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2 MAPPING THE ECOLOGICAL NETWORKS OF MICROBIAL COMMUNITIES

Supplementary Note 1: Theoretical basis for inferring ecological interactions
Here we formulate and prove two theorems (Theorems 1 and 2) that characterize the conditions

for inferring the presence/absence or type (positive, negative or neutral) of ecological interactions in
a microbial community using steady-state data. These theorems provide the basis for the inference
methods described in Supplementary Note .

Notation. We use bold letters like x to denote vectors, and capitals like J to denote matrices. The
i-th element of the vector x is denoted by xi. Similarly, Ji denotes the i-th row of matrix J , and
Jij denotes the (i, j)-th element of matrix J . For a matrix J ∈ RN×N , we denote by S = (sij) =
sign(J) ∈ {−1, 0, 1}N×N its sign-pattern, where sij = sign(Jij). Similarly, we denote by Z = (zij) ∈
{0, 1}N×N its zero-pattern, where zij = |sij|.

Preliminaries. Consider a microbial community of N different taxa. Let xi(t) denote the absolute
abundance of taxon i at time t. Suppose the temporal evolution of the taxa abundances are described
by a generic population dynamics model taking the form of a set of ordinary differential equations
(ODEs):

(S1)
dxi(t)

dt
:= ẋi(t) = xi(t)fi (x(t)) , i = 1, · · · , N,

where x = (x1, · · · , xN)ᵀ ∈ RN is the state vector and fi : RN → R, i = 1, · · · , N , are some
non-zero meromorphic functions —that is, the quotient of two analytical functions of x.

Remark 1. Typical examples of meromorphic functions are in the form of the quotient of two poly-
nomials. By specifying these meromorphic functions, system (S1) can take the form of many classical
population dynamics models [1, 2, 3, 4, 5, 6]. The assumption that all fi(x)’s are some non-zero mero-
morphic functions has a useful consequence, since meromorphic functions have the generic properties
inherited from analytic functions [7]. This implies, for example, that since the fi’s are not identically
zero, they can be zero only on a zero-measure set of their domain RN .

A steady-state dataset X is a collection of N -dimensional vectors x ∈ RN corresponding to the
measured equilibria of Eq. (S1). Each element of X is called a steady-state sample, or just a sample.
We will denote a sample as xI ∈ RN , where its taxon index set I ∈ I determines which taxa are
present. Here I = 2{1,··· ,N} is the set of all possible subsets of {1, · · · , N}. For example, x{1,2} ∈ R3

is a sample of a community with three taxa, and in this sample only taxon 1 and taxon 2 are present.
Consider now the subset Xi ⊆ X of all samples containing taxon i, so that fi(x) = 0 for all

x ∈ Xi. Then, for any two samples xI ,xK ∈ Xi, applying the mean value theorem for multi-variable
functions, we obtain

(S2) fi(x
I)− fi(xK) =

(∫ 1

0

∂fi(x
I + σ(xK − xI))

∂x
dσ

)
· (xI − xK) = 0,

where ‘·’ denotes the inner product between vectors in RN . Let Ji(x) = ∂fi(x)/∂x ∈ RN be the i-th
row of the Jacobian matrix J(x) = (Jij(x)) = (∂fi(x)/∂xj) and let us introduce the notation

∫

L
xI ,xK

Ji :=

∫ 1

0

Ji
(
xI + σ(xK − xI)

)
dσ,

where LxI ,xK denotes the line segment joining the points xI and xK in RN . With this notation, Eq.
(S2) can be rewritten more compactly as

(S3)

(∫

L
xI ,xK

Ji

)
· (xI − xK) = 0, ∀xI ,xK ∈ Xi.

The above equation implies that the difference of any two samples {xI ,xK} sharing taxon i constrains
the integral of Ji over the line segment joining them xI − xK .
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In this work, we consider that the ecological interactions in a microbial community are encoded
in the Jacobian matrix J ∈ RN×N of its population dynamics. More precisely, we assume that the
j-th taxon directly impacts the i-th one iff the function Jij(x) 6≡ 0. Notice that this condition is well
defined because Jij(x) is a meromorphic function. Further, an ecological interaction is inhibitory iff
Jij(x) < 0 and excitatory iff Jij(x) > 0.

Inferring the absence or presence of interactions is equivalent to inferring the zero-pattern of the
Jacobian matrix, recovering the topology of the ecological network underlying the microbial com-
munity. Furthermore, inferring the type of interactions (inhibitory, excitatory or null) is equivalent to
inferring the sign-pattern of the Jacobian matrix. Analyzing the implications of Eq. (S3) will be the
basis for inferring these two properties of the Jacobian matrix from the steady-state samples X , as we
next show.

Inferring the zero-pattern. Let
∫
L
xI ,xK

Jij denote the j-th entry of the vector
(∫

L
xI ,xK

Ji

)
∈ RN .

To infer the zero-pattern of the Jacobian matrix, we make the following assumption:

Assumption 1. The condition
∫
L
xI ,xK

Jij ≡ 0 holds if and only if Jij ≡ 0 for all i, j = 1, · · · , N .

Remark 2.
a. Assumption 1 is a necessary condition to recover the zero-pattern of Ji, i = 1, · · · , N ,

from steady-state samples X , regardless of the algorithm used for the inference. Indeed, if∫
L
xI ,xK

Jij ≡ 0 but Jij 6≡ 0, then it is impossible to distinguish from the samples X if either
Jij ≡ 0 or Jij 6≡ 0, as both conditions would satisfy Eq. (S3).

b. Assumption 1 is generically satisfied for most functions fi(x) used in population dynamics
models. More precisely, notice how the condition 0 ≡

∫
L
xI ,xK

Jij =
∫ 1

0
Jij(x

I + σ(xK −
xI))dσ requires that the positive and negative areas below Jij(x

I + σ(xK − xI)) cancel
exactly when plotted as a function of σ. Such condition is not generic. This means that if
the above equation holds for some particular fi and its corresponding Jij , then there exists an
infinitesimal deformation f̃i of fi such that the areas of the corresponding J̃ij as a function of
σ do not cancel out anymore.

For each sample pair {xI ,xK}, let’s denote by ZI,K ⊆ {0, 1}N the set of zero-patterns of all
vectors orthogonal to xI − xK . Then we obtain the following result:

Theorem 1. Let Zi ∈ {0, 1}N be the zero-pattern of Ji. Then, under Assumption 1, we have that

Zi ∈ Ẑi :=
⋂

xI ,xK∈Xi

ZI,K .

Proof. From Assumption 1, we conclude that Zi and the zero-pattern of
∫
I,K
Ji are identical for all

xI , xJ ∈ Xi. Then Eq. (S3) implies that the Zi ∈ ZI,K for all xI ,xJ ∈ Xi. This directly implies that
Zi ∈ Ẑi. �

Remark 3.
a. Note that Ẑi will always contain at least two elements: a trivial one 0 ∈ RN and a non-

trivial one ẑi ∈ {0, 1}N . Therefore, to distinguish which of these two zero-patterns is the
true zero-pattern of Ji, it is necessary to a-priori know the existence of at least one nonzero
interaction.

b. Theorem 1 together with Remark 3.a provide the basis of a computational method to infer the
zero-pattern of the Jacobian matrix, since the sets ZI,K can be computed from the steady-state
data X .

Example 1. Consider a toy model with two taxa:

ẋ1 = x1(0.5− x1 + 0.1x2), ẋ2 = x2(x2 − 0.6)(0.2− x2),
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where the Jacobian matrix is

J =

(
−1 0.1
0 0.8− x2

)
.

Note that the sign of J22 depends on the value of x2. Supplementary Figure 1b shows that J22 indeed
changes its sign from positive to negative during the growth process (Supplementary Figure 1a).

In the absence of measurement noise, we can successfully infer the zero-pattern of J (Supplemen-
tary Figure 1c,d). Supplementary Figure 1c shows that, according to the position of x{1,2}−x{1}, the
green line that is orthogonal to the red line cannot yield a zero entry for J1, implying that J11 6= 0
and J12 6= 0. This is consistent with the ground truth. Supplementary Figure 1d shows that for J2, the
green line that is orthogonal to the blue line exactly locates on the axis of x2, implying that J21 = 0
and J22 6= 0, which is also consistent with the ground truth.

In the presence of measurement noise, the angle between the x1-axis (or the x2-axis) and the green
line can be used to determine if Jij = 0 or not (Supplementary Figure 1e,f). For example, when
the noise level (η) is 0.1, in Supplementary Figure 1e the angle between the x1-axis and the green
line is large enough and we can safely conclude that J12 6= 0. By contrast, the green line deviates
only slightly from the x2-axis and these deviations are randomly distributed and have zero mean
(Supplementary Figure 1f). Therefore, we can choose a threshold value θ such that if the absolute
value of the average deviation angle over different measurements is smaller than θ, we conclude that
J21 = 0. Notice that this method will infer very weak interactions as zero, but it still offers a pragmatic
approach to infer strong interactions.

Inferring the sign-pattern. In order to infer the sign-pattern, we assume:

Assumption 2. The nature of ecological interactions (i.e., parasitism, commensalism, mutualism,
amensalism or competition) between any two taxa does not vary over the collected steady-state sam-
ples.

Note that Assumption 2 is actually necessary to infer the ecological interaction types. If those
interaction types vary from samples to samples, then the inference becomes an ill-defined problem
because we have a “moving target” and different subsets of steady-state samples will offer different
answers on the interaction types.

Remark 4. Assumption 2 has the following consequences:
a. For x in the positive orthant of RN , each element Jij(x) of the vector Ji(x) is either uniformly

negative, uniformly zero or uniformly positive. Indeed, if and only if this condition is satisfied,
the sign-pattern of the Jacobian, given by S = (sij) = (sign(Jij(x))) ∈ {−, 0,+}N×N , is
constant.

b. The sign-pattern of the vectors
∫
L
xI ,xK

Ji is the same for all xI ,xK ∈ Xi, and it coincides
with the sign-pattern of Ji.

With Assumption 2, next we show that the vector (xI − xK) constrains enough the possible sign-
pattern of the vector Ji so that we can infer it. Let us associate each orthant of RN with its corre-
sponding sign-pattern, that is, a vector in {−, 0,+}N . There are exactly 3N vectors in {−, 0,+}N .

Example 2. {−, 0,+}2 has 9 sign-patterns:

{(−,−), (−, 0), (−,+), (0,−), (0, 0), (0,+), (+,−), (+, 0), (+,+)}.
And {−1, 0, 1}3 has 27 sign-patterns.

In order to show how the vector (xI −xK) constrains the sign-pattern of Ji, we start by discussing
the following elementary example:
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Example 3. Consider N = 2 and three steady-state samples x{1}, x{2} and x{1,2}. From Eq. (S3),
we obtain: (∫

L
x{1,2},x{1}

J1dσ

)
· (x{1,2} − x{1}) = 0,

(∫

L
x{1,2},x{2}

J2dσ

)
· (x{1,2} − x{2}) = 0.

These equations imply that
∫
L{1,2},{1}

J1dσ is orthogonal to the line L{1,2},{1}, and that
∫
L{1,2},{2}

J2dσ

is orthogonal to the line L{1,2},{2}. Further, as discussed in Remark 4.b, recall that Assumption 2
implies sign(

∫
Ji) = sign(Ji). Hence, sign(Ji) is one of the sign-patterns corresponding to the line

orthogonal to L{i,2},{i}, see Supplementary Figure 2.
As a concrete example showing how the above equations can be used to infer the sign-pattern of

the Jacobian matrix, consider the following ecological dynamics with the so-called Holling Type II
functional response [2]:

(S4) ẋ1 = x1

(
r1 + a11x1 + a12

x2

0.1h+ x2

)
, ẋ2 = x2

(
r2 + a21

x1

h+ x1

+ a22x2

)
.

Here A = (aij) ∈ R2×2, r = (10, 5)ᵀ ∈ R2 and h = 1 are parameters. Importantly, notice that
sign(J) = sign(A).

Next we focus on inferring sign(J1), as the same procedure can be applied to infer sign(J2). For
illustration, we choose a21 = −1, a22 = −1 and then consider two cases for the remaining two
parameters (a11, a12):

Case 1. For a11 = −1 and a12 = 1, the feasible steady states1 of Eq. (S4) are

X = {(10, 0), (10.9761, 4.0835), (0, 5)},
see Supplementary Figure 2a. In order to infer sign(J1), we focus on the line L{1},{1,2} con-
necting the samples x{1} = (10, 0) and x{1,2} = (10.9761, 4.0835) where taxon 1 is present.
The line orthogonal to L{1},{1,2} (shown in green) determines the possible sign-patterns for
J1. The sign-patterns corresponding to this orthogonal line are Ŝ1 = {(−,+), (0, 0), (+,−)}
and notice that sign(J1) ∈ Ŝ1.

Case 2. For a11 = −1 and a12 = −1, the feasible steady states of Eq. (S4) are

X = {(10, 0), (9.02381, 4.09976), (0, 5)},
see Supplementary Figure 2b. We focus on the line orthogonal to L{1},{1,2} (shown in green)
and obtain its corresponding sign-patterns Ŝ1 = {(−,−), (0, 0), (+,+)}. Again, notice that
sign(J1) ∈ Ŝ1.

In the general case of N taxa we have the following result:

Theorem 2. Let SI,K ⊆ {−, 0,+}N be the set of all sign-patterns associated with the vectors orthog-
onal to (xI − xK) and define Ŝi =

⋂
xI ,xK∈Xi

SI,K . Then sign(Ji) ∈ Ŝi.

Proof. From Assumption 2, we know that sign(Ji) = sign(
∫
I,K
Ji) for all xI ,xK ∈ Xi. Then Eq.

(S3) implies that sign(Ji) ∈ SI,K for all pairs xI ,xK ∈ Xi. Thus, sign(Ji) must belong to the
intersection of all SI,K , implying that sign(Ji) belongs to the sign-patterns shared by all SI,K . �

Remark 5.

1We say a steady state is feasible if it belongs to the orthant RN
≥0, that is, if no taxon has negative abundance.
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a. In Theorem 2, in order to check if there is a vector with sign-pattern s ∈ {−, 0,+}N or-
thogonal to a given vector (xI − xK), we can check if the following linear program has a
solution:

(S5) Find v ∈ RN subject to vᵀ(xI − xK) = 0 and sign(v) = s.

Note that the condition sign(v) = s can be encoded as a set of equalities/inequalities of the
form {vi = 0, vi < 0, vi > 0} corresponding to the cases {si = 0, si = −1, si = 1}. In
Supplementary Note , we will show that it is possible to solve this problem more efficiently
using the notion of sign-satisfaction.

b. From a geometrical viewpoint, the vectors v ∈ RN satisfying vᵀ(xI−xK) = 0 correspond to
the hyperplane with normal vector (xI − xK). Thus, the set of sign-patterns of those vectors
v (i.e., the sign-patterns in the set SI,K) corresponds to the orthants of RN crossed by this
hyperplane. Consequently, Ŝi =

⋂
xI ,xK∈Xi

SI,K corresponds to those orthants of RN crossed
by all hyperplanes orthogonal to (xI − xK) for all xI ,xK ∈ Xi.

c. Note that 0 = (0, · · · , 0) ∈ Ŝi always. Additionally, there is always at least three admissible
sign-patterns in Ŝi, that is Ŝi = {−ŝi,0, ŝi} for some ŝi ∈ {−, 0,+}N .

d. A consequence of Remark 5.b above is that the steady-state data alone cannot be informative
enough to determine a unique sign-pattern for Ji. The number m of sign-patterns (candidate
solutions) in Ŝi depends on the number and informativeness of the samples {xI , I ∈ Ii} in
the steady-state dataset X . Indeed, if m sign-patterns are in Ŝi, only by providing the sign of
exactly bm/3c non-zero entries of Ji as prior information, we can univocally infer sign(Ji).
For instance, in the case of N = 2 taxa in Example 2 where m = 3, we need to provide the
sign of only one non-zero entry of Ji, and that will let us infer the sign of the other entry.

To conclude this subsection, we discuss some implications of Assumption 2 on the steady-state
samples X that can be observed in the microbial community. Let E := {x ∈ RN |xifi(x) = 0; i =
1, · · · , N} ⊆ RN denote the set of equilibria of Eq. (S1).

Definition 1. System (S1) is said to have true multi-stability if E contains at least two isolated sets
(i.e., two sets that don’t intersect) of interior equilibria.

A particular case of true multi-stability is when the system or any subsystem (composed of a par-
ticular subset of taxa) exhibits multiple interior equilibria, where all the involved taxa have positive
abundances.

Proposition 1. If Assumption 2 is satisfied then there is no true multi-stability.

Proof. We argue by contradiction. Suppose that Assumption 2 is satisfied but the system has true
multi-stability. Let xI and xK be two interior equilibria belonging to two different isolated sets
in E . Suppose they are interior with respect to the i-th taxon. Now consider the scalar function
p(σ) = fi(x

I + σ(xK − xI)). Note that p(σ) is a non-zero meromorphic function because xI and
xK belong to different isolated sets of equilibria. Furthermore, p(0) = p(1) = 0 as both xI and xK

are interior equilibria for fi(x). Together, this implies that the slope of p(σ) needs to change sign at
least once. Since the slope of p(σ) equals the Jacobian of fi in the direction of the vector xI − xK ,
this implies that the Jacobian changes sign, contradicting Assumption 2. �

Remark 6.
a. Proposition 1 actually provides a simple criterion to falsify Assumption 2. Namely, if a mi-

crobial community displays true multi-stability, then Assumption 2 is invalid, i.e., the sign-
pattern of its Jacobian matrix is not constant. In practice, we can detect the presence of true
multi-stability in the available samples X (e.g., two or more steady-state samples have the
same collection of present taxa but totally different abundance profiles). If multi-stability is
detected, then we know immediately that Assumption 2 is invalid. If multi-stability is not
detected, then at least Assumption 2 is consistent with the collected steady-state samples.
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In short, by introducing a criterion to falsify our assumption, we significantly enhance the
applicability of our method for inferring interaction types.

b. In case the sign-pattern of the Jacobian matrix is not constant but the steady-state samples were
still collected from a microbial community under the same or similar environmental conditions
(e.g., nutrient availability), we can interpret our inferred sign-patterns as the overall inhibition
or promotion effect between different taxa during the transitions between steady states. To see
this point, note that regardless of the sign-pattern of the Jacobian matrix is constant or not, our
method can correctly infer the sign of

∫ 1

0
Jij(x

I + σ(xK − xI))dσ, which reflects an overall
impact (inhibition or promotion) of taxon j on taxon i during the transition from the steady
state xI (σ = 0) to xK (σ = 1).

Example 4. To illustrate Remark 6.b, let’s consider a toy model of two speciesX and Y . Each species
has a per capita growth rate that is modulated by its mutualistic partner as well as the resource. The
population dynamics of this toy model is given by

(S6)





Ẋ = rxX( Y+a
Y+a+κ

)(1−X − Y )− δX,

Ẏ = ryY ( βX+a
βX+a+κ

)(1−X − Y )− δY.
Here rx and ry are the growth rates of the species, a is the amount of resource, δ is the death rate, κ is
an effective Monod constant, and β > 0 quantifies the asymmetry of benefit that each species receives
from its partner. The elements of the Jacobian matrix of this community are given by





J11 = −rx Y+a
Y+a+κ

,

J12 = rx(1−X − Y ) κ
(Y+a+κ)2

− rx Y+a
Y+a+κ

,

J21 = ry(1−X − Y ) βκ
(βX+a+κ)2

− ry βX+a
βX+a+κ

,

J22 = −ry βX+a
βX+a+κ

.

Note that J11 and J22 are always negative, while J12 and J21 may change their signs depending on
the particular abundances of X and Y , as well as the model parameters. This model captures the
transition between the different regimes of ecological interaction depending on the amount of resource
(determined by a). Indeed, Supplementary Figure 3a shows that there are three regimes with different
inter-species interactions starting from mutualism and then leading to parasitism and competition.
Here, the overall or “effective” interaction types are determined by comparing the difference of steady
states between monocultures (dashed lines in Supplementary Figure 3a) and co-cultures (solid lines in
Supplementary Figure 3a). This allow us to calculate the relative yield, which indicates the promotion
or inhibition impact between two taxa. For this model, because that Jacobian may change its sign-
pattern over time, the sign of relative yields can be interpreted as the effective impact between two
taxa, denoted as Jeff (Supplementary Figure 3a).

We now apply our method using steady states of this model. Supplementary Figure 3b-d shows
the diagrams of our inference method under different resource amounts. We found that the inferred
inter-species interaction types are consistent with the ground truth (shown in Supplementary Figure
3a). Supplementary Figure 3e-g shows the value of J12(x{1,2}+σ(x{2}−x{1,2}))dσ and J21(x{1,2}+
σ(x{2} − x{1,2}))dσ as a function of σ corresponding to the transition between x{1,2} (σ = 0) and
x{2} (σ = 1). The shade areas in this figure denote the value of

∫ 1

0
J12(x{1,2} + σ(x{2} − x{1,2}))dσ

and
∫ 1

0
J21(x{1,2}+σ(x{2}−x{1,2}))dσ. For example, when a = 0.15, both

∫ 1

0
J12(x{1,2}+σ(x{2}−

x{1,2}))dσ and
∫ 1

0
J21(x{1,2}+σ(x{2}−x{1,2}))dσ are positive (shaded areas in Supplementary Figure

3e). Although J12 and J21 display both negative and positive values as σ changes, the positive J12

and J21 dominate in the transition between two steady states. Hence, overall taxon X and taxon Y
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are mutualistic. Supplementary Figure 3f,g shows the result of this analysis applied to J12 and J21 for
a = 0.2 and a = 0.5.
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Supplementary Note 2: Brute-force and heuristic algorithms
Here we introduce the methodology for inferring the zero- or sign-patterns of the Jacobian matrix

associated with the population dynamics of a microbial community. In essence, the inference of the
zero-pattern is similar to the inference of the sign-pattern. Indeed, the only difference is that the
former doesn’t care if the non-zero values are positive or negative. This implies that the complexity
for inferring the network topology and interaction types are roughly the same. Here, for simplicity
we describe the algorithms for inferring sign-patterns. All the algorithms (and pseudo codes) can be
easily modified to infer the zero-pattern.

Brute-force algorithm. Theorems 1 and 2, together with Remarks 3 and 5 can be used to construct
an algorithm to obtain all admissible sign-patterns for given steady-state data. Indeed, by enumerating
all possible sign-patterns, we can use the liner program in Eq. (S5) to check if each of the possible
3N sign-patterns is admissible for taxon i, see Algorithm 1.

Algorithm 1 A brute-force algorithm to compute Ŝi
Input:

The collection of matrices Mi, being the difference between all two samples containing species
i. Mi ∈ R(N×|Ii|

2 ), |Ii| is the number of samples
Output:

The sign-pattern set of Ŝi
1: Êi ← Enumeration of all the possible combinations of {−, 0,+}N
2: for each j-th row in Mi do
3: Sj ← ∅
4: for each kth-subset in Êi do
5: if find v ∈ RN subject to vᵀMi[j, :] = 0 and sign(v) = Êi[k] then
6: Sj = Sj

⋃
Êi[k]

7: end if
8: end for
9: Ŝi =

⋂
j Sj

10: end for

Below, we illustrate the application of the brute-force algorithm for a microbial community with
N = 3 taxa.

Example 5. Here we consider the case of a microbial community with N = 3 taxa and population
dynamics given by the so-called Crowley-Martin functional response [5]. The ODEs are:
(S7)



ẋ1 = x1

(
r1 + a11x1 + a12

x2

0.1h+ 9x1 + 6x1x2 + x2

+ a13
x3

2h+ 0.1x1 + 0.4x1x3 + x3

)
,

ẋ2 = x2

(
r2 + a21

x1

h+ x1 + 2.5x1x2 + 2x2

+ a22x2 + a23
x3

0.5h+ 2.3x2 + 1.1x2x3 + x3

)
,

ẋ3 = x3

(
r3 + a31

x1

0.5h+ x1 + 10x1x3 + 4x3

+ a32
x2

2.1h+ x2 + 0.2x2x3 + 0.5x3

+ a33x3

)
.

We set the parameters r1 = 1, r2 = 5, r3 = 1.5, h = 0.2 and

A =



−1 0 3
0 −1 0

0.5 5 −0.4


 .

Notice again that sign(J) = sign(A). We focus on reconstructing sign(J1), as the same procedure
applies to the other taxa. With the given parameters, the feasible steady states of Eq. (S7) where
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taxon 1 is present are:

X1 = {(1., 0., 0.), (2.4069, 0., 3.77772), (2.45168, 5., 7.51002), (1., 5., 0)},
constituting the available steady-state samples for taxon 1. We apply Algorithm 1 to this dataset
obtaining

Ŝ1 = {(−, 0,+), (0, 0, 0), (+, 0,−)}.
Note that sign(J1) ∈ Ŝ1. Providing for example sign(J11) < 0 as prior information, we correctly infer
that sign(J1) = (−, 0,+).

Inference using the heuristic algorithm. In practice, for large microbial communities with unknown
dynamics, the inference of ecological interactions according to Algorithm 1 has two major drawbacks:
(i) Checking if an orthant is crossed by a given hyperplane using the linear program of Eq. (S5) is
computationally expensive. (ii) The number of orthants that is necessary to check (i.e., the solution
space) increases as 3N , that is, exponentially in the number of taxa.

To circumvent the first drawback, we introduce an alternative method based on the notion of sign-
satisfaction. To address the second challenge, we propose a heuristic algorithm with user-defined time
complexity to infer the sign-pattern of Ji.

Formulating the sign-satisfaction problem. Consider a real-valued vector y ∈ RN . Then, solving the
linear program Eq. (S5) is equivalent to solving the following sign-satisfaction problem:

(S8) Find sign(y) ∈ {−, 0,+}N subject to yᵀ(xI − xK) = 0.

Notice that from a geometrical viewpoint, solving Eq. (S8) is just finding the orthants of RN crossed
by the hyperplane orthogonal to (xI − xK).

In the next example, we illustrate how the sign-satisfaction formulation allows us to quickly discard
orthants of RN that cannot be crossed by such hyperplane:

Example 6. In vector form, Eq. (S3) in Example 5 can be written as
(∫

{1},{1,3}
J11dσ,

∫

{1},{1,3}
J12dσ,

∫

{1},{1,3}
J13dσ

)>
· (−1.4069, 0, −3.77772) = 0

if we take two samples sharing taxon 1. Thus, the sign-satisfaction for Example 5 can be written as

Find sign(y) ∈ {−, 0,+}3 subject to yᵀ(−1.4069, 0, −3.77772) = 0.

Note that, for example, the choice sign(y) = (−, 0,−) cannot satisfy the above condition regardless
of the particular value of y, because the inner product is the sum of two positive numbers, which can
never be zero.

A systematic method to extend the above example and solve the sign-satisfaction problem is dis-
cussed next.

A graph-based approach to solving the sign-satisfaction problem. We illustrate the basic idea using a
small example, and then discuss the general case.

In Example 6, the sign-satisfaction problem required that

(−1.4069× y1) + (0× y2) + (−3.77772× y3) = 0,

where sign(y1, y2, y3) = sign(J11, J12, J13). We map the above equation to the sign-satisfaction graph
in Supplementary Figure 4, where each element of J1 corresponds to a column and each element of
sign(J1) has three possibilities (i.e., ‘−’,‘0’ or ‘+’). Each node in Supplementary Figure 4 is divided
in two parts: the left is an entry of sign(xI − xK) and the right is an entry of sign(J1). The color
of each node encodes the sign of the product of left and right parts: grey is zero, red is positive and
blue is negative. Next we introduce edges starting from each node and pointing to all nodes located
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in the next column to its right. With this formulation, the solutions to the sign-satisfaction problem
(S8) reduces to finding the paths in the sign-satisfaction graph that satisfy one of the following two
conditions: (i) the path contains red (representing positive values) and blue (representing negative
values) nodes simultaneously, or(ii) the path contains only gray (representing zero values) nodes.

The above two conditions guarantee that the sum of the product of sign(Jij) and (xI − xK) can
be zero. At this step, it is also useful to introduce the prior information that is available, such as
Jii < 0, allowing us to collapse columns of nodes in the sign-satisfaction graph to single nodes
(Supplementary Figure 4).

In a general case, for a given (xI−xK), the construction of the sign-satisfaction graph is as follows:
(i) the graph consists of N columns, with each column having three nodes; (ii) each node in the graph
is divided into two parts: the left correspond to an entry of sign(xI − xK) and the right to an entry
of sign(Ji); (iii) each node is colored according to the sign of the product of the left and right parts:
zero is grey, positive is red and negative is blue; (iv) directed edges are included from a node to all the
nodes in next column.

Finally, a solution to the sign-satisfaction problem of Eq. (S8) corresponds to a path from the first
column to N -th column satisfying either condition (i) or (ii) listed above. In such case, a possible
sign-pattern of J1 consists of the sign in the right part of each node in the path. For instance, the paths
with yellow directed edges in Supplementary Figure 4 correspond to the possible sign-pattern of J1,
i.e., (−,+,+), (−,−,+) and (−, 0,+).

By using the sign-satisfaction graph, it is very efficient to test if the hyperplane orthogonal to
(xI − xK) crosses some orthants of RN , because it reduces to checking if its corresponding vector
in {−, 0,+}N satisfies either condition (i) or (ii). However, finding all orthants crossed by such
orthogonal hyperplane remains challenging, since the sign-satisfaction graph did not decrease the
dimension of the solution space (that remains with exponential size 3N ). To address this issue, next
we introduce a method to efficiently sample paths in the sign-satisfaction graph.

Use the intersection of hyperplanes to sample paths in the sign-satisfaction graph. As discussed
before, with the sign-satisfaction graph the solution space is still exponential (with size 3N−1, where
the term N − 1 comes from assuming we know that Jii < 0 as prior information). One possibility to
circumvent this problem would be to randomly sample paths in the sign-satisfaction graph and check
if they satisfy conditions (i) or (ii). This would not work, however, since the probability of sampling
the true “sign(Ji)” is onlyX/3N−1 — whereX is the number of sampled paths — and this probability
approaches zero as N increases. To alleviate this problem, next we propose a method to sample paths
in the sign-satisfaction graph with certain preference.

This method has the following four steps:
(step-1) Construct the matrix of the difference of all the sample pairs. Consider the set of all

vectors {xI − xK |xI ,xK ∈ Xi}. Let Mi ∈ RN×(|Xi|2 ) be a matrix constructed by stacking all the(|Xi|
2

)
vectors, where |Xi| is the number of samples containing taxon i. By construction, each column

of Mi is the normal vector of a hyperplane orthogonal to the difference of the corresponding sample
pair.

(step-2) Randomly sample (N − 1) hyperplanes. Choose randomly N − 1 columns from Mi.
(step-3) Find the intersection of the (N − 1) sampled hyperplanes to obtain an intersection

line. This can be done by finding the kernel of the matrix obtained by stacking the chosen columns.
Note that the randomly sampled (N − 1) hyperplanes not always intersect in a line, because some
hyperplanes might be parallel. However, this situation is non-generic in RN . Thus, if the randomly
sampled hyperplanes do no intersect as a line, we return to step 2 and choose a new subset of columns.

(step-4) Count how many hyperplanes cross the region of the intersection line using the sign-
satisfaction graph. The sign-pattern of this intersection line represent the three orthants in RN

crossed by all those (N − 1) hyperplanes. For the remaining hyperplanes in Mi (i.e., the rest of
the columns in Mi), let φ̃ be the number of those hyperplanes that cross these three orthants. We nor-
malize φ̃ using φ = φ̃/

(|Xi|
2

)
, so that φ ∈ [0, 1]. Notice that φ = 1 means that this sign-pattern of the
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intersection line meets the requirements of sign-satisfaction for all the sample pairs. Therefore, the
magnitude of the computed φ can be seen as the confidence of this potential solution to be a solution
of the sign-satisfaction problem.

(step-5) Go back to step-2 until Ψ ≥ 1 intersection lines have been computed.
In summary, selecting the intersection line can be seen as a “preference” sampling in the sign-

satisfaction graph, because this intersection line can be crossed by at least (N − 1) hyperplanes in
Mi.

We illustrate the basic idea of the above discussion in the following example:

Example 7. We compute the difference vector of all the sample pairs (the samples contains taxon 1)
in Example 5 and stack them in the following matrix:

M1 =



−1.4069 −1.4517 0 −0.0448 1.4069 1.4517

0 −5.0000 −5.0000 −5.0000 −5.0000 0
−3.7777 −7.5100 0 −3.7323 3.7777 7.5100


 .

Each column of M1 is the difference of a sample pair, corresponding to the normal vector of a plane
orthogonal to the associated (xI − xK). In Supplementary Figure 5a, the intersection line (black
line) is intersected by the planes where each of normal vectors respectively corresponds to the 1-st
and 5-th column of the above M1. The black line crosses the regions with sign-pattern (−, 0,+)ᵀ

and (+, 0,−)ᵀ. At least these two regions have been crossed by two planes. Due to the fact that we
know that J11 < 0, for the next step we need to count the number of the remaining hyperplanes that
cross the region with the sign-pattern (−, 0,+)ᵀ. In Supplementary Figure 5b we find that four of
the remaining hyperplanes cross this intersection line, that is, the normalized φ satisfies φ = 1. It
means that the sign-pattern of this intersection line is the inference of sign(J1) because it meets the
requirements of sign-satisfaction for all the sample pair.

The heuristic algorithm combing sign-satisfaction and intersection of hyperplanes. Combining the
sign-satisfaction graph with the sampling procedure described above, we propose a heuristic algorithm
to infer the sign-pattern of Ji.

Our heuristic algorithm has two inputs: the steady-state dataset for the i-th taxon Xi and a user-
defined parameter Ψ determining how many intersection lines of hyperplanes will be constructed.
The algorithm has of four steps, as described in Supplementary Figure 6. Applying this procedure for
i = 1, . . . , N , we can get the sign-pattern of the whole Jacobian matrix.

In summary, the algorithm works as follows. After generating an intersection line, we get the
three orthants corresponding to this intersection line. Then we count how many hyperplanes cross
the orthants determined by this intersection line using the sign-satisfaction graph, and this count can
be normalized as φ ∈ [0, 1] indicating the confidence of this potential solution to be a solution of
final inference. Finally, we select the intersection line with the maximal φ among the generated Ψ
intersection lines as the final inferred sign-pattern Ŝi.

Note that if the algorithm is stuck in generating an intersection line for some subset of (N − 1)
hyperplanes, the heuristic algorithm will fail. Numerical experiments suggest this situation happens
only when the data is not informative enough or the number of samples is smaller than the threshold
Ω∗. In Fig. 3 of the main text, we presents the results of the minimal number of samples Ω∗ required
for a community with size N .
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Supplementary Note 3: Inferring the topology of ecological networks

In essence, inferring the zero-pattern is similar to inferring the sign-pattern. Indeed, it is only
necessary to recognize any non-zero entry of the inferred sign-pattern as a non-zero entry in the
inferred zero-pattern. Notice how the zero-pattern corresponds to hyperplanes exactly aligned to the
orthants of RN . Therefore, any measurement noise will make the difference of sample pairs deviate
from the axis, easily leading to inference errors (see Supplementary Figure 1d,f). To alleviate this
problem, we introduce a user-defined cutoff value to judge the zero-pattern of Jij based on the angle
between the axis and the intersection line (Supplementary Figure 1).

For the brute-force method, first we set an element in the difference of sample pair xI − xK to
0 if the magnitude of that element is less than the user-defined cutoff. Second, we construct the
hyperplanes respectively orthogonal to these modified difference of sample pairs. Third, we count
how many hyperplanes cross each orthant in the RN . Finally, we select the region crossed by the
maximal hyperplanes as the inferred zero-pattern. Recall that the brute-force method is limited to
infer the microbial community with N ≤ 10.

For larger microbial communities, we also developed a heuristic algorithm that is very similar to
our heuristic algorithm for inferring the sign-pattern. In that algorithm, notice how the deviation of
an intersection line from an axis is directly given by its directional vector. Indeed, this vector contains
the cosine of the angles between the axis and the intersection line. This algorithm works as follows:

(step-1) Construct the matrix of the difference of all the sample pairs. Consider the set of all
vectors {xI − xK |xI ,xK ∈ Xi}. Let Mi ∈ RN×(|Xi|2 ) be a matrix constructed by stacking all the(|Xi|

2

)
vectors, where |Xi| is the number of samples containing taxon i. By construction, each column

of Mi is the normal vector of a hyperplane orthogonal to the difference of the corresponding sample
pair.

(step-2) Randomly sample (N − 1) hyperplanes. Choose randomly N − 1 columns from Mi.
(step-3) Find the intersection of the (N − 1) sampled hyperplanes to obtain an intersection

line. This can be done by finding the kernel of the matrix obtained by stacking the chosen columns.
Note that the randomly sampled (N − 1) hyperplanes not always intersect in a line, because some
hyperplanes might be parallel. However, this situation is non-generic in RN . Thus, if the randomly
sampled hyperplanes do no intersect as a line, we return to step 2 and choose a new subset of columns.

(step-4) Set the elements in the directional vector of this intersection line as zero if their ab-
solute values are less than the cutoff value. Then we get a new directional vector. Note that we
scale the 2-norm of this directional vector to 1. The absolute value of i-th element in the directional
vector represents the cosine of the angle between the intersection line and xi-axis. If the value is large
enough, it means the intersection line almost locates at the xi-axis. Therefore, if the absolute value of
directional vector is smaller than the cutoff, we set this entry to 0.

(step-5) Count how many hyperplanes cross the region of the new directional vector using
the sign-satisfaction graph. The sign-pattern of new directional vector represent the orthants in
RN crossed by all those (N − 1) hyperplanes. For the rest hyperplanes of Mi (i.e., the rest of the
columns in Mi), let φ̃ be the number of those hyperplanes that cross the orthants. We normalize φ̃
using φ = φ̃/

(|Xi|
2

)
, so that φ ∈ [0, 1]. Notice that φ = 1 means that the sign-pattern of the new

directional vector meets the requirements of sign-satisfaction for all the sample pairs. Therefore, the
magnitude of the computed φ can be seen as the confidence of this potential solution to be a solution
of the sign-satisfaction problem.

(step-6) Go back to step-2 until Ψ ≥ 1 intersection lines have been computed.
We validated this method using steady-state data generated from four different population dynam-

ics. Except the Generalized Lotka-Volterra (GLV), the other three population dynamics models have
non-linear functional responses: Holling Type II (H), DeAngelis-Beddington (DB) and Crowley-
Martin (CM). Supplementary Figure 7 shows the inferred network topology on four different popu-
lation dynamics models. We found that in case the noise level is η = 0.1, the accuracy of inference
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can be around 0.8, if the cutoff is between 0.1 and 0.2. However, in the noiseless case, increasing the
cutoff can decrease the accuracy, because larger cutoff induces more false positives of interactions.
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Supplementary Note 4: Inferring the ecological interaction types
Using the brute-force method to infer the interaction types is deterministic because we search all

the combinations of {+, 0,−}N , and accuracy increases with the increment of sample size. However,
due to the time complexity, application of the brute-force method is limited to small microbial com-
munities, e.g., N ≤ 10. This motivated us to develop the heuristic method of Supplementary Note
that is suitable for larger microbial communities.

To validate the effectiveness of our heuristic algorithm, we tested it using simulated steady-state
data generated by models of the form Eq. (S1). In particular, we considered a model with pair-wise
interactions of the form

(S9) ẋi = xi

[
ri +

N∑

j=1

aijg(xi, xj)

]
, i = 1, · · · , N,

where ri ∈ R is the intrinsic growth rate of the i-th taxon, A = (aij) ∈ RN×N is a constant matrix
and the function g(xi, xj) : R × R → R is the so-called functional response [1, 2, 3, 4, 5, 6]. Recall
that these functional responses model the intake rate of a consumer as a function of food density, and
thus different functional responses correspond to different mechanisms of interaction between taxa.

We used Eq. (S9) to generate synthetic steady-state datasets for 4 different functional responses
with different complexity. The first was the linear functional response

gLV(xi, xj) = xj,

for which Eq. (S9) actually reduces to the classical Generalized Lotka-Volterra (GLV) model. In this
case, the accuracy of the heuristic algorithm on inferring the sign-pattern sign(J) = sign(A) is 100%
if there are enough steady-state samples, see Fig. 3a in the main text. Indeed, this is a consequence of
the following proposition:

Proposition 2. In the noiseless case, if the functional response is linear, the directional vector of
intersection line of any (N − 1) hyperplanes orthogonal to {xI − xK |I,K ∈ Ii} is the same and
parallel to Ji.

Proof. Due to the fact that the functional response is linear, the Jacobian matrix become simple and
constant for different samples, that is, J = A. Therefore, Eq. (S3) is equal to

aiMi = 0,

where Mi ∈ RN×(|Ii|2 ) = {xI − xK |∀(I,K) ∈ Ii} denotes the difference of all sample pairs. As
we know, ai 6= 0, representing the interaction vector in the A matrix, is unique to Mi. Thus the
non-trivial solution of ai in the above equation array must meet the requirement

rank(Mi) = N − 1.

That is to say, if we randomly select (N − 1) columns in Mi as M̄i ∈ RN×(N−1), then

aiM̄i = 0.

Actually, the randomly selected M̄i corresponds to (N − 1) hyperplanes respectively orthogonal to
each columns of M̄i in the geometric perspective. The directional vector of intersection line of these
(N − 1) hyperplanes can be calculated by null(M̄>

i ) ∈ RN , which is parallel to ai. �

The remaining three functional response were Holling Type II (H), DeAngelis-Beddington (DB)
and Crowley-Martin (CM), given by the following equations

gH(xi, xj) =
c1xj

1 + c1c2xj
, gDB(xi, xj) =

c1xj
1 + c1c2xi + c3xj

, gCM(xi, xj) =
c1xj

(1 + c1c2xi)(1 + c3xj)
.

Here c1, c2, c3 are constants. Note that these nonlinear functional responses lead to more complicated
population dynamics. For the results presented in Fig. 3 of the main text, we used c1 = 1, c2 = c3 =
0.1. Those results show that the heuristic algorithm accurately infers the sign-pattern of Jacobian
matrix for these three functional responses and its accuracy is above 95%.
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Supplementary Note 5: Inferring interaction strengths with GLV dynamics
A particular class of systems in (S1) is when the Jacobian Ji is constant, implying that fi(x) =

aᵀix + ri for some constant vector ai ∈ RN and scalar ri. In such case, the system reduces to the
Generalized Lotka-Volterra (GLV) model

(S10) ẋi = xi (aᵀix+ ri), i = 1, · · · , N,
where ai = (aij) ∈ RN is the i-th row of the so-called interaction matrix A ∈ RN×N , and ri ∈ R
is the intrinsic growth rate of taxon i. As discussed in the main text, the GLV models also allows
defining the interaction strength of taxon j on taxon i as aij .

A condition for detecting GLV dynamics. Our first observation is that the steady-state samples X
can be used to decide if they could be produced by a GLV model:

Theorem 3. A necessary condition for the dynamics of the i-th species to be GLV is that all samples
{xI ∈ X , I ∈ Ii} align into a hyperplane.

Proof. If for all I ∈ Ii the samples xI align into a hyperplane, then fi(x) should be a hyperplane
whose general equation is aᵀi x+ ri. �

As discussed in the main text, with real data containing measurement noises and other errors,
the samples will not align exactly into a hyperplane. In such case, the coefficient of determination
(denoted by R2) of a hyperplane fitted to the samples containing taxon i can be used to judge if its
dynamics can be adequately described by the GLV model. For a given dataset X , if the average of R2

of the hyperplanes fitted to the samples of the i-th taxon is > 0.9, then we consider that it is possible
to infer the inter-taxa interaction strengths and intrinsic growth rates using the GLV model for this
taxon. Otherwise, we recommend to infer only the interaction types. The pipeline for detecting GLV
dynamics is described as Supplementary Figure 8.

Inference of interaction strengths and intrinsic growth rates. Under the GLV model, Eq. (S3)
reduces to

(S11) aᵀi · (xI − xK) = 0, ∀(I,K) ∈ Ii.
If we denote by Pi the (N − 1) dimensional hyperplane spanned by all the steady-state samples

sharing the i-th taxon Xi, Eq. (S11) implies that the ai belongs to the one-dimensional space orthog-
onal to Pi. Thus the normal vector of the fitted hyperplane according to Xi is parallel to ai. To infer
the precise value of interaction strengths, additional prior information, at least one non-zero element
in ai, is needed. Otherwise, we can only infer the relative strength of the interactions between taxa.

Applying the Knockoff filter to control the false discovery rate. Eq. (S11) shows that ai can be
inferred by fitting a hyperplane based on all the steady-state samples sharing the i-th taxon Xi =
row{xI ∈ RN , I ∈ Ii}, provided that we know at least one non-zero element in ai, say aii (or an
estimate âii of it). Consider that the ecological network to be inferred is sparse. Then, a natural
method to find a sparse solution is by using the so-called Lasso regression:

min
β∈RN

{
1

N
‖y −Xβ‖2

2 + λ‖β‖1

}
,

where λ is the Lasso (regularization) parameter. Here y is the i-th column of Xi, and

X = col{x1, · · · ,xi−1,xi+1, · · · ,xN ,1, } ∈ R|Ii|×N

is the matrix obtained from Xi by deleting the i-th column and adding 1 in the end. xi is the i-
th column of Xi. This structure happens because for the GLV we have ri + ai1x1 + · · · + aiixi +
ai,i+1xi+1 + · · · + aiNxN = 0 and we assumed for the numerical results that aii = −1. Once a
solution β to the above Lasso problem is found, the estimation âi for ai is given by

âi = âii [β(1 : j − 1),−1,β(j : N − 1)],
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where β(i0 : if ) is the vector obtained by concatenating the elements i0 to in of the vector β. Recall
that the parameter λ in the Lasso is crucial for accuracy. A classical method to optimally choose this
parameter is using cross validation.

However, even after using cross validation, the Lasso tends to induce a high false discovery rate
(FDR), i.e., many zero interactions are inferred as non-zeros ones. Formally, the FDR of a inference
procedure y = Xβ + z, returning the inferred parameters β̂, is defined as

FDR = E

[
#{j : βj = 0 and j ∈ β̂}

#{j : j ∈ β̂} ∨ 1

]
.

Here a ∨ b = max{a, b}.
Recently, the so-called Knockoff filter has been proposed as an enhancement to the Lasso algorithm

to maintain the FDR below a certain user-defined level q > 0, regardless of the value of the coeffi-
cients β (see [8]). This method works by constructing the so-called “knockoff variables” that mimic
the correlation structure found in the real data. The knockoff copy of each variable act as a “control
group”, allowing to assign a “trust” to each inferred variable. It has been shown this strategy success-
fully controls the FDR. In our work we used the Matlab package of the Knockoff filter as provided
in https://web.stanford.edu/~candes/Knockoffs/package_matlab.html. The validation of
the network inference with GLV dynamics is shown in Fig. 4 of the main text.

Blinded inference of interaction strengths by assuming GLV dynamics. Here we show that, if
the steady-state samples were collected from a microbial community without GLV dynamics, the
inference of interaction strengths by assuming GLV dynamics systematically leads to inference errors.

To illustrate this point, we first generated steady-state samples using Holling Type-II functional
response. Then, we applied the GLV-based inference method to the steady-state samples in order to
infer the interaction strengths. Supplementary Figure 9 shows that the accuracy (the percentage of
correct sign of the inferred interaction strengths compared with the sign of ground truth) of inferred
results is very low, even in the absence of noise. This is consistent with the small value of R2 of fitted
hyperplanes, which describe the deviations of samples to those fitted hyperplanes. This suggest that
inferring the interactions strengths of a real microbial community without first testing if its dynamics
can be described by the GLV model can produce significative errors.

https://web.stanford.edu/~candes/Knockoffs/package_matlab.html
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Supplementary Note 6: Real datasets

A synthetic microbial community of eight soil bacteria. In [9] a set of eight heterotrophic soil-
dwelling bacterial species were studied for predicting species persistence in different assembled mi-
crobial microcosms. The steady-state dataset X consists of a total of 101 different species combina-
tions: eight solos, 28 duos, 56 trios, eight septets and one octet (Supplementary Figure 10a). Each
species combination of cultivation was carried out in duplicate and started from different configura-
tions of initial abundance. We averaged the steady states from different initial conditions.

First we find that R2 of each fitted hyperplane is less than 0.9 (Supplementary Figure 10b), which
indicates that this microbial community could not be properly described by the GLV model. Hence we
focus on the inference of interactions types between any two species. To be fair, without considering
the eight solos and 28 duos, we analyze the rest steady-state samples. We use both the brute-force
algorithm (see Fig. 5 of main text) and the heuristic algorithm (Supplementary Figure 10c,d) to infer
the ecological interaction types. In Supplementary Figure 10c, blue (or red) means inhibition (or
promotion) effect of species j on species i, respectively. We found that 11 signs were falsely inferred,
5 signs were undetermined by the analyzed steady-state samples. The inferred results are very similar
with the brute-force method shown in Fig. 5b of main text. Furthermore, Supplementary Figure 10d
shows that once Ψ is larger than a certain value, the accuracy in the inference does not increase any
more.

A synthetic community of maize roots with seven bacterial species. (Fig. 6b in the main text).
There are in total seven bacterial species (Ecl, Sma, Cpu, Opi, Ppu, Hfr and Cin) in this community
[10]. The available steady-state data consists of seven sextets (i.e., data from seven experiments in
which six different species grow together) and one septet (i.e., data from one experiment in which the
seven species grow together). This leads to a total of eight steady-state samples, see Supplementary
Figure 11a.

First, based on our theoretical result showing that in the generalized Lotka-Volterra (GLV) model
the steady states that share common species will align into a hyperplane, we concluded that this
bacterial community does not follow the GLV dynamics (see Supplementary Figure 11b). Thus, we
have to focus on inferring the interaction types, rather than interaction strengths.

Second, only using the seven sextets we inferred the sign-pattern of the Jacobian matrix (Fig. 6a in
the main text). Based on the inferred sign of Jij , we can predict how the abundance of species i will
change, when we add species j to the community (see results in the Main Text).

A synthetic microbial community of two cross-feeding partners. In this community [11], two non-
mating strains of the budding yeast, Saccharomyces cerevisiae, were engineered to be deficient in the
biosynthesis of one of two essential amino acid tryptophan (Trp) or leucine (Leu), and to overproduce
the amino acid required by their partner. It has been demonstrated that these two strains form a
community with cross-feeding mutualism, where each strain provides the amino acid needed by its
partner. In [11], the authors inoculated monocultures and co-cultures at a range of concentrations
of supplemented amino acids in a well-mixed liquid batch. Supplementary Figure 12a-c shows the
abundance of the co-cultures and monocultures for the Trp and Leu strains at low, medium and high
levels of supplemented amino acids. After seven days cultivation, the abundance of each species
approaches its steady state. Note that for each scenario, the experiments inoculate a constant amount
of resources at the beginning. Here the type of interaction is defined by comparing the abundance
of co-cultures with monocultures at the end of cultivation. As the supply of amino acids increases
from low, to medium to high concentrations, the interaction between this pair of strains shifts from
obligatory mutualism (Supplementary Figure 12a), to facultative mutualism (Supplementary Figure
12b), and to parasitism (Supplementary Figure 12c), respectively.

We applied our inference method to each scenario. Supplementary Figure 12d-f shows the dia-
grams of our inference results that are consistent with the empirical observations. For example, in
Supplementary Figure 12e,f, the cyan line orthogonal to the red line is very close to the Leu axis,
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which indicate the effect of Trp on Leu is very weak. Especially in Supplementary Figure 12f, this
promotion effect can be ignored.

A synthetic community of 14 auxotrophic Escherichia coli strains. Starting from a prototrophic
E. coli derivative MG1655, the authors of [12] generated 14 strains, each containing a gene knockout
that lead to an auxotrophic phenotype unable to produce 1 of 14 essential amino acids. By convention,
the authors labeled each auxotrophic strain by the amino acid it lacks. For example, the methionine
auxotroph ∆metA auxotroph is strain M. It was confirmed that the 14 auxotrophs (C, F, G, H, I, K,
L, M, P, R, S, T, W, Y) show no growth in M9-glucose minimal media after 4 days. Indeed, they
grow only when supplemented with the essential amino acid they were not able to produce. This
dataset consists of co-cultures of all 91 possible strain pairs from the 14 characterized auxotrophic
strains. For each pairwise co-culture, we are able to calculate the total fold growth, i.e., the yield of
the community calculated by (total final cell density)/(total initial cell density), as well as the fold
growth of each strain. Since these auxotrophic strains cannot grow by themselves, if strain i is able to
grow as a co-culture when paired with strain j, and strain i’s fold growth is Fij > 1, this implies that
strain j promotes the growth of strain i, i.e., Jij > 0. By contrast, if Fij < 1, we cannot conclusively
say that Jij < 0 because we lack the monoculture data. Therefore, the fold-growth metric can only be
used to detect a promotion effect between two strains.

First, we found that R2 of all fitted hyperplanes are smaller than 0.9, implying that the population
dynamics of this microbial community cannot be properly described by the GLV model (Supplemen-
tary Figure 13a). Second, we used the heuristic algorithm to infer the interaction types (Supplemen-
tary Figure 13b). Note that the complexity of the inference approaches 314 ∼ 4 × 106 if we use
the brute-force algorithm. We found that the types of 14 pairwise interactions cannot be determined
with the given dataset (marked in gray in Supplementary Figure 13b). Third, we showed the fold
growth matrix F = (Fij) from experimental observations (Supplementary Figure 13c), with Fij the
fold growth of strain i (row) in the co-culture paired with strain j (column). Here we set Fij ≥ 20
as an indication of promotion effect of strain j on strain i. There are in total 71 promotion interac-
tions with such a large confidence (shown in red, Supplementary Figure 13c). We will use them as
the ground truth to check our inference results on promotion effects (i.e., positive signs, shown in
red in Supplementary Figure 13b). We found we inferred 13 wrong positive signs (marked as ‘×’
in Supplementary Figure 13c), and missed 5 positive signs (marked as ‘?’ in Supplementary Figure
13c). Therefore, our inference of positive signs has an accuracy of 74.65% (53/71), if we set the fold
growth threshold 20 as the indication of promotion effect. We also observed that the accuracy on the
inference generally increased by increasing this threshold (Supplementary Figure 13d).
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Supplementary Note 7: Relationship to existing notions of inter-taxa interactions
In Assumption 2, we considered that the Jacobian of (S1) determines the interaction types between

microbial taxa. This assumption was then used to build our network reconstruction method. Here
we discuss how this consideration compares to other existing definitions and notions of “interactions”
available in the ecological literature.

In general ecological systems, understanding the interactions between taxa and their strengths is key
for developing predictive models and conservation strategies. This has motivated the introduction of
several empirical indices for inter-taxa interactions, specially for consumer-prey ecosystems [13, 14].
Let x1 and x2 denote the abundances of prey and consumer, respectively. Consider two samples for
this ecosystem consisting of an experiment with the prey in isolation x{1} ∈ R2 —that is, with the
consumer or predator deleted— and other with both prey and consumer present x{1,2} ∈ R2. Here we
discuss the four empirical indices as used in [14]:

a) Raw difference: R =
x
{1,2}
1 −x{1}1

x
{1,2}
2

.

b) Paine’s index: PI =
x
{1,2}
1 −x{1}1

x
{1}
1 x

{1,2}
2

.

c) Community importance: CI =
x
{1,2}
1 −x{1}1

x
{1}
1 p

, where p = x
{1,2}
2 /(x

{1,2}
1 + x

{1,2}
2 ).

d) Dynamic index: DI =
ln(x

{1,2}
1 /x

{1}
1 )

t x
{1,2}
2

, where t is time.

Remark 7.
a. All the above indices have identical signs, solely determined by x{1,2}1 − x{1}1 . As shown in

Example 3, such sign coincides with one of the possible sign-patterns obtained by applying our
reconstruction method for N = 2 taxa. More precisely, the above indices coincides with our
reconstruction method provided we assume this as prior information. Such prior information
can be interpreted as adopting a “convention” for the sign of self-interactions (i.e., a kind of
“relative sign-pattern”).

b. Compared to the analysis in [14], our reconstruction method provides more general conditions
under which the above indices provide the correct sign of the interactions according to a
mathematical model.

c. Our reconstruction method also generalizes the application of the above indices to ecosystems
with an arbitrary number of taxa, and beyond the consumer-prey interactions.

d. Our reconstruction method provides conditions under which the available steady-state data is
informative enough to infer the correct sign of a desired microbial interaction.

e. According to our framework, note there are two different interactions that is possible to infer:
x1 → x2 and x2 → x1. The above indices and discussions are concerning the interaction
x2 → x1 —that is, the effect of the consumer on the prey. In order to infer the sign of
the interaction x1 → x2, we need to evaluate x{1,2}2 − x

{2}
2 . In the case of consumer-prey

ecosystem with N = 2 taxa, it might be impossible to measure a non-zero x{2}, since it
corresponds to a steady-state abundance of consumers in the absence of prey. In such case,
the set I2 contains only one sample x{1,2}, and thus the given data is not informative enough
to infer this interaction. This argument could explain cases when forN taxa it is impossible to
infer some interaction due to the absence of the needed sample, simply because in the absence
of some taxa other become extinct.
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SUPPLEMENTARY FIGURE 1. Inferring the zero-pattern of the Jacobian matrix.
a. The temporal evolution of the abundance of each species. b. The sign of J22 is time
varying, while the signs of the other elements in the Jacobian matrix are time-invariant.
c. Inference of J12. According to the position of x{1,2} − x{1}, the green line which is
orthogonal to the red line cannot produce a zero entry for J1, implying that J11 6= 0 and
J12 6= 0. This is consistent with the ground truth. d. Inference of J12. The green line
(orthogonal to the blue line) is aligned with the x2-axis, indicating that J21 = 0 and
J22 6= 0, consistent with the ground truth. e. When noise level η = 0.1, the light green
line is orthogonal to the light red line corresponding to the difference of two noisy
samples x{1} and x{1,2}. The bold red and green lines correspond to the noiseless case.
There are in total 1000 different measurements (replicates). We found that the angles
between the green lines and x1-axis are large enough, letting us conclude that J12 6= 0
even if there exists some noise. f. When noise level η = 0.1, the light green line is
orthogonal to the light blue line corresponding to the difference of two noisy samples
x{1} and x{1,2}. The bold blue and green lines correspond to the noiseless case. There
are in total 1000 replicates. Among the 1000 replicates, the light green line is equally
distributed to the left and right side of x2-axis, indicating that the deviation of the light
green line from the x2-axis is likely due to measurement noises. This behavior let us
introduce a user-defined cutoff value to judge the zero-pattern of Jij based on the angle
between the x1-axis (or x2-axis) and green lines.
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SUPPLEMENTARY FIGURE 2. Reconstructing sign(J1) for N = 2 in Example 3.
For a microbial community of two taxa, its ecological interactions of taxon 1 are shown
in the title of each panel. There are three possible steady-state samples, and two of
them, x{1} and x{1,2}, share taxon 1. a. The green line is orthogonal to x{1} − x{1,2}
and orients three possible orthants, i.e., Ŝ1 = {(−1, 1), (0, 0), (1,−1)}. Thus sign(J1)
belongs to one of the three sign-patterns. b. The same procedures for different ecolog-
ical interactions.
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SUPPLEMENTARY FIGURE 3. In case the sign-pattern of the Jacobian matrix is
time varying, the results of our inference can be interpreted as the overall inhi-
bition or promotion impact between different taxa. Here we consider a toy model
of two species X and Y . Each has a per capita growth rate that is modulated by its
mutualistic partner as well as the resource amount (denoted as a). The population dy-
namics model is shown in Eq. (S6), with model parameters κ = 0.12, δ = 0.5, β = 2.
a. Three regimes of the interaction types emerge from different resource amount, from
mutualism, parasitism to competition. The ground truth of the interaction types is
determined by comparing the abundance of coculture (solid lines) with that of mono-
culture (dashed lines). b-d. Diagrams of our inference method under different resource
amount. e-g. Jij(xI +σ(xK−xI)) as a function of σ under different resource amount.
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SUPPLEMENTARY FIGURE 4. Sign-satisfaction graph and its solution for Example
6. Each node is divided in two parts: the left is an entry of sign(xI−xK) and the right is
an entry of sign(J1). The color of each node represents the multiplication of the sign of
left and right part (red is positive, gray is zero and blue is negative). The yellow paths
are the solutions to the sign-satisfaction graph, determining sign(J1), i.e., (−,+,+),
(−,−,+), and (−, 0,+). Note that since we assume J11 < 0 as prior information, the
first column of the sign-satisfaction graph only has one node.



26 MAPPING THE ECOLOGICAL NETWORKS OF MICROBIAL COMMUNITIES

ta
xo

n 
3

ta
xo

n 
3ba

SUPPLEMENTARY FIGURE 5. Intersections of planes provides a preference sam-
pling in the sign-satisfaction graph. a. The black line is the intersection of the light
orange and blue planes. Each of normal vectors (blue lines) corresponds to the first
and fifth column of the matrix M1 in Example 5, respectively. Note that the orthants
to which the intersection line belongs implies that those orthants are at least crossed
by two planes. b. If there 4 samples sharing taxon 1, we will have a total of

(
4
2

)
= 6

planes. Thus, φ will be the normalized count of how many of those hyperplane cross
the orthants determined by the black intersection line.
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teraction types.
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SUPPLEMENTARY FIGURE 7. The inference of network topology for four different
population dynamics models. Here the ecological network is generated using random
network with N = 20 taxa and the connectivity equal to 0.4. The simulated steady-
state samples are generated using the constants c1 = 1, c2 = c3 = 0.1 for Holling, DB
and CM. The inference used Ω = 5N = 100 samples and Ψ = 5N = 100 intersection
lines in the heuristic algorithm. The error bars represent standard deviation for 10
different realizations.
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SUPPLEMENTARY FIGURE 9. Inference assuming GLV dynamics for a microbial
community without GLV dynamics. a. Here we generated the steady states from a
microbial community of N = 8 taxa with Holling Type-II functional response. The
A matrix is shown here. b. R2 of fitted hyperplanes in the noiseless (circle) or noisy
(triangle) samples. c,d. The inferred A matrix. The accuracy of the inference in the
noiseless and noisy cases are 0.7812 and 0.6719, respectively.
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SUPPLEMENTARY FIGURE 10. Inference of interaction types of a synthetic soil
microbial community using our heuristic algorithm. a. 101 different species com-
binations: all eight solos, 28 duos, 56 trios, all eight septets, and one octet. b. We
find that R2 of all fitted hyperplanes are smaller than 0.9. This suggests that the given
samples cannot be properly described by the GLV model, and we should focus on the
inference of interaction types. c. Inferred interaction types. Compared with the ground
truth in Fig. 5a in the main text, there are 11 falsely inferred signs (false labels) and
five signs cannot be determined by the given samples. We take the number of inter-
section line as Ψ = 50. d. The accuracy as a function of Ψ. Once Ψ is larger than
a certain value, the accuracy could not increase any more. The error bar represents
standard deviation for 30 different realizations.
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SUPPLEMENTARY FIGURE 11. Inferring interaction types in a synthetic commu-
nity of maize roots with seven bacterial species. a. Eight different species combina-
tions: all seven sextets and one septet. b. We find that R2 of all fitted hyperplanes are
smaller than 0.9. This indicates that the given samples cannot be properly described
by the GLV model, and we should focus on the inference of interaction types.
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SUPPLEMENTARY FIGURE 12. Inferring interaction types in a synthetic microbial
community of two cross-feeding partners with different amount of resource avail-
ability. a-c. The abundance of the co-cultures (solid line) and monocultures (dashed
line) for the Trp (green) and Leu (red) strains with the resources of low, medium and
high amino acid. Leu and Trp strains are auxotrophic for each other. However, their
co-cultures under different amount of resources exhibit different interaction types. d-f.
Diagrams of our inference method. The inferred results are consistent with the experi-
mental observations.
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SUPPLEMENTARY FIGURE 13. Inferring interaction types in a synthetic commu-
nity of 14 strains each containing a gene knockout that lead to an auxotrophic
phenotype of 1 of 14 essential amino acids. The dataset consists of 91 steady-state
samples, each involving a particular pair of the 14 strains. a. We find that R2 of
all fitted hyperplanes are smaller than 0.9, suggesting that this community cannot be
properly described by the GLV model. b. Inferred interaction types by our heuristic
algorithm (with 1000 user-defined intersection lines) using only 91 steady-state sam-
ples. c. The experimentally measured fold growth matrix F = (Fij), with Fij the fold
growth of strain i (row) in the co-culture paired with strain j (column). We set Fij ≥ 20
as the indication of promotion effect of strain j on strain i. There are in total 71 promo-
tion interactions with such a large confidence (shown in red). Among them, 53 were
correctly inferred, 13 (marked as ‘×’) were not correctly inferred, and 5 (marked as
‘?’) were undetermined by our method, resulting in accuracy 53/71 = 74.65%, at this
particular fold growth threshold. d. The inference accuracy of promotion effect as a
wide range of threshold value of fold growth.
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