
SUPPLEMENTARY NOTE 1: DECONVOLUTION OF THE SUPERCONDUCT-

ING GAP OF THE TIP

The experimental set of data presented here was obtained by using a superconducting tip

in order to increase the energy resolution. This tip was prepared from a Pt-Ir wire that was

covered with Pb by crashing the tip into 3D islands of Pb grown over SiC clusters. The gap

of the tip was measured at the end of each conductance map at the temperature T = 2.05 K

which is above the superconducting critical temperature Tc = 1.8 K of the SIC Pb/Si(111)

monolayer. The conductance spectra were fitted assuming a BCS gap with a finite pair

breaking. More precisely we used the Usadel equations for a diffusive superconductor with a

gap ∆tip = 1.41 meV and a pair-breaking parameter ΓUsadel = 0.001 meV, see supplementary

figure 1. We use the complex θ(E) representation of Usadel equation :iE sin(θ) + ∆ cos(θ)−

Γ = 0 in which the DOS is given by N(E) = N0<(cos(θ)). The pair breaking is almost

negligible, hence the tip DOS is almost perfectly BCS like. The pair breaking parameter

thus mainly served to avoid the BCS singularity in the numerical calculations. We found

that the tip superconducting gap stayed constant at 1.41 ± 0.02 meV during our whole

measurement run. This gap value is similar to the one of bulk Pb (Pb being a multigap

superconductor [4] the tunneling gap varies from 1.35 to 1.5 meV depending on the band

that contributes to the tunneling). As shown below, an independent crosscheck was done by

measuring the conductance as a function of temperature with both the sample and the tip

in the superconducting state. The temperature dependence allows us to precisely measure

the tip and sample gap by fitting the thermal peak.

The conductance maps shown in figures 1 and 2 of the main text were measured at

T = 300 mK. At such temperature both the tip and the sample are superconducting, and

we are in the so-called S-I-S configuration. In this case there is no direct relation between

the dI/dV conductance spectra and the local density of states (LDOS) of the sample. The

conductance is a convolution of the tip and sample density of states. Due to the gap of

the tip, a feature that appears at the energy E in the sample LDOS will appear shifted at

the voltage eV ≈ E + ∆tip in the S-I-S conductance spectra. Thus, in order to recover the

density of states of the sample, one has to deconvolute the conductance from the tip DOS.

The simplest way to do that is to suppress a window of size 2∆tip from the conductance curve.

This basic method is illustrated on supplementary figure 6. The suppressed part is shown
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Supplementary Figure 1: Tunneling gap of the Pb tip - The yellow curve is an experimental

tunneling spectrum measured at 2.05 K, i.e. above the critical temperature of the Pb/Si(111)

monolayer. In blue, fit with Usadel theory with a gap ∆tip = 1.41 meV and a pair breaking

parameter ΓUsadel = 0.001 meV.

in between the dotted lines. This crude method gives a good qualitative picture of the edge

states but it cannot give the correct LDOS of the sample. However, a precise determination

of the sample LDOS can be obtained by using an inversion method to deconvolute the sample

and tip DOS as we describe below.

In SIS spectroscopy the tunneling current is given by:

I(V ) ∝
∫ ∞
−∞

dENtip(E)Nsample(E + eV ) (fD(E)− fD(E + eV )) (1)

Where Ntip and Nsample are respectively the LDOS of the tip and of the sample and fD(E)

is the Fermi-Dirac distribution. In practice we find that we need to take into account

and additional Lorentzian broadening of half-width-at-half-maximum L = 28 µeV that can

originate from several sources: external RF noise (jitter) or dynamical Coulomb blockade

(DCB). If the charging energy of the tunneling electron exceeds the thermal energy, one

cannot neglect the DCB which is usually described by the P (E) theory. The capacitance of

the tunnel junction mediates an interaction of the tunneling electrons with the surrounding

electromagnetic environment that leads to a broadening of the tunneling spectra [1, 2].

Due to the Lorentzian broadening of the tunneling spectra the energy resolution of our

experiments is limited to ≈ 30 µeV.

The deconvolution procedure assumes that the DOS of the tip is given by a BCS-Usadel

shape with ∆tip = 1.41 meV and a pair-breaking parameter ΓUsadel = 0.001 meV as given
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Supplementary Figure 2: Deconvolution procedure of raw data - a. Color coded representation

of the S-I-S tunneling spectra taken along a line cut passing through the magnetic domain (see figure

2 of main text). b. Fit of the tunneling spectra along a linecut with the procedure described in

the text (For the sample the LDOS is approximated by a BCS-Usadel gap and two gaussian in-gap

peaks, the tip DOS is given by a BCS-Usadel gap). c. Difference between the raw data and the fit

showing that the fitting procedure is very efficient to account for the in-gap states.

by the fit of the DOS at 2.05 K. Then we assume that the sample LDOS is the sum of a

BCS-Usadel gap and two gaussian peaks at energy ±Epeak of amplitude A+ and A− and

width σ+ and σ−. The fitting procedure showed that the BCS-Usadel gap was of constant

amplitude ∆sample = 0.293 meV and we let Γtip as a free parameter. Some typical fits with

3



this procedure are shown in figure 2f and 2g of the main text. Figure 2e was obtained by

deconvoluting 200 spectra taken along a linecut. The whole set of raw spectra used for

supplementary figure 2e is shown on supplementary figure 2.a and the corresponding fits are

shown on supplementary figure 2.b. The sample LDOS deduced from the fitting procedure

is shown on figure 2e of main text. There is a good qualitative agreement between the fit

and the data. A quantitative test can be done by subtracting the fitted spectra from the

data as shown on supplementary figure 2c. As one can see, the in-gap states signature is

almost suppressed in the difference image which means that they are perfectly fitted.

Supplementary Figure 3: SIS conductance as function of temperature - Conductance spectra

obtained with a superconducting Pb tip and the Pb/Si(111) sample when the temperature is raised

from 300 mK to 1.6 K. At 1.6 K the gap of the sample is closed and the conductance exhibits the

BCS gap of the tip.

The deconvolution procedure is dependent on the precise energy that we extract for

the superconducting tip. If the gap of the tip was taken much smaller than 1.41 meV,

then the deconvoluted energy dispersion of the in-gap states could potentially show an

anticrossing. Thus it is important to verify that the gap values used to fit the tip and

sample DOS are correct to a precision of the order of 10 µeV. In order to do that, one can

measure the S-I-S conductance as function of temperature far from any magnetic domain.
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Supplementary Figure 4: Deconvolution procedure of raw data - Gap of the Pb/Si(111)

monolayer as function of temperature (yellow dots) determined by fitting the conductance curves

of supplementary figure 3. The blue line is the BCS gap dependence for a zero temperature gap of

0.295 meV and a critical temperature of 1.6 K.

Supplementary figure 3 shows an ensemble of S-I-S spectra between the Pb tip and the

SIC-Pb/Si(111) sample from 300 mK to 1.6 K where the sample gap closes. When the

temperature is rising a so-called thermal peak appears inside the gap at a characteristic

energy ∆tip −∆sample as demonstrated by Ivar Giaver in 1960 [3]. At 300 mK one sees only

a conductance peak at ∆tip + ∆sample but above 700 mK a small peak at ∆tip − ∆sample

starts to appear. The amplitude of this peak increases exponentially with temperature

up to the critical temperature of the Pb monolayer. Note that for a non-BCS gap, like

the Usadel gap that we use, the positions of the peaks are slightly shifted by the pair

breaking parameter Γ. In order to get precise gap values we fitted the S-I-S conductance

with the model explained above and we obtained the temperature dependence of the sample

as shown on supplementary figure 4. These measurements lead to ∆tip = 1.41 meV and

∆sample = 0.295 meV with the sample at 300 mK. The critical temperature of the lead

monolayer is estimated to be 1.60 K.
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SUPPLEMENTARY NOTE 2: ANOTHER EXAMPLE OF EDGE STATE

In supplementary figure 5 we present another example of edge states observed experi-

mentally in a sample different from the one presented in the main text. In this configuration

we recover the same basic characteristic states crossing the superconducting gap as shown

on supplementary figure 6. In this case, the underlying Co cluster was elongated while the

one from the main text was almost circular. As a result, the edge states we image are also

elongated.

Supplementary Figure 5: Measurement of other topological edge states - a. Topography of

an area of the SIC Pb/Si(111) monolayer including a topological domain. b-d. In-gap conductance

maps of the same area showing the spatially dispersing topological edge states.
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Supplementary Figure 6: Spectra taken along a line passing through a topological domain -

a. Energy- and space-dependent line cut through the dashed orange line indicated on supplementary

figure 5b showing in gap states. b. In order to improve the contrast, a reference spectrum, taken

far from the magnetic domain, was subtracted to all the conductance spectra along the linecut.

The in-gap states appear quite clearly in yellow. Due to the use of a Pb superconducting tip, all

the states appear shifted by ≈ ∆tip. The blue dashed lines indicates the typical energy shift due

to the Pb tip. c. In order to get a qualitative idea of the LDOS of the sample one can compensate

for the energy shift induced by the Pb tip by suppressing the energy window in-between the two

dashed lines shown in b. The obtained figure thus clearly shows the edge states having a X-shaped

crossing. This is very similar to the one pictured on figure 2e of the main text where a more precise

deconvolution procedure was used.
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SUPPLEMENTARY NOTE 3: PHASE DIAGRAM OF TOPOLOGICAL SUPER-

CONDUCTIVITY

In order to draw the phase diagram of our system, we will discuss in more details the

bulk Hamiltonian describing the topological superconductor. In the Main Text we depicted

our minimal model accounting for the effects observed in the experiment, and here we cast

this Hamiltonian in the following condensed form:

HTop =
∑
k

Ψ†kH(k)Ψk , (2)

where the Nambu basis spinor is given by Ψ†k =
(
ĉ†k↑, ĉ

†
k↓, ĉ−k↓, −ĉ−k↑

)
and

H = ξkτz + ∆Sτx + Vzσz +

(
ατz +

∆T

kF
τx

)
(σxky − σykx) . (3)

with ξk = k2/2m− µ. τj and σj (with j = x, y, z) are Pauli matrices acting in the particle-

hole and the spin space respectively. Vz is the Zeeman splitting, and we use kF =
√

2mµ in

order to express ∆T in the same energy units as ∆S.

In a spatially invariant case (for Vz(r) = Vz = cst), this 4×4 matrix can easily be

diagonalized in order to obtain the eigen-energies of the system. We find four solutions:

two electron-like and two hole-like with symmetric energies with respect to the Fermi level.

These are given by the following expression:

E2
±(k) = V 2

z + (αk)2 + ∆2
S + ∆2

T
k2

k2F
+ ξ2k ± 2

√
V 2
z (∆2

S + ξ2k) +
k2

k2F
(∆S∆T + αkFξk)

2 . (4)

From this dispersion relation it becomes possible to compute the points at which the gap will

close (where the system actually undergoes a topological transition) before reopening as a

function of the different parameters. It is worth mentioning that deviations of the magnetic

field orientation from the z axis only results in replacing V 2
z with V 2

z + V 2
‖ , with V‖ being

the in-plane component of the magnetic field. Thus, the resulting spectrum and the phase

diagram are robust against changes in the magnetic field orientation, and only depend on

its strength. Supplementary figure 7 presents two phases diagram calculated in the limits

∆T = 0 and α = 0 respectively.

In the first case, namely for ∆T = 0, the dispersion is given by:

E2
±(k) = V 2

z + (αk)2 + ∆2
S + ξ2k ± 2

√
V 2
z (∆2

S + ξ2k) + (αkξk)2 , (5)
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and the system undergoes a topological transition from a trivial superconductor to a chiral

one at a critical field

Vz,crit =
√

∆2
S + µ2 (6)

where the gap closes at k = 0. It is worth noting here that even though the spin-orbit

coupling does not explicitly intervene in the expression of the critical field, its presence is

absolutely necessary to guarantee the reopening of the gap at larger fields. It is easily seen

that for α = 0, the gap does not reopen and thus prevents the appearance of a gapped

topological superconducting phase. The corresponding figures are shown in supplementary

figures 7a,c.

The second case discussed in supplementary figures 7.b,d corresponds to the case α =

0 and Vz = 0 for which the superconductor is time-reversal invariant, and we expect a

transition from a trivial to a helical state. In this case, the topological transition is controlled

by the amplitude of the triplet term ∆T. From supplementary equation 4 we can write in

the helical case

E2
±(k) =

(
∆S ±

|k|
kF

∆T

)2

+ ξ2k. (7)

The topological transition is thus obtained for ∆S = ∆T at k = kF and is represented in

supplementary figure 7.d.

By introducing both a triplet order parameter and a Zeeman field, one can tune the

transition line between the trivial and the helical states. This transition point can be found

from supplementary equation 4 as

∆T =
√

∆2
S − V 2

z , (8)

with the gap closing happening in this case at k = kF.

The trivial to topological transition is slightly modified when spin-orbit interaction is

included. The transition point in the k space is slightly moved away from kF, and a simple

analytical expression for the transition line is not accessible anymore. Nevertheless, this

curve can be calculated numerically and it is plotted in supplementary figure 8 and Fig. 3a

of main text for a Rashba interaction kFα = 1.7 and a singlet order parameter ∆S = 3. The

only effect spin-orbit has on the transition line is to distort the trivial to helical transition

line at large Vz as well as to increase the value of ∆T for which the zero field helical transition

occurs.
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Supplementary Figure 7: Phase diagrams for topological superconductivity - a. Evolution of

the band structure of an s-wave superconductor with Rashba spin-orbit coupling for different values

of the Zeeman interaction. The black dashed line indicates the transition between the topological

and trivial regimes. b. Evolution of the band structure of a superconductor for increasing values

of the amplitude of the p-wave component. c. Phase diagram of the system parametrized by the

chemical potential µ and the strength of the Zeeman coupling V .d. Phase diagram of the system

parametrized by the amplitude of the singlet (∆S) and triplet (∆T) order parameters. The black

dashed lines in c and d indicate the transitions between the topological and trivial regimes.
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Supplementary Figure 8: Phase diagram of topological superconductivity with the inclu-

sion of spin-orbit interaction - This diagram uses the Hamiltonian from which Fig 3.a. from

the main text was obtained. Compared to the previous plots, we have added here the spin-orbit

interaction that only modifies one of the transition line (drawn as a red dashed line) in order to

make it merge with the chiral transition line. The parameters value used here are ∆S = 3. and

kFα = 1.7 with Vz and ∆T ranging from 0 to 4∆S. The red dashed line corresponds to the position

of the topological transition in the case α = 0.

SUPPLEMENTARY NOTE 4: CHERN NUMBER

The bulk spectrum along with the gap closing points (or lines) does not suffice to account

for the number of edge states in a system with boundaries occurring in each phase. For that,

we calculate the Chern number for each phase (the symmetry being chiral, a Chern number

fully describes the number of edge states). The Chern number is defined as the integral

curvature of the filled band n(k), which reads:

C =
∑
n

1

2πi

∫
BZ

d2kFn(k)

Fn(k) =
∂Any(k)

∂x
− ∂Anx(k)

∂y

Anµ(k) = 〈n(k)|∂µ|n(k)〉 ,

(9)
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where Fn(k) and Anµ(k), with µ = x, y, are respectively the Berry flux and connection for

band n. These can be evaluated by calculating the eigenstates of the Hamiltonian presented

in supplementary equation 3. Using the numerical method exposed in Ref. 7, we find the

Chern number to be zero outside the chiral region (i.e Vz >
√

∆2
S + µ2), independently

of whether or not we include spin-orbit coupling. This seems to miss the helical structure

proposed in the previous section, and in order to get a more detailed glimpse at the topology

of the system in the helical case, it is instructive to analyze a simple limiting case: ∆S = 0

and α = 0, for which the the Hamiltonian is spin block diagonal

H =

 H+ 0

0 H−

 , (10)

where

H± = (ξk ± Vz)σz +
∆T

kF
(σxky ∓ σykx) . (11)

We can then calculate the Chern number corresponding to each block. We find C± = ±1,

which gives one pair of (quasi-) helical states, or two chiral states at the edges of the sample.

Note that the total Chern number of the system is C = C+ + C− = 0, as found from the

full Hamiltonian. Moreover, the time-reversal invariance is broken, and thus these states

are inequivalent, i.e. they are not conjugate Kramers pairs. This in turn implies that the

edge states can separate spatially, as found in experiment. We note that these two states

are only weakly topologically protected, meaning that impurity scattering can result in

mixing between them and open a gap at the crossing point. A more complete Hamiltonian

(considering finite ∆S and α) does not alter our conclusions.
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SUPPLEMENTARY NOTE 5: TIGHT BINDING ON A CIRCULAR GEOMETRY

In this part we discuss the BdG Hamiltonian and edge states in the circular geome-

try pertaining to our experiment. Our Hamiltonian in the Nambu spinor basis, Ψ(r) =

[u↑(r), u↓(r), v↓(r),−v↑(r)] reads

H =
(
−η∇2 − µ

)
τz + Vz(r)σz + ∆Sτx +

(
ατz +

∆T

kF
τx

)
(σxp̂y − σyp̂x) , (12)

Owing to the circular symmetry of the Zeeman potential, it is convenient to rewrite it in

the polar coordinate:

H =

[
−η
(
∂2r +

1

r
∂r −

L2
z

r2

)
− µ

]
τz + Vz(r)σz + ∆Sτx

+

(
ατz +

∆T

kF
τx

) 0 ie−iθ(−i∂r − 1
r
∂θ)

−ieiθ(−i∂r + 1
r
∂θ) 0

 .

(13)

The above Hamiltonian commutes with the operator

Jz = Lz +
1

2
σz . (14)

Therefore, we can choose the spinors eigenstates of the Hamiltonian, eigenstates of Jz with

the eigenvalue mJ of the form:

ΨmJ
(r) = eiLzθΨmJ

(r) =


u↑mJ

(r)ei(mJ−1/2)θ

u↓mJ
(r)ei(mJ+1/2)θ

v↓mJ
(r)ei(mJ−1/2)θ

−v↑mJ
(r)ei(mJ+1/2)θ

 , (15)

where the spinor ΨmJ
(r) are eigenvectors of the Hamiltonian H̃mJ

defined as [5]

H̃mJ
= e−i(mJ−σz/2)θHei(mJ−σz/2)θ

=

[
−η
(
∂2r +

1

r
∂r −

(2mJ − σz)2

4r2

)
− µ

]
τz + Vz(r)σz + ∆Sτx

+

(
ατz +

∆T

kF
τx

)[(
∂r +

1

2r

)
iσy +

mJ

r
σx

]
.

(16)

Defining k̂θ = − i
r
∂θ we can see that for a large r the relation k̂θΨmJ(R) ' mJ

R
Ψ(R) holds.

Our aim is to discretize the system in order to compute the dispersion of the edge state. Be-

cause the scalar product between the spinor is defined as
∫
ψ∗mJ

(r)φmJ
(r)rdr, we renormalize

our spinors as Ψ̂mJ
=
√
rΨmJ

. The hamiltonian we have to discretize thus reads

13



ĤmJ
=

[
−η
(
∂2r −

m2
J −mJσz
r2

)
− µ

]
τz + Vz(r)σz + ∆Sτx

+

(
ατz +

∆T

kF
τx

)(
iσy∂r +

1

r
mJσx

)
.

(17)

This Hamiltonian is easily discretizable and provides a 1D mapping of our system for

every quantum number mJ . Such procedure offers an efficient way to diagonalize the entire

2D Hamiltonian. The results of this tight binding model are presented in supplementary

figure 9. On one hand, plots 9a and 9b are an example of a pure chiral edge state produced

without triplet superconductivity (∆T = 0) but with a singlet term together with Rashba and

Zeeman terms. In this case, no X shape appears in the LDOS ρ(E, r) (see supplementary

figure 9b). On the other hand, plots 9c and 9d represent a realization of a topological

transition with a non-zero triplet term together with additionnal terms which values are

comparable to the ones used in supplementary figure 9a and 9b. It is found that as soon

as there is a (small) triplet component, the spatial evolution of the LDOS shows helical-like

features which resembles the X shape behaviour shown in the main text. In addition the

gap is found to be reduced around the critical Zeeman field Vz,crit, which we believe to be

a numerical artefact due to the impossibility at present to be in the correct physical limit

where the cluster size is smaller the coherence length. Supplementary figure 9c shows that

there is a single chiral edge state. We nevertheless believe that a reminiscence of the helical

state (for Vz,crit = 0) will survive in the correct physical limit and will contribute to the

X shape spatial dispersion of ρ(E, r), as we observe in the experimental results. This is

supported by a more sophisticated theoretical approach that we are currently developping.

This approach is based on exact low-energy Bessel functions for a circular geometry including

triplet superconductivity and a strong and sharp Zeeman field. Note that with respect to

the simulations shown in Fig.3 of the main text, the spatial profile of the Zeeman field used

in supplementary figure 9a-d is sharper.
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Supplementary Figure 9: Tight binding calculation in a disk geometry - a dispersion and

b LDOS of a cluster without triplet superconductivity with a singlet term together with Rashba

and Zeeman terms. The tight binding parameters are t = 50, µ = 5, Vz,max = 8, ∆S = 3 and

α/kF = 4.5; (c) dispersion and (d) LDOS of a cluster with triplet superconductivity and other

similar parameters. The tight binding parameters are t = 50, µ = 5, Vz,max = 12, ∆S = 4,

∆T = 1.4 and α/kF = 2.2.

SUPPLEMENTARY NOTE 6: CHARACTERIZING AND IMAGING THE BURIED

CO-SI ISLANDS

A. Electronic properties of the buried Co-Si islands

On one hand it seems rather puzzling that the buried Co-Si islands are not visible in STM

topography measurements in the energy range [-2;+2] V. On the other hand we provide

below two different experimental techniques, TEM and STM, that enabled us to image the

buried Co-Si islands and extract their size. The extracted size is in good agreement with
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the size of the spectroscopic features seen in Fig.2 of the main text and supplementary

figure 5 of the supplementary part, i.e. of few nanometers of lateral size. We interpret

the fact that the buried Co-Si islands do not contribute, or negligibly, to the local DOS

of the top Pb monolayer as being associated with their (almost) insulating state. This is

further supported by the observation that these buried Co-Si islands do not reduce locally

the superconducting gap of the SIC monolayer by inverse proximity effect, as it should

if the islands would have some metallic properties [8]. As a direct consequence, because

the buried Co-Si islands are (almost) insulating but provide a suitable large exchange

field leading to local topological superconductivity above them, it implies that the Co-Si

islands are insulating ferromagnets. This is in agreement with ab initio spin-polarized DFT

calculations of Co-Si cluster having different Co concentration (see Ref 28 of the main text:

Chulsu et al Journal of Magnetic materials 306, 156, 2006 : Magnetic properties of CoâĂŞSi

alloy clusters). All Co-Si clusters are theoretically found to be magnetic.

B. Structure of the buried Co-Si islands

The early stages of growth of Co on Si(111)-7×7 has been widely studied because of the

importance of controlling silicide formation for silicon-metal contacts in microelectronics

[9–11]. When Co, in the range below 4 ML, is deposited at room temperature no epitaxial

cobalt silicide is formed [12–14]. When the sample is further annealed above 350◦ two-

dimensionnal CoSi2 epitaxial islands and layers start to form in a layer-by-layer way [12–14].

Nevertheless X-ray grazing incidence diffraction experiments reveal that the planar CoSi2

films are rich in defects, Co occupying various sites. When the sample are further annealed

above 500◦ three-dimensionnal epitaxial CoSi2 islands of good quality form [12–14].

In our case the sample preparation is done in the following way: we first deposit 10−3 ML

Co on the Si(111)-7×7 surface at room temperature, then deposit 4 ML Pb also at room

temperature. Further on we anneal the whole sample at 375◦ for 90 seconds. From the

previous paragraph we infer that our annealing temperature is above the threshold for

planar CoSi2 island formation. Thus we expect that Co atoms will diffuse through the

Si surface and that small defected CoSi2 islands will be energetically able to form below

the Pb layer. We were further able to image the buried Co-Si islands, which we present below.

C. Imaging the buried Co-Si islands
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We succeeded to image the buried Co-Si islands by direct bright-field TEM experiments with

a JEOL 2100F microscope working at 200 keV. A plan-view TEM image is shown in sup-

plementary figure 10. When trying to zoom on the Co-Si particles, the contrast diminishes

and we cannot image them anymore. Using X-ray Energy Dispersive Spectroscopy (XEDS),

we could measure only the Pb and Si signal, but not the Co one due to its very-low con-

centration (below 1 percent). We also tried to perform Scanning TEM-HAADF experiment

(in dark-field) on a TITAN Themis 200 microscope. The 200keV highly convergent elec-

tron beam made the single Co-Si particles to fade away and disappear, probably destroying

them, contrary to the classical TEM which uses a parallel beam and enabled us to image the

particles as shown in supplementary figure 10. This unfortunately prevented us performing

a local chemical analysis of single Co-Si particle.

We could also reveal the buried Co-Si islands and image them with STM. To do so, we

performed an annealing of one sample during 2 hours at 400◦C, which is long enough to

desorb most of the Pb atoms from the SIC monolayer, and obtained the structure presented

in Fig.1b of the main text. Most of the Pb atoms then desorb from the surface, except

for less than about 1/6 ML [15]. The phase we obtained is highly disordered and has some

similarities with a phase reported in the literature as the mosaic phase [16]. Additionally, we

observed only a few remaining islands that appear as bright spots on this figure, separated

by 50 nm in average (some of them are indicated by white arrows on the figure). The step

edges have been strongly modified during the annealing and appear shredded indicating that

the Si atoms are also moving during this procedure.

The islands left on the sample are interpreted as the buried Co-Si islands. The islands

remain most probably capped with Pb as their height is of a few Angstroms above the

remaining surface plane which consists in intermixed Pb and Si atoms [16]. The inset of

Fig.1b presents a close-up topography of such an island where we adapted the color code

in order to see both the surface of the sample and the island shape. While we still have a

global truncated triangular shape characteristic of Pb islands we also see on top of the island

a quasi-circular contour that is not seen in the case of Pb islands alone. The characteristic

lateral size of the Co-Si islands seen in Fig.1b is around 5-10 nm in very good agreement

with the radius of the topological edge states measured at zero-energy shown in Fig.1d of

the main text.
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Supplementary Figure 10: Plan-view TEM image revealing the buried Co-Si clusters - The

Co-Si buried clusters are seen as darker regions. Their size ranges from few nm to less than 10 nm

for the largest.

SUPPLEMENTARY NOTE 7: AN EXAMPLE OF A NON-DISPERSIVE YU-

SHIBA-RUSINOV BOUND STATE AROUND A SINGLE MAGNETIC ATOM

Occasionally, In addition to the dispersive edge states around magnetic domain we also

encounter some bound states around single magnetic impurities (probably caused by sin-

gle atomic Co impurities). These bound states are the so-called Yu-Shiba-Rusinov bound

states (YSR). They manifest in the gap as two peaks whose energy position don’t change

as function of the distance to the impurity as shown on supplementary figure 11 (Note that

this measurement was done with a normal Pt tip). It was recently shown that in a two-
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dimensional material such as 2H-NbSe2 the spatial extent of the YSR bound states was quite

large due to a dimensionality effect [17]. We indeed confirm this effect here since we find

that the bound state induced by a single Co impurity can still be seen in the gap several

tens of nanometers away from the magnetic atom. In comparison, in bulk lead, YSR states

are no more visible beyond one nanometer from the impurity [18].

Supplementary Figure 11: A Yu-Shiba-Rusinov bound state around a single magnetic

impurity - a. Topography of a striped incommensurate Pb/Si(111) sample with a non supercon-

ducting PtIr tip. b. Conductance map measured at EF showing a Yu-Shiba-Rusinov bound state

localized around a magnetic impurity. c. Tunneling spectra taken on top of the impurity (red), at

5 nm (blue), 10 nm (green) and far from the impurity (black).

The energy and spatial pattern of the YSR bound states is at odds with the dispersive

behavior of the edge states that we report in this paper. The YSR states are non-dispersive,

their energy remains constant, whatever the distance from the impurity. Moreover, as can

be seen on supplementary figure 11, the YSR bound states give a very strong signal when

measuring the LDOS right on top of the magnetic impurity and their amplitude typically

decays as 1/
√
r exp(−r/ξ). The behavior of the YSR bound states is very different from the

one of the dispersive states that are strongly localized at the edge of the magnetic island

at E ≈ EF and appear as a thin line of width w ≈ λF � ξ ( w ≈ 0.5 nm � 50 nm).

The striped incommensurate Pb/Si(111) monolayer is quite disordered at the atomic scale.

As a consequence the YSR wavefunction appears as an irregular speckle like pattern (see

supplementary figure 11). When the 2D system has a crystalline structure like for example

in 2H-NbSe2, the YSR wavefunction reflects the auto-correlation of the Fermi surface of the

material [17]. By contrast, the dispersive states appear as quite regular with a well defined
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ring shaped structure close to EF (see Figs. 1e-2b of the main text, and supplementary

figure 5b). However, for energies close to the gap edge the dispersive states starts to be

affected by the disorder (see Fig. 2d and supplementary figure 5d).

SUPPLEMENTARY NOTE 8 : SPECTROSCOPIC IMAGING OF MAJORANA

DISPERSION WITH A NORMAL PT TIP

The energy resolution of an STM probe with a normal tip is 3.5kBT . Thus for a mea-

surement temperature of 300 mK, the energy resolution is at best 90 µeV. This has to be

compared to the upper limit resolution of 20 µeV obtained with a Pb superconducting tip.

However, even with a normal tip with poor resolution, the dispersive states that appear

around topological domains can still be measured. Supplementary figure 12.a shows a large

scale topography with two terraces of Pb/Si(111). An atomically resolved image of the lower

terrace is shown on supplementary figure 12.c. As can be seen, the Pb monolayer is in the

devil’s staircase phase which is a mixture of some linear shaped
√

7×
√

3 domains coexisting

at the nanometer scale with some striped incommensurate domains [19]. The estimated Pb

coverage is 1.26-1.28 monolayer. This sample is again different from all the ones discussed

previously.

Supplementary figure 12.b is a map of the tunneling conductance at the Fermi level

(V = 0 mV) with a normal tip. Two separate ring like structures are observed at the Fermi

level in the top left and bottom left part of the image. A zoom of the lower ring-shaped

structure is shown on supplementary figure 12.d. Unfortunately only a part of the ring was

measured but this doesn’t prevent us from analyzing the spectroscopic features of this object.

A tunneling spectrum measured far from the ring, at the lower left corner of the image 12d,

is shown in blue in supplementary figure 12.e. This spectrum exhibits a well defined gap

around the Fermi level with zero-conductance at EF. A spectrum measured on the ring-

shaped feature observed at zero bias is shown in red: it exhibits a clear peak centered at the

Fermi level. Due to the thermal resolution of 90 µeV, the peak is quite broadened compared

to the one obtained by deconvolution of SIS spectra using a superconducting tip at the same

temperature (see inset of figure 2e of main text).

A radial profile from the center of the ring-shape structure to 25 nm away is shown

on 12f. Topological edge states closing the gap at the edge of the topological domain are
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measured, but the bad spectral resolution doesn’t lead to results as clear as the ones shown

in spectroscopic maps performed with a Pb superconducting tip.

Supplementary Figure 12: Majorana dispersion observed with a normal PtIr tip at 300 mK

- a STM topography of a Pb/Si(111) monolayer with an approximate coverage of 1.26-1.28 mono-

layer. In b conductance map at zero bias of the area shown in a, it exhibits two ring-shaped

structures in the top-left and lower-left corners. c-d, zoom-in of the previous images over the lower

ring-shaped spectral feature. e, dI/dV tunneling spectra measured far from the ring (blue) and on

top of the ring (red). In f line cut from the center of the ring to 25 nm away, showing topologi-

cal edge states dispersing in real space throughout the sample superconducting gap, for clarity a

reference spectrum (blue curve in e) was subtracted in order to enhance the contrast.
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