAACACAGCATTAGTCATTTTGACGAAATA	CI
CAACAGCCTAACACAACGGTAGTTAATTTTCAGAACCC	CI
-GAAAATCACAGCATCTTAACACAGCCATAGGCATTTTGCCGAACAG	CI
GGATAATCGCCATATCTTAACACAGACATAGGCATTTATCAGATCCC	CI

-CTATATAATCCGCCCACTCAAAG	rtt	-TTCGT	fCTTT <i>I</i>	AACA	ATTCCF	4G-	TGG
GCTGCAAATATTCAGGATAA		-CCCGT	rcttt2	AACA	ATTC-A	₩G-	TGA
GTTATACTTCGCCTCGT	-TTTTTAT(CCCCGT	rcttt2	AACA	TCT-J	ſG-	TGG
GCTATACTCTGCGCCGTCTAAAT	-TT	-CCCGT	rcttt2	AACA	ATCT-A	₩G-	TGG
GCTATACTCCGCGCCGTTT	-TC	-CCCGT	rcttt2	AACA	ATCC-A	AG−	CGA
GTTACTATATGCGCCGTTTT	-TT	-CCCGT	rcttt2	AACA	ATCC-A	AG−	TGA
GCTATACTCTGCGCCGTT	-TTCGTTTC	CCTGT	rcttt2	AACA	ATCC-A	AG−	TGA
GCTATAATCCGCGCCGTT	-TT	-CCCGT	rcttt2	AACA	ATCC-A	AG−	TGA
GCTATACTCTGCGCCGTT	-TT	-CCCGT	rcttt2	AACA	ATCC-A	AG−	TGA
GCTATACTCTGCGCCGTT	-TT	-CCCGT	rcttt2	AACA	ATCC-A	AG−	TGA
GCTATACTCTGCGCCGTT	-TT	-CCCGT	rcttt2	AACA	TCC-A	₩G-	TGA
GCTATACTCTGCGCCGTT	-TT	-CCCGT	rcttt2	AACA	ATCC-A	AG−	TGA
GCTATACTCCGCGCCGT	-TT	-TCTGT	rcttt2	AACA	ATTCT]	ſG-	TGG
GCTATACTCTGCGCCGC	-TT	-TCCGT	rcttt2	AACA	ATTCCA	∖G−	TGG
GCTATACTCCTCCGCGCTG	-TT	-TTAGT	rcttt2	AACA	TTCTA	∖G−	TGG
GCTATACTACGCGCCGATTAAT	-TA	-CCCGT	rcttt2	AACA	TCCTO	GG-	TGG
GCTATACTGCGCGCCGATTTGT	-TT	-CCCGT	rcttt2	AAAA	TTCTG	GG-	TGG
GCTATACTGCGCGCCGTTTCCCGTA	ATT	-CCCGT	rcttt2	AACA	TCCTA	łGТ	TGG
GCTATACTTCGCGCCGT	-TT	-CCTGT	rcttt2	AACA	TCCTA	\GT	TGG
GCTATACTGTGCGCCGT	-TT	-CTCGT	rcttt2	AACA	TCCTA	₩G-	TGG
*		* * *	*****	** *	*	*	*

A-AAAAGCCC
GACGATATTACCT
A-AGATAACC
A-AGATTCCC
G-AGATACCG
G-AGATACCG
G-AGTAACCG
G-AGAAACCTGATGCATCCG
G-AGAGATCG-ATGCATCCG
G-AGAGACCG
G-AGAGACCG
G-AGAGACCG
A-CGATACC
ACCGATACC
ACA-CGATATCC
A-AGATATCCC
A-AGATACCCC
A-AGATATCC
A-AGATACCC
A-AGATACCC

Supplementary Figure 2. MUSCLE (v3.8) Alignment (CLUSTAL Format) of 100 bp regions upstream of *suhB* homologues in *Enterobacteriaceae* species. Species names are indicated to the left of the alignment. Asterisks indicate positions that are 100% conserved across the 20 species.

Supplementary Figure 3. The effect of 100 nt insertion between *boxA* and the S-D on *suhB-lacZ* expression levels when the native promoter is absent. β -galactosidase assay of wild-type ("wt *boxA*"; dark grey bars) and *boxA* mutant (*boxA*(C4A); blue bars) *suhB* translational fusion to *lacZ*. The length of inserted sequence is indicated on the *x*-axis. The native *suhB* promoter was replaced by a T7 promoter ("pT7"; see schematic above the graph). Additionally, bacterial cells carried an empty pBAD18 vector (T7 RNAP was not supplied in this assay). Cells were grown in the presence of 0.2% arabinose. Error bars represent ±1 standard deviation from the mean (n=3). Note that the β -galactosidase activity from the translational fusion construct shown here is substantially lower than the activity from the equivalent transcriptional fusion construct with a native *suhB* promoter (Fig. 5, far right). Moreover, β -galactosidase activity from a wild-type *suhB-lacZ* translational fusion construct is ~8-fold higher than the activity from the equivalent transcriptional fusion construct (607±8 and 78±3 β -galactosidase activity units, respectively). We conclude that the majority of β -galactosidase activity for the *suhB-lacZ* transcriptional fusion with a native promoter and a 100 nt insertion (Fig. 5, far right) is due to transcription from the native promoter.

Supplementary Figure 4. *suhB* expression by T7 RNAP abolishes BoxA-mediated translational repression. β -galactosidase assay of wild-type ("wt") and *boxA* mutant ("C4A") *suhB* translational fusions to *lacZ*. The native *suhB* promoter was replaced by a T7 promoter ("pT7"; see schematic below the graph). Additionally, bacterial cells carried a plasmid with either an empty pBAD18 vector or pBAD18 expressing T7 RNAP (as indicated on the *x*-axis). β -galactosidase activity was measured for cells grown in the presence of 0.2% arabinose to induce T7 RNAP expression at 37 °C, 30 °C or 23 °C as indicated in the legend. Error bars represent ±1 standard deviation from the mean (n=3).

Supplementary Figure 5. Evidence for and against functional BoxA elements upstream of *suhB* and inside *hisG* gene in *S*. Typhimurium, respectively. Previous studies reported a functional BoxA within the *S*. Typhimurium *hisG* mRNA ^{1,2}. This putative BoxA was reported as being functional only when *hisG* translation was abolished by mutation of the gene. Hence, we interrupted *hisG* upstream of the putative *boxA* by inserting the *thyA* gene 3 bp or 100 bp downstream of the start codon. RNAP (β) (A and C) and SuhB-FLAG (B and D) association with *thyA*, *hisG* and *suhB* was measured using ChIP-qPCR in a derivative of *S*. Typhimurium strain 14028s in which *thyA* was deleted at its native locus, and *hisG* was disrupted by insertion of *thyA*, replacing the first 3 (A and B) or 100 (C and D) nucleotides of *hisG*. *x*-axis labels indicate the qPCR amplicon used, with numbers corresponding to the schematics above the graphs. Error bars represent ±1 standard deviation from the mean (n=3). In the schematic, the *suhB boxA* and the putative *hisG boxA* are indicated by grey rectangles. Numbers above the arrows represent nucleotide positions relative to the *hisG* gene start (without *thyA* insertion). Horizontal black lines indicate the positions of PCR amplicons.

Supplementary Figure 6. *suhB* gene sequence used in *lacZ* fusion constructs. Relevant features used in this work are indicated: transcription start site (bent arrow), *boxA* sequence (single underline), S-D (double underline), start ("ATG") and stop ("TAA") codons (bold). The non-coding DNA sequence inserted between BoxA and S-D (Fig. 5) is shown in the box above, and the arrow points to the position of the insertion. Underlined nucleotides indicate the 3' ends of various insertions and correspond to the insertion size labelled in Fig. 5. *suhB* sequence used in *lacZ* fusions in Fig. 3A-B included from position -200 to the end of the gene, as indicated by dashed lines. The short *suhB-lacZ* transcriptional fusion from Fig. 4B included *suhB* sequence up to position +57, and an in-frame stop codon immediately after the gene fragment.

Supplementary Figure 7. Unprocessed western blot images from Fig. 3D-C. Western blots showing SuhB-FLAG protein levels in wild-type cells, *nusAcs10*, *nusE*(A12E), *rho*(R66S) (A), and *boxA*(C4T/T6C) mutants (B). SuhB-FLAG was probed with α -FLAG antibody; RNAP β ' was probed as a loading control. Blots from the same SDS-PAGE gel were processed in parallel, see 'Methods' for details.

Supplementary Table 1. List of *nusB*, *nusE* and *nusG* mutants isolated in the genetic selection for factors that repress *suhB*.

[Nucleotide Change ^a	Amino Acid Change ^a	Other
	C22A	R8S	N/A
	C26A	A9D	N/A
	T52A	Y18N	N/A
	T52G	Y18D	N/A
	A53C	Y18S	N/A
	A53G	Y18C	N/A
л	C320A	A107E	N/A
nusB	A322T	I108F	N/A
	G344A	G115D	N/A
	T377A	V126E	N/A
	T9G	Silent	N/A
	T18G	Silent	N/A
	C21G	Silent	N/A
	N/A	N/A	IS3 insertion after position 140
	A7C	N3H	N/A
	C35A*	A12E*	N/A
	T53A*	I18N*	N/A
	A56T	D19V	N/A
	C295A	Q99K	N/A
nusE	G297T*	Q99H*	N/A
	A15G	Silent	N/A
	G294A	Silent	N/A
	C300A	Silent	N/A
	C-79T	N/A	N/A
	A-12G	N/A	N/A
	N/A	N/A	Duplication of -23 to -2
nusG	ΔΑ515	N/A	N/A
	N/A	N/A	IS1 insertion after position 534

^a mutations marked with an asterisk were isolated independently on two occasions

Supplementary	Table 2. A	A list of relev	ant boxA sequ	uences from <i>E</i> .	coli and relat	ted bacteria.

	boxA sequence and nt positions ^a											
Species	Gene	1	2	3	4	5	6	7	8	9	10	11
E. coli, S. enterica	rRNA	G	С	U	С	U	U	U	A	A	С	A
and C. koseri	suhB	G	U	U	С	U	U	U	A	A	С	А
	suhB(C4A)	G	U	U	A	U	U	U	A	A	С	А
	suhB(C4T/T6C)	G	U	U	U	U	С	U	A	A	С	А
C. koseri	СКО_00699	G	С	U	С	U	U	U	A	A	С	A
	СКО_00699(С4А)	G	С	U	A	U	U	U	A	A	С	A
S. enterica	hisG	G	С	U	A	U	U	U	A	A	С	С

^a Nucleotide positions are numbered 1-11 above the sequences. BoxA from rRNA is considered a consensus. A critical nucleotide important for Nus factor association is "C" at position 4 ^{3,4}, and the mismatch in the *S. enterica* putative *hisG* BoxA sequence is underlined. *suhB* and *CKO_00699 boxA* mutations used in this study are in bold.

Name	Description	Source						
	Strains							
MG1655	MG1655 (F- λ - $\Delta i l v G r f b$ -50 $r p h$ -1)	5						
EDIAGO	F -mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80dlacZ Δ M15 Δ lacX74 recA1 endA1 araD139							
EPI300	Δ (ara, leu)7697 galU galK λ - rpsL (StrR) nupG trfA dhfr	Epicentre						
AMD054	MG1655 $\Delta lacZ$	6						
JW023	$MG1655\Delta lacZ\Delta nusB::thyA$	This study						
GB003	$MG1655\Delta lacZ nusE(A12E)$	This study						
GB004	$MG1655\Delta lacZ rho(R66S)$	This study						
VS066	MG1655 suhB-FLAG	7						
GB006	MG1655 nusE(A12E) suhB-FLAG	This study						
GB007	MG1655 rho(R66S) suhB-FLAG	This study						
GB023	MG1655 <i>suhB</i> (<i>boxA</i> (C4T/T6C))	This study						
GB024	MG1655 suhB(boxA(C4T/T6C))-FLAG	This study						
GB036	14028S Δ +3(hisG)::thyA suhB-FLAG	This study						
GB037	14028S Δ +100(hisG)::thyA suhB-FLAG	This study						
	Plasmids							
pAMD-	Single-conv lacZ expression vector	6						
BA-lacZ								
pKD46	Encodes λ recombinase system	8						
pJTW067	suhB(T607C) + 200nt upstream transcriptional fusion to $lacZ$	This study						
pGB1	suhB +200nt upstream transcriptional fusion to $lacZ$	This study						
pGB2	<i>suhB</i> (<i>boxA</i> (C4A)) +200nt upstream transcriptional fusion to <i>lacZ</i>	This study						
pGB67	suhB(boxA(C4T/T6C)) + 200nt upstream transcriptional fusion to $lacZ$	This study						
pGB3	suhB +200nt upstream translational fusion to $lacZ$	This study						
pGB4	suhB(boxA(C4A)) + 200nt upstream translational fusion to $lacZ$	This study						
pGB68	suhB(boxA(C4T/T6C)) + 200nt upstream translational fusion to $lacZ$	This study						
pGB7	boxA-2nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study						
pGB8	boxA-4nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study						
pGB9	boxA-8nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study						
pGB10	boxA-10nt-SD $suhB + 200$ nt upstream transcriptional fusion to $lacZ$	This study						
pGB11	<i>boxA</i> -16nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study						

pGB12	boxA-32nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB13	boxA-40nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB14	<i>boxA</i> -50nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to $lacZ$	This study
pGB15	boxA-60nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB16	boxA-70nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB17	boxA-80nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB18	boxA-90nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB19	<i>boxA</i> -100nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pGB23	boxA(C4A)-2nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB24	boxA(C4A)-4nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB25	boxA(C4A)-8nt-SD $suhB$ +200nt upstream transcriptional fusion to $lacZ$	This study
pGB26	boxA(C4A)-10nt-SD suhB transcriptional fusion to lacZ	This study
pGB27	boxA(C4A)-16nt-SD suhB transcriptional fusion to lacZ	This study
pGB29	boxA(C4A)-32nt-SD suhB transcriptional fusion to lacZ	This study
pGB30	<i>boxA</i> (C4A)-40nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pGB31	<i>boxA</i> (C4A)-50nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pGB32	<i>boxA</i> (C4A)-60nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pGB33	<i>boxA</i> (C4A)-70nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pGB34	<i>boxA</i> (C4A)-80nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pGB35	<i>boxA</i> (C4A)-90nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pGB36	<i>boxA</i> (C4A)-100nt-SD <i>suhB</i> +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pBAD18	Contains arabinose inducible promoter	9
pGB115	pBAD18:T7RNAP	This study
pGB84	pT7- <i>suhB</i> translational fusion to <i>lacZ</i>	This study
pGB83	pT7-boxA(C4A)-suhB translational fusion to lacZ	This study
pGB94	pT7-boxA-100nt-suhB translational fusion to lacZ	This study
pGB95	pT7- <i>boxA</i> (C4A)-100nt- <i>suhB</i> translational fusion to <i>lacZ</i>	This study
pGB109	pHigh-CKO_00699(R82A) transcriptional fusion to lacZ	This study
pGB110	pHigh-CKO_00699(R82A)-boxA(C4A) transcriptional fusion to lacZ	This study
pGB186	suhB (A1C, T2A) +200nt upstream transcriptional fusion to lacZ	This study
pGB187	<i>suhB</i> (<i>boxA</i> (C4T/T6C)) (A1C, T2A) +200nt upstream transcriptional fusion to <i>lacZ</i>	This study
pGB193	suhB (A1C, T2A) (-200 \rightarrow +57nt) transcriptional fusion to lacZ	This study
pGB192	$suhB(boxA(C4T/T6C))$ (A1C, T2A) (-200 \rightarrow +57nt) transcriptional fusion to $lacZ$	This study

Supplementary Table 4. List of oligonucleotides used in this study.

Name	Sequence	Description
JW125	AAGCGAAAATCGGCAATA	qPCR: <i>bglB</i> fwd
JW126	CATGGCCTGCAACATATC	qPCR: <i>bglB</i> rev
JW595	GGGCCAGTGTATGGTAAA	qPCR: <i>thyA</i> mid fwd
JW663	TATACTCTGCGCCGTTTT	qPCR: suhB 5' end fwd
JW664	CCGGGGTTTCATAGTTTT	qPCR: suhB 5' end rev
JW665	CCGTTCAAAGCAAAACAG	qPCR: <i>suhB</i> (+472→611) fwd
JW666	AAGAAACCGTCAACACGA	qPCR: $suhB$ (+472 \rightarrow 611) rev
JW1495	ACCCGTTCGATGTTGTTA	qPCR: <i>sbcC</i> (14028S) fwd
JW1496	TCTGCCCGTAAATCTCAG	qPCR: <i>sbcC</i> (14028S) rev
JW3415	GGACGGATCCTCGAGCATGCTAGACAGCTGCATGCATCTTTG	Cloning: pHigh fwd into pAMD-BA-lacZ fwd
JW3605	GGACGGATCCTCGAGCATGCTTGTTTTCATGGCACGGG	Cloning: $suhB + 200$ nt ups. fwd
JW3607	TTCATGCATTGCTAGCCGCCTGAGTCATTAACGC	Cloning: <i>suhB</i> transciptional fusion to <i>lacZ</i> rev
JW6036	GGCCAGTGCCAAGCTTGCACGCTTCAGAGCGTCGC	Cloning: <i>suhB</i> translational fusion to <i>lacZ</i> rev
JW6038	TCACTGGATGTTAAATAACGGGAAAACGGC	Cloning: <i>boxA</i> (C4A) mutation rev
JW6039	TTTAACATCCAGTGAGAGAGACCG	Cloning: <i>boxA</i> (C4A) mutation fwd
JW6505	CAGATGCCGATCTCGCTGCTATACTCTGCGCCGTTTTCCCGTTTAGACAGCTGCATGCA	FRUIT: TU suhB/boxA E. coli
JW6506	TGTTCAGCATCGGATGCATCGGTCTCTCTCACTGGATGTTAAAGGTGTAGGCTGGAGCTG	FRUIT: TD suhB/boxA E. coli
JW6596	AACATCCGAAGTGAGAGAGACCGATG	Cloning: 2nt insert between <i>boxA</i> and S-D fwd
JW6597	TCTCTCTCACTTCGGATGTTAAAGAACGGG	Cloning: 2nt insert between <i>boxA</i> and S-D rev
JW6598	TAACATCCGAACAGTGAGAGAGACCGATGC	Cloning: 4nt insert between <i>boxA</i> and S-D fwd
JW6599	TCTCTCTCACTGTTCGGATGTTAAAGAACGGG	Cloning: 4nt insert between <i>boxA</i> and S-D rev
JW6600	CTTTAACATCCGAACTACCAGTGAGAGAGAGACCGATGC	Cloning: 8nt insert between <i>boxA</i> and S-D fwd
JW6601	TCTCTCACTGGTAGTTCGGATGTTAAAGAACGGG	Cloning: 8nt insert between <i>boxA</i> and S-D rev
JW6602	GAACTACCCATCTGGTAGTGAGAGAGAGACCGATGCATC	Cloning: 16nt insert between <i>boxA</i> and S-D fwd
JW6603	ACCAGATGGGTAGTTCGGATGTTAAAGAACGGGAAAAC	Cloning: 16nt insert between <i>boxA</i> and S-D rev
JW6604	GAACTACCCATCTGGTCGCAGATAGTATGAACAGTGAGAGAGA	Cloning: 32nt insert between <i>boxA</i> and S-D fwd
JW6605	GTTCATACTATCTGCGACCAGATGGGTAGTTCGGATGTTAAAGAACGGGAAAAC	Cloning: 32nt insert between <i>boxA</i> and S-D rev
JW7070	CGTTCTTTAACATCCACGTATTCACCGTGGCATTC	Cloning: 100nt insert after boxA fwd

JW7071	GAATGCCACGGTGAATACGTGGATGTTAAAGAACGGGAAAACG	Cloning: 100nt insert after boxA rev
JW7072	TCGGTCTCTCACTCCTCATAAAGTGCGTCGTAG	Cloning: 100nt insert before S-D rev
JW7073	ACGCACTTTATGAGGAGTGAGAGAGAGACCGATGCATC	Cloning: 100nt insert before S-D fwd
JW7184	TCTCTCTCACTTCGGATGTTAAATAACGGG	Cloning: 2nt insert between <i>boxA</i> (C4A) and S-D rev
JW7185	TCTCTCTCACTGTTCGGATGTTAAATAACGGG	Cloning: 4nt insert between <i>boxA</i> (C4A) and S-D rev
JW7186	ATTTAACATCCGAACTACCAGTGAGAGAGAGACCGATGC	Cloning: 8nt insert between <i>boxA</i> (C4A) and S-D fwd
JW7187	TCTCTCACTGGTAGTTCGGATGTTAAATAACGGG	Cloning: 8nt insert between <i>boxA</i> (C4A) and S-D rev
JW7188	CATCCGAACTACCCAAGTGAGAGAGACCGATGC	Cloning: 10nt insert between <i>boxA</i> and S-D fwd
JW7189	TCACTTGGGTAGTTCGGATGTTAAAGAACGGGAAAAC	Cloning: 10nt insert between <i>boxA</i> and S-D rev
JW7190	TCACTTGGGTAGTTCGGATGTTAAATAACGGGAAAAC	Cloning: 10nt insert between <i>boxA</i> (C4A) and S-D rev
JW7191	ACCAGATGGGTAGTTCGGATGTTAAATAACGGGAAAAC	Cloning: 16nt insert between <i>boxA</i> (C4A) and S-D rev
JW7195	GTTCATACTATCTGCGACCAGATGGGTAGTTCGGATGTTAAATAACGGGAAAAC	Cloning: 32nt insert between <i>boxA</i> (C4A) and S-D rev
JW7196	TGGCATTCTGATCCACGATTACTAGCGAAGTGAGAGAGACCGATGCATC	Cloning: 40nt insert between <i>boxA</i> and S-D fwd
JW7197	TGGATCAGAATGCCACGGTGAATACGTGGATGTTAAAGAACGGGAAAAC	Cloning: 40nt insert between <i>boxA</i> and SD Rev
JW7198	TGGATCAGAATGCCACGGTGAATACGTGGATGTTAAATAACGGGAAAAC	Cloning: 40nt insert between <i>boxA</i> (C4A) and SD rev
JW7199	CGTTATTTAACATCCACGTATTCACCGTGGCATTC	Cloning: 50-100nt insert after <i>boxA</i> (C4A) Fwd
JW7200	GAATGCCACGGTGAATACGTGGATGTTAAATAACGGGAAAACG	Cloning: 50-100nt insert after <i>boxA</i> (C4A) Rev
JW7201	AGCGATTCCGACTTCAGTGAGAGAGACCGATGCATC	Cloning: 50nt insert between <i>boxA</i> and S-D fwd
JW7202	TCGGTCTCTCACTGAAGTCGGAATCGCTAGTAATC	Cloning: 50nt insert between <i>boxA</i> and S-D rev
JW7203	ACTTCATGGAGTCGAAGTGAGAGAGAGACCGATGCATC	Cloning: 60nt insert between <i>boxA</i> and S-D fwd
JW7204	TCGGTCTCTCACTTCGACTCCATGAAGTCGGAATC	Cloning: 60nt insert between <i>boxA</i> and S-D rev
JW7205	GTCGAGTTGCAGACTAGTGAGAGAGACCGATGCATC	Cloning: 70nt insert between <i>boxA</i> and S-D fwd
JW7206	TCGGTCTCTCACTAGTCTGCAACTCGACTCCATG	Cloning: 70nt insert between <i>boxA</i> and S-D rev
JW7207	AGACTCCAATCCGGAAGTGAGAGAGAGACCGATGCATC	Cloning: 80nt insert between <i>boxA</i> and S-D fwd
JW7208	TCGGTCTCTCACTTCCGGATTGGAGTCTGCAAC	Cloning: 80nt insert between <i>boxA</i> and S-D rev
JW7209	CCGGACTACGACGCAAGTGAGAGAGACCGATGCATC	Cloning: 90nt insert between <i>boxA</i> and S-D fwd
JW7210	TCGGTCTCTCACTTGCGTCGTAGTCCGGATTG	Cloning: 90nt insert between <i>boxA</i> and S-D rev
JW7674	GCCGTTTTCCCGTTTTCTAACATCCAGTGAGA	Cloning: MU suhB/boxA(C4T/T6C)
JW7675	TCTCACTGGATGTTAGAAAACGGGAAAACGGC	Cloning: MD suhB/boxA(C4T/T6C)
JW7793	GGCGTTACTGGTGTTATTTC	qPCR: <i>ynbB</i> fwd
JW7794	CAGACCTTCCAATGTTTTTC	qPCR: <i>ynbB</i> rev
JW7848	TCATAACTACATGCTGACCG	qPCR: <i>suhB</i> 3' (+699→+798) fwd
JW7849	CTTCAGAGCGTCGCTTAAC	qPCR: suhB 3' (+699 \rightarrow +798) rev
JW7907	CTTACCCACAGCACCATC	qPCR: $suhB(+172\rightarrow+273)$ fwd

JW7908	GTTGGTAGTGCCATCCAGTG	qPCR: $suhB(+172\rightarrow+273)$ rev
JW7926	CCGCACTTCGCGGTATCTAT	qPCR: $suhB(+289 \rightarrow +416)$ fwd
JW7927	CGGTAGCCGTTCAGCTGTG	qPCR: $suhB(+289 \rightarrow +416)$ rev
JW7934	TAGAAGCGAGCCAGAAAGGC	qPCR: $suhB(+85 \rightarrow +192)$ fwd
JW7935	GATGGTGTGCTGTGGGTAAGA	qPCR: $suhB(+85 \rightarrow +192)$ rev
JW8021	GGACGGATCCTCGAGCATGCTAATACGACTCACTATAGTTTTCCCGTTCTTTAACATC	Cloning: pT7-suhB fwd
JW8022	GGACGGATCCTCGAGCATGCTAATACGACTCACTATAGTTTTCCCCGTTATTTAACATC	Cloning: pT7-boxA(C4A)-suhB fwd
JW8284	AGGATCCCCGGGTACCTTACGCGAACGCGAAGTC	Cloning: T7RNAP into pBAD18 rev
JW8320	TTCATGCATTGCTAGC	Cloning: CKO_00699(R82A) transcript. lacZ fusion rev
JW8325	CAAATTGTTAAAtAGCACACCCTAC	Cloning: CKO_00699(R82A) boxA(C4A) rev
JW8326	GCTaTTTAACAATTTGTTTTACAGGGGATG	Cloning: CKO_00699(R82A) boxA(C4A) fwd
JW8340	GTTTTTTTGGGCTAGCGAAGGAGATATACATATGAACACGATTAACATCGCTAAG	Cloning: T7RNAP into pBAD18 fwd
JW8355	GCGCGATACAGACCGGTTCAGACAGGATAAAGAGGAACGCAGATAGACAGCTGCATGCA	FRUIT: $thyA \rightarrow +1$ of $hisG$ 14028S fwd
JW8356	CGGCCTGATTTCTGAATAGCTATGCGTAAGCGGGTGTTGTCTAAGTGTAGGCTGGAGCTG	FRUIT: $thyA \rightarrow +3$ of $hisG$ 14028S rev
JW8357	AATCGGCATGTTTTCCGCCATCGCAATCAGGCGCTGAGTGTGTAGTGTAGGCTGGAGCTG	FRUIT: $thyA \rightarrow +100$ of $hisG$ 14028S rev
JW8371	CCCGTTCTTTAACATCCAGT	qPCR: $suhB(-31 \rightarrow +79)$ fwd
JW8372	CCGGAGTTTCATAGTTTTTGG	qPCR: $suhB(-31 \rightarrow +79)$ rev
JW8375	CTTTGAAATTGGCCTTCGTC	qPCR: $suhB(+609\rightarrow720)$ fwd
JW8376	ACCGGTCATCATGTAGTTATG	qPCR: $suhB(+609\rightarrow720)$ rev
JW8377	GATGATGACATTCCGGGTC	qPCR: $hisG(+163 \rightarrow +286)$ fwd
JW8378	GGGTTAAATAGCGTGGATCT	qPCR: $hisG(+163 \rightarrow +286)$ rev
JW8385	AATCCGGGTCGTTTTTCAG	qPCR: <i>thyA</i> mid rev
JW8383	AAAGGCCGACAATTCTGC	qPCR: $hisG(+746 \rightarrow +853)$ fwd
JW8384	CAAGCGCTTTCAGTTTCTC	qPCR: $hisG(+746 \rightarrow +853)$ rev
JW8405	AAGTCGAAGTTATCTACCGC	qPCR: $hisG(+551 \rightarrow +665)$ fwd
JW8406	TGAATCACGCCCTGAATAC	qPCR: $hisG(+551 \rightarrow +665)$ rev
JW8407	GTCTGTTAAATGGTTCTGTCG	qPCR: $hisG(+446 \rightarrow +570)$ fwd
JW8408	GCGGTAGATAACTTCGACTT	qPCR: $hisG(+446 \rightarrow +570)$ rev
JW8688	TTCATGCATTGCTAGCttaAATTAAATTACCCGCCTTGC	Cloning: $suhB(\leftarrow+57nt)$ rev
JW8817	AGAGACCGCAGCATCCGATGCTGAACATC	Cloning: <i>suhB</i> (A1C, T2A) mutation fwd
JW8818	GATGCTGCGGTCTCTCACTGGATG	Cloning: <i>suhB</i> (A1C, T2A) mutation rev

Supplementary References

- 1. Carlomagno, M. S. & Nappo, A. The antiterminator NusB enhances termination at a sub-optimal Rho site. J Mol Biol 309, 19–28 (2001).
- 2. Carlomagno, M. S. & Nappo, A. NusA modulates intragenic termination by different pathways. *Gene* 308, 115–28 (2003).
- 3. Berg, K. L., Squires, C. L. & Squires, C. Ribosomal RNA operon anti-termination. Function of leader and spacer region box B-box A sequences and their conservation in diverse micro-organisms. *J Mol Biol* **209**, 345–358 (1989).
- Nodwell, J. R. & Greenblatt, J. Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. *Cell* 72, 261–268 (1993).
- 5. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).
- Stringer, A. M. *et al.* Genome-Scale Analyses of Escherichia coli and Salmonella enterica AraC Reveal Non-Canonical Targets and an Expanded Core Regulon. *J Bacteriol* 196, 660–671 (2014).
- 7. Singh, N. et al. SuhB Associates with Nus Factors To Facilitate 30S Ribosome Biogenesis in Escherichia coli. mBio 7, e00114-16 (2016).
- Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci USA* 97, 6640–6645 (2000).
- 9. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J. Bacteriol.* **177**, 4121–4130 (1995).