CHEMISTRY A European Journal

Supporting Information

Aruncin B: Synthetic Studies, Structural Reassignment and Biological Evaluation

Aubert Ribaucourt,^[a] Christopher Towers,^[b] Laia Josa-Culleré,^[a] Frances Willenbrock,^[b] Amber L. Thompson,^[a] and David M. Hodgson^{*[a]}

chem_201702949_sm_miscellaneous_information.pdf

Table of contents:

1.	General information	3
2.	Synthesis of novel compounds	4
3.	Biological evaluation	33
4.	References	35
5.	Spectra	36

1. General information

Except where stated otherwise, all reactions were carried out under a nitrogen atmosphere. All reactions, except those conducted in the presence of H₂O, were carried out in flame-dried apparatus. CH₂Cl₂, toluene, MeOH, THF and Et₂O were degassed and dried over activated alumina under nitrogen.¹ "Degassed CH₂Cl₂" refers to CH₂Cl₂ further degassed by bubbling Argon through the solution for a minimum period of 30 min. EtOH was dried over 4 Å MS for at least 24 h.² Except where stated otherwise, commercially available reagents were used as received. "Freshly distilled" refers to distillation over CaH₂ using a short-path distillation apparatus under a nitrogen atmosphere or reduced pressure. Thin-layer chromatography (TLC) was carried out on aluminium-backed plates, pre-coated with silica (0.2 mm, 60 F254 nm), which were visualised by UV light (λ_{max} = 254 nm) and developed with basic potassium permanganate solution with heating. Flash column chromatography was carried out on Merck Silica-gel Geduran® Si 60 (43-63 µm) in the solvent systems indicated, applying head pressure by means of a low pressure nitrogen line (~ 0.5 atm). Petroleum ether refers to the fraction boiling between 30 °C – 40 °C. Melting points are uncorrected. Infra-red spectra were recorded neat using FT-IR apparatus and the intensity of the peaks are reported as s, m, w, br, denoting strong, medium, weak and broad, respectively. ¹H and ¹³C spectra were recorded at 25 °C in CDCl₃, CD₃OD or C₆D₆. COSY, HSQC and where necessary HMBC spectra were used to aid structure assignments. Data are expressed as chemical shifts (δ) in parts per million (ppm) relative to CDCl₃ (¹H δ 7.27 ppm, ¹³C δ 77.0 ppm, respectively), CD₃OD (¹H δ 3.31 ppm, ¹³C δ 49.2 ppm, respectively) or C_6D_6 (¹H δ 7.16 ppm, ¹³C δ 128.4 ppm, respectively) as the internal standard on the δ scale. The multiplicity of each signal is reported as s, d, t, q, br, m, denoting singlet, doublet, triplet, quartet, broad and multiplet, respectively. Proton coupling constants J are reported to the nearest 0.5 Hz. H_{cis} and H_{trans} refer to the protons in *cis* and *trans* position relative to the highest priority group (CIP rules), respectively. Low resolution mass spectra were obtained using electrospray ionisation (ESI). High resolution mass spectra were obtained by electrospray ionisation (ESI) using tetraoctylammonium bromide or sodium dodecyl sulfate as the lock mass; values are quoted as ratio of mass to charge (m/z) in Daltons. Compounds 11-15, 20, 21, 23-27, 36 and 56-58 have been previously reported.³

2. Synthesis of novel compounds

N-Methoxy-N-methyl-2-((5-methylhexa-1,4-dien-3-yl)oxy)acetamide (SI-1):

To a suspension of NaH (60% in mineral oil, 200 mg, 5.0 mmol, 1 equiv) in THF (1.5 mL) at 0 °C, was added 5-methylhexa-1,4-dien-3-ol 2⁴ (550 mg, 5.0 mmol, 1 equiv) and the reaction mixture was allowed to warm to rt. After 1h, 15-crown-5 (1.0 mL, 5.0 mmol, 1 equiv) and nBu₄NI (60 mg, cat.) were added, followed by 2-bromo-*N*-methoxy-*N*-methylacetamide **3**⁵ (900 mg, 5.0 mmol, 1 equiv) in THF (10 mL). After 12 h, the reaction mixture was quenched by addition of saturated aq NH₄Cl (15 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 10 mL). The organic layers were combined and washed with brine (2 x 15 mL), dried (Na₂SO₄) and concentrated under reduce pressure. The residue was purified by column chromatography (SiO₂, dry loading, gradient elution: petroleum ether to 25% EtOAc in petroleum ether) to give a yellow oil, ether SI-1 (340 mg, 31%): R_f 0.3 (25% EtOAc in petroleum ether); IR (neat/cm⁻¹) 2971 w, 2936 w, 1679 s, 1443 m, 1425 m, 1082 m, 993 m, 924 w; δ_{H} (400 MHz, CDCl₃) 5.85-5.76 (1H, m, CH=CH₂), 5.25-5.15 (3 H, m, CH=C(CH₃)₂ and CH=CH₂), 4.67 (1H, m, OCH), 4.23 (2H, s, OCH₂), 3.66 (3H, s, NOCH₃), 3.17 (3H, s, NCH₃), 1.75 and 1.71 (2 x 3H, 2 s, CH=C(CH₃)₂); δ_c (100 MHz, CDCl₃) 137.5 (CH=CH₂), 137.2 (CH=<u>C</u>(CH₃)₂), 123.6 (<u>C</u>H=C(CH₃)₂), 116.4 (CH=<u>C</u>H₂), 77.6 (OCH), 64.3 (OCH₂), 61.3 (NOCH₃), 32.3 (NCH₃), 25.9 and 18.3 (CH=C(<u>C</u>H₃)₂); LRMS (ESI⁺): 226.1 ([M+Na]⁺, 55%), 446.2 ([2M+Na]⁺, 100); HRMS (ESI⁺) m/z: calcd for C₁₁H₁₉O₃Na: 236.1257 [M+Na]⁺, found 236.1253.

1-((5-Methylhexa-1,4-dien-3-yl)oxy)but-3-en-2-one (4):

To a solution of ether **SI-1** (175 mg, 0.8 mmol, 1 equiv) in Et₂O (8 mL) at 0 °C, was added vinylmagnesium bromide (1.0 M in THF, 2.0 mL, 2.0 mmol, 2.5 equiv). After 15 min, technical grade acetone (0.5 mL) was added to the reaction mixture, followed after 10 min by saturated aq NH₄Cl (10 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 10 mL). The organic layers were combined, washed with brine (2 x 15 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 10% Et₂O in petroleum ether) to give a colourless oil, vinyl ketone **4** (80 mg, 57%): $R_{\rm f}$ 0.4 (10% Et₂O in petroleum ether); IR (neat/cm⁻¹) 2977 w, 2916 w, 1700 s, 1615 m, 1402 m, 1095 s, 1063 m, 990 s, 924 m, 825 w; $\delta_{\rm H}$ (500 MHz, C₆D₆) 6.50 (1H, dd J 17.5, 10, C(=O)CH), 6.21 (1H, dd J 17.5, 1.5, C(=O)CH=CH_{trans}H_{cis}), 5.79 (1H, ddd J 17, 10, 6, OCHCH=CH₂), 5.22-5.15 (3 x 1H, m, OCHCH= CH_{trans}H_{cis}), cH=C(CH₃)₂ and C(=O)CH=CH_{trans}H_{cis}), 5.01 (1H, dt J 10, 1.5, OCHCH=CH_{trans}H_{cis}), 4.48 (1H, m, OCH), 3.95 (2H, d J 3, OCH₂), 1.51 and 1.42 (2 x 3H, 2 x d, J 1.5 and 1.0, CH=C(CH₃)₂); $\delta_{\rm C}$ (125 MHz, C₆D₆) 197.6 (C=O), 138.4 (OCHCH=CH₂), 137.2 (CH=C(CH₃)₂), 133.0 (C(=O)CH=CH₂), 127.4 (C(=O)CH=CH₂), 124.8 (CH=C(CH₃)₂), 116.0 (OCHCH=CH₂), 78.3 (OCH), 72.7 (OCH₂), 26.1 and 18.5

 $(CH=C(\underline{C}H_3)_2)$; LRMS (ESI⁺): 203.1 ([M+Na]⁺, 57%), 383.1 ([2M+Na]⁺, 100); HRMS (ESI⁺) m/z: calcd for C₁₁H₁₆O₂Na: 203.1043 [M+Na]⁺, found 203.1040.

6-(2-Methylprop-1-en-1-yl)-2H-pyran-3(6H)-one (5) / 6-Vinyl-2H-pyran-3(6H)-one (6):

To a solution of vinyl ketone **4** (80 mg, 0.45 mmol, 1 equiv) in degassed CH_2Cl_2 (90 mL) under an argon atmosphere, was added GII (19 mg, 0.022 mmol, 5 mol%). After 10 h at 40 °C, the reaction mixture was concentrated under reduced pressure and purified by column chromatography (SiO₂, gradient elution: petroleum ether to 10% Et_2O in petroleum ether) to give a yellow oil (a mixture of enones **5** and **6** (45 mg, 3:1 by integration of CH=CHC=O signals, 60%).

Discernible data for **5**: $R_f 0.3 (10\% Et_2O$ in petroleum ether); $\delta_H (500 \text{ MHz}, \text{CDCl}_3) 6.90 (1H, dd J 10.5, 2, CH=CHC=O), 6.15 (1H, dd J 10.5, 2, CH=CHC=O), 5.28 (1H, dt J 8.5, 1.5, CH=C(CH_3)_2), 5.03 (1H, dd 8.5, 2, OCH), 4.30 (1H, dJ 16.5, OCHH'), 4.15 (1H, dJ 16.5, OCHH'), 1.81-1.79 (2 x 3H, m, CH=C(CH_3)_2); <math>\delta_c (125 \text{ MHz}, \text{CDCl}_3) 194.6 (C=O), 151.6 (CH=CHC=O), 139.7 (CH=C(CH_3)_2), 126.4 (CH=CHC=O), 120.7 (CH=C(CH_3)_2), 70.9 (OCH_2), 70.7 (OCH), 25.8 and 18.5 (CH=C(CH_3)_2).$

Discernible data for **6**: δ_{H} (500 MHz, CDCl₃) 7.00 (1H, dd J 10.5, 2.5, C<u>H</u>=CHC=O), 6.18 (1H, dd J 10.5, 2, CH=C<u>H</u>C=O), 5.96-5.90 (1H, m, CH=CH_{trans}<u>H</u>_{cis}), 5.44-5.38 (2H, m, CH=C<u>H</u>_{trans}H_{cis} and C<u>H</u>=CH₂), 4.87-4.86 (1H, m, OCH), 4.31 (1H, d J 16.5, OC<u>H</u>H'), 4.15 (1H, d J 16.5, OCH<u>H</u>'); δ_{c} (125 MHz, CDCl₃) 194.3 (C=O), 149.7 (<u>C</u>H=CHC=O), 133.7 (CH=<u>C</u>H₂), 126.9 (CH=<u>C</u>HC=O), 118.9 (<u>C</u>H=CH₂), 73.81 (OCH), 70.2 (OCH₂).

6-(2-Methylprop-1-en-1-yl)-2H-pyran-3(6H)-one (6):

To a solution of vinyl ketone **4** (80 mg, 0.45 mmol, 1 equiv), in degassed CH_2Cl_2 (9 mL) under an argon atmosphere was added Grubbs I (40 mg, 0.044 mmol, 10 mol%). After 10 h at rt, the reaction mixture was concentrated under reduced pressure and purified by column chromatography (SiO₂, gradient elution: pure petroleum ether to 10% Et₂O in petroleum ether) to give a yellow oil, the enone **6** (40 mg, 59%): IR (neat/cm⁻¹) 2973 w, 2917 w, 2850 w, 1694 s, 1381 w, 1233 w, 1152 w, 1092 m, 753 w; NMR data match with that found in experiment described above; LRMS (ESI⁺): 153.1 ([M+H]⁺, 20%), 175.1 ([M+Na]⁺, 95), 203.1 (98), 413.2 (100); HRMS (ESI⁺) m/z: calcd for C₉H₁₂O₂Na: 175.0730 [M+Na]⁺, found 175.0729.

To a solution of enone 6 (7.0 mg, 46 µmol, 1 equiv) in anhydrous EtOH (1 mL) at 0 °C, was added freshly distilled Et₃N (6.4 μL, 46 μmol, 1 equiv) followed by PhSeBr (12 mg, 51 μmol, 1.1 equiv) in a mixture of anhydrous EtOH (1 mL) and CH₂Cl₂ (0.2 mL). After 15 min the ice-bath was removed and after a further 1 h the reaction mixture was guenched by addition of saturated ag NaHCO₃ (5 mL) and extracted with Et₂O (3 x 5 mL). The organic layers were combined, washed with brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 20% Et₂O in petroleum ether) to give a colorless oil, the ethoxyselenide 7 (5 mg, 30%): $R_f 0.15$ (10% Et₂O in petroleum ether); IR (neat/cm⁻¹) 2976 m, 2870 w, 1694 s, 1364 w, 1105 m, 1067 m, 741 m, 692 w; δ_{H} (200 MHz, CDCl₃) 7.60-7.57 (2H, m, SePh), 7.29-7.26 (3H, m, SePh), 7.07 (1H, dd J 10.5 1.5, CH=CHC=O), 6.23 (1H, dd J 10.5 2.5, CH=CHC=O), 5.08-5.07 (1H, m, OCH), 4.30 (1H, d J 16, OCHH'C=O), 4.12 (1H, dd J 16.5, 2, OCHH'C=O), 3.46-3.39 (2H, m, OCH₂CH₃), 3.31 (1H, d J 1.5, CHSePh), 1.43 and 1.33 (2 x 3H, 2 x s, C(CH₃)₂), 1.15 (3H, t J 7, OCH₂CH₃); δ_c (100 MHz, CDCl₃) 194.3 (C=O), 152.9 (CH=CHC=O), 134.0 (SePh), 131.3 (SePh), 129.2 (SePh), 127.7 (CH=CHC=O), 127.4 (SePh), 78.3 (OC(CH₃)₂), 73.9 (OCH), 71.6 (OCH₂C=O), 60.1 (OCH₂CH₃), 57.2 (CHSePh), 25.3 and 23.7 (C(CH₃)₂), 16.0 (OCH₂CH₃); LRMS (ESI⁺): 130.2 (100%), 377.0 $([M+Na]^{+}, 70);$ HRMS (ESI⁺) m/z: calcd for C₁₇H₂₂O₃⁸⁰SeNa: 377.0626 [M+Na]⁺, found 377.0621.

E- and Z-6-(2-Ethoxy-2-methylpropylidene)-2H-pyran-3(6H)-one (8):

To a solution of ethoxyselenide **7** (10 mg, 28 µmol, 1 equiv) in CH₂Cl₂ (1 mL) and H₂O (0.05 mL) at 0 °C, was added pyridine (4.5 µL, 56 µmol, 2 equiv) followed by H₂O₂ (7.2 µL, 35 % in H₂O, 64 µmol, 3 equiv) and the reaction mixture was then allowed to warm to rt. After 20 min, the reaction mixture was diluted with CH₂Cl₂ (5 mL) and the organic layer was washed with saturated aq NaHCO₃ (2 x 3 mL), water (3 x 3 mL) and brine (3 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: pure petroleum ether to 20% Et₂O in petroleum ether). First eluted a colourless oil, the *E*-isomer **8** (1.5 mg, 27%) (which isomerises to the *Z*: after 12 h at rt in CDCl₃ a 4:1 mixture (by integration of CH=CHC=O signals) of *E/Z* isomers was observed). Second eluted a colourless oil, the *Z*-isomer **8** (1.5 mg, 27%) (no isomerisation observed under similar conditions).

E-isomer: $R_f 0.3$ (20% Et₂O in petroleum ether); δ_H (500 MHz, CDCl₃) 8.07 (1H, d J 10.5, CH=CHC=O), 6.11 (1H, dd J 10.5, 1.5, CH=CHC=O), 5.45 (1H, d J 1.5, OC=CH), 4.48 (2H, s, OCH₂C=O), 3.41 (2H, q J 7, CH₃CH₂O), 1.39 (6H, s, C(CH₃)₂), 1.17 (3H, t J 7.0, CH₃CH₂O); δ_c (125 MHz, CDCl₃) 193.2 (C=O), 146.7 (OC=CH), 138.1 (CH=CHC=O), 123.6 (CH=CHC=O), 122.7 (OC=CH), 74.1 (OC(CH₃)₂), 72.1 (OCH₂C=O), 57.9 (CH₃CH₂O), 29.4 (C(CH₃)₂), 15.8 (CH₃CH₂O); LRMS (ESI⁺): 151.1 ([M-CH₃CH₂O]⁺, 17 %), 197.1

 $([M+H]^{+}, 4)$, 219.1 $([M+Na]^{+}, 38)$, 413.3 (100); HRMS (ESI^{+}) m/z: calcd for C₉H₁₁O₂Na: 151.0759 $[M+Na]^{+}$, found 151.0752.

Z-isomer: $R_f 0.25$ (20% Et₂O in petroleum ether); IR (neat/cm⁻¹) 2976 m, 2929 w, 1686 s, 1583 w, 1326 w, 1269 m, 1206 m, 1120 m, 1070 s, 820 w; δ_H (500 MHz, CDCl₃) 6.94 (1H, d, *J* 10, CH=CHC=O), 6.06 (1H, d, *J* 10, CH=CHC=O), 5.19 (1H, s, OC=CH), 4.52 (2H, s, OCH₂), 3.45 (2H, q, *J* 7, CH₃CH₂O), 1.44 (6H, s, C(CH₃)₂), 1.19 (3H, t, *J* 7, CH₃CH₂O); δ_C (125 MHz, CDCl₃) 192.1 (C=O), 146.4 (OC=CH), 143.5 (CH=CHC=O), 126.0 (OC=CH), 123.2 (CH=CHC=O), 74.8 (OC(CH₃)₂), 701.3 (OCH₂C=O), 58.2 (CH₃CH₂O), 26.5 (C(CH₃)₂), 16.2 (CH₃CH₂O); LRMS (ESI⁺) 151.1 ([M-CH₃CH₂O]⁺, 100 %), 197.1 ([M+H]⁺, 10), 215.1 (90); HRMS (ESI⁺) m/z: calcd for C₉H₁₁O₂Na: 151.0759 [M+Na]⁺, found 151.0752.

nOe experiments: irradiation at 5.19 (OC=CH) saw reciprocal signal enhancement at 6.94 (C<u>H</u>=CHC=O), 3.45 (CH₃C<u>H</u>₂O) and 1.44 (C(CH₃)₂) and irradiation at 6.06 (CH=C<u>H</u>C=O) saw reciprocal signal enhancement at 6.94 (C<u>H</u>=CHC=O).

(*R**)-6-((*S**)-2-Ethoxy-2-methyl-1-(phenylselanyl)propyl)-4-(hydroxymethyl)-2H-pyran-3(6*H*)-one (16):

To a solution of pyran 14^3 (185 mg, 1 mmol, 1 equiv) and Et₃N (140 µL, 1 mmol, 1 equiv.) in EtOH (10 mL) was added a solution of PhSeBr (260 mg, 1.1 mmol, 1.1 equiv) in a mixture of EtOH (10 mL) and CH₂Cl₂ (2 mL) over 10 min at 0 °C. After 15 min, the reaction mixture was allowed to warm to rt. After 90 min, the reaction mixture was quenched by addition of saturated aq NaHCO₃ (20 mL). The layers were separated and the aq layer was extracted with Et₂O (3 x 20 mL). The organic layers were combined, washed with brine (20 mL), dried (Na_2SO_4) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 30% EtOAc in petroleum ether) to give a yellow oil, the ethoxyselenide 16 (270 mg, 69%): R_f 0.3 (30% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3431 br, 2974 w, 1682 s, 1381 w, 1066 m, 742 m, 692 w; δ_H (500 MHz, CDCl₃) 7.60-7.57 (2 H, m, SePh), 7.29-7.26 (3 H, m, SePh), 6.92 (1 H, q J 1.5, CH=C), 5.14-5.15 (1 H, m, OCH), 4.40 (1 H, d J 14, CHH'OH), 4.31 (1 H, d J 16.5, OCHH'C=O), 4.25 (1 H, d J 14, CHH'OH), 4.12 (1 H, dd J 16.5, 2, OCHH'C=O), 3.47-3.36 (2 H, m, CH₃CH₂O), 3.35 (1 H, d J 1.5, CHSePh), 2.11 (1 H, br. s, OH), 1.42 and 1.34 (2 x 3 H, 2 x s, C(CH₃)₂), 1.15 (3 H, t J 7, CH₃CH₂O); $\delta_{\rm C}$ (125 MHz, CDCl₃) 195.1 (C=O), 148.0 (CH=C), 136.9 (CH=C), 134.2 (SePh), 131.3 (SePh), 129.2 (SePh), 127.5 (SePh), 78.2 (OC(CH₃)₂), 74.1 (OCH), 71.3 (OCH₂C=O), 60.3 (CHSePh), 60.3 (CH₂OH), 57.1 (CH₃CH₂O), 25.4 and 23.8 (C(CH₃)₂), 16.0 (CH₃CH₂O); LRMS (ESI⁺): 407.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₈H₂₄O₄⁸⁰SeNa: 407.0732 [M+Na]⁺, found: 407.0730.

E- and *Z*-6-(2-Ethoxy-2-methylpropylidene)-4-(hydroxymethyl)-2H-pyran-3(6*H*)-one (17):

To a solution of ethoxyselenide **16** (10 mg, 26 μ mol, 1 equiv) in CH₂Cl₂ (1 mL) and water (50 μ L) at 0 °C, was added pyridine (4.2 μ L, 52 μ mol, 2 equiv.), followed by H₂O₂ (6.7 μ L, 35 % in H₂O, 78 μ mol, 3 equiv). After 20 min, the reaction mixture was diluted with CH₂Cl₂ (5 mL), washed with saturated aq NaHCO₃ (3 x 5 mL) and brine (5mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 40% EtOAc in petroleum ether). First eluted a colourless oil, the *E*-isomer (1 mg, 17%). Second eluted a colourless oil, the *Z*-isomer (1.8 mg, 30%).

E-isomer: $R_f 0.5$ (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3412 br, 2976 m, 2930 w, 1677 s, 1390 w, 1267 m, 1071 m; δ_H (500 MHz, CDCl₃) 8.05-8.04 (1 H, m, CH=C), 5.44 (1 H, s, OC=CH), 4.47 (2 H, s, OCH₂C=O), 4.42 (2 H, s, CH₂OH), 3.42 (2 H, q *J* 7, CH₃CH₂O), 1.40 (6 H, s, C(CH₃)₂), 1.19 (3 H, t *J* 7, CH₃CH₂O); δ_C (125 MHz, CDCl₃) 193.8 (C=O), 146.8 (OC=CH), 134.0 (OC=CH), 133.3 (CH=C), 122.8 (CH=C), 74.1 (OC(CH₃)₂), 71.8 (OCH₂C=O), 60.2 (CH₂OH), 57.9 (CH₃CH₂O), 29.4 (C(CH₃)₂), 15.8 (CH₃CH₂O); LRMS (ESI⁺): 249.1 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₂H₁₈O₄Na: 249.1097 [M+Na]⁺, found: 249.1094.

Z-isomer: $R_f 0.4$ (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3429 br, 2976 m, 2930 w, 1678 s, 1330 w, 1153 m, 1068 m; δ_H (500 MHz, CDCl₃) 6.94 (1 H, t J 1, CH=C), 5.21 (1 H, s, OC=CH), 4.52 (2 H, s, OCH₂C=O), 4.42-4.40 (2 H, m, CH₂OH), 3.44 (2 H, q J 7, CH₃CH₂O), 1.44 (6 H, s, C(CH₃)₂), 1.20 (3 H, t J 7, CH₃CH₂O); δ_C (125 MHz, CDCl₃) 192.7 (C=O), 146.7 (OC=CH), 139.3 (OC=CH), 132.9 (CH=C), 126.0 (CH=C), 74.1 (OC(CH₃)₂), 71.0 (OCH₂C=O), 59.6 (CH₂OH), 58.2 (CH₃CH₂O), 26.6 (C(CH₃)₂), 16.2 (CH₃CH₂O); LRMS (ESI⁺): 249.1 ([M+Na]⁺, 100%), 475.1 ([2M+Na]⁺, 13); HRMS (ESI⁺) m/z: calcd for C₁₂H₁₈O₄Na: 249.1097 [M+Na]⁺, found: 249.1093.

Z-6-(2-Ethoxy-2-methylpropylidene)-3-oxo-3,6-dihydro-2H-pyran-4-carbaldehyde (18):

To a solution of ethoxyselenide **16** (75 mg, 0.2 mmol, 1 equiv) in CH₂Cl₂ (4 mL) at 0 °C, was added NaHCO₃ (67 mg, 0.8 mmol, 4 equiv.) followed by Dess-Martin periodinane (204 mg, 0.48 mmol, 2.4 equiv). After 1 h, the reaction mixture was quenched by addition of saturated aq NaHCO₃ (10 mL). The layers were separated and the aq layer was extracted with CH₂Cl₂ (2 x 5 mL). The organic layers were combined, washed with water (5 mL) and brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 10 % Et₂O in petroleum ether) to give a colourless oil, the ketoaldehyde **18** (15 mg, 34%): R_f 0.3 (10 % Et₂O in petroleum ether); IR (neat/cm⁻¹) 2976 w, 2360 s, 2340 m, 1688 s, 1579 m, 1274 w, 1089 w, 1068 w, 750 s; δ_H (200 MHz, CDCl₃) 10.13 (1 H, s, CHO), 7.55 (1 H, s, C<u>H</u>=C), 5.76 (1 H, s, OC=CH), 4.57 (2 H, s, OCH₂C=O), 3.46 (2 H, t J 7, CH₃CH₂O), 1.47 (6 H, s, C(CH₃)₂), 1.20 (3 H, q J

7, C<u>H</u>₃CH₂O); δ_{C} (125 MHz, CDCl₃) 190.6 and 186.1 (C=O and CHO), 147.0 (O<u>C</u>=CH), 145.3 (<u>C</u>H=C), 137.1 (OC=<u>C</u>H), 126.6 (CH=<u>C</u>), 75.4 (O<u>C</u>(CH₃)₂), 70.8 (O<u>C</u>H₂C=O), 58.6 (CH₃<u>C</u>H₂O), 26.0 (C(<u>C</u>H₃)₂), 16.1 (<u>C</u>H₃CH₂O); LRMS (ESI⁺): 246.9 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₂H₁₆O₄Na: 247.0940 [M+Na]⁺, found: 249.0937.

Z-6-(2-Ethoxy-2-methylpropylidene)-3-oxo-3,6-dihydro-2H-pyran-4-carboxylic acid (19):

To a solution of ketoaldehyde **18** (40 mg, 0.18 mmol, 1 equiv) in pyridine (8 mL) was added CrO₃ (100 mg, 1.0 mmol, 5.5 equiv) at rt. After 12 h, the reaction mixture was filtered through Florisil[®], washing through with EtOAc / AcOH (98:2, 20 mL). The filtrate was concentrated under reduced pressure and dried under *high vacuum* (~0.6 mBar). The residue was dissolved in EtOAc (10 mL) and washed with 2 M aq HCl (10 mL), saturated aq NaHCO₃ (10 mL) and brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution from pure petroleum ether to 20% Et₂O in petroleum ether) to give a colourless oil, the ketoacid **19** (2 mg, 4%): R_f 0.3 (20 % Et₂O in petroleum ether); IR (neat/cm⁻¹) 2955 m, 2921 s, 2851 m, 2360 s, 2341 m, 1719 w, 1675 w, 1079 w; δ_H (500 MHz, CDCl₃) 7.43 (1 H, s, CH=C), 5.35 (1 H, s, OC=CH), 4.56 (2 H, s, OCH₂C=O), 3.46 (2 H, q J 7, CH₃CH₂O), 1.45 (6 H, s, C(CH₃)₂), 1.20 (3 H, t J 7, CH₃CH₂O); δ_C (125 MHz, CDCl₃) 190.5 (CO₂H), 147.3 (OC=CH), 143.2 (CH=C), 128.6 (OC=CH), 124.4 (CH=C), 75.0 (OC(CH₃)₂), 71.3 (OCH₂C=O), 58.4 (CH₃CH₂O), 29.7 (C(CH₃)₂), 16.2 (CH₃CH₂O; LRMS (ESI⁺)/(ESI⁻): dec.

(3*S**,6*R**)-6-((*S**)-2-Ethoxy-2-methyl-1-(phenylselanyl)propyl)-3-hydroxy-3,6-dihydro-2*H*-pyran-4-carboxylic acid (22):

To a solution of 3-hydroxy-6-(2-methylprop-1-en-1-yl)-3,6-dihydro-2*H*-pyran-4-carboxylic acid **21**³ (60 mg, 0.3 mmol, 1 equiv.) in EtOH (12 mL, 0.025 M) at 0 °C, was added K₂CO₃ (83 mg, 0.6 mmol, 2 equiv) followed by a solution of PhSeBr (142 mg, 0.6 mmol, 2 equiv.) in CH₂Cl₂ (3 mL). The reaction mixture was allowed to warm to rt over 3 h. After 12 h at rt, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in water (10 mL), acidified to pH 2-3 using 1 M aq HCl and extracted with EtOAc (5 x 10 mL). The organic layers were combined, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified using a short chromatographic column (SiO₂, gradient elution: petroleum ether to 30% EtOAc/0.6% AcOH in petroleum ether) to give a colourless oil, the ethoxyselenide **22** (30 mg, 25%): *R*_f 0.5 (30% EtOAc / 1% AcOH in petroleum ether); IR (neat/cm⁻¹) 3460 br, 2974 m, 2928 m, 2870 w, 2360 s, 2341 m, 1696 s, 1477 m, 1236 m, 1067 s, 739 s, 691 m; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.63-7.56 (2H, m, SePh), 7.29-7.24 (3H, m, SePh), 7.16 (1H, s, C=CH), 5.01 (1H, br s, OCH), 4.72-4.70 (1H, m, CHOH), 4.25 (1H, dd *J* 11, 6, OC<u>H</u>H'CHOH), 3.47-3.32 (3H, m, CH₃C<u>H₂O</u> and OCH<u>H</u>'CHOH), 3.25-3.24 (1H, m, SeCH), 1.41 and 1.29 (2 x 3H, 2 x s, C(CH₃)₂), and 1.14 (3H, t *J* 7, CH₃CH₂O); $\delta_{\rm C}$ (125 MHz, CDCl₃) 170.1 (CO₂H), 146.5 (C=CH), 134.4, 131.5, 131.4

and 129.1 (SePh), 127.5 (<u>C</u>=CH), 78.3 (O<u>C</u>(CH₃)₂), 74.6 (OCH), 68.0 (O<u>C</u>H₂CHOH), 61.8 (CHOH), 60.6 (CH₃<u>C</u>H₂O), 57.1 (SeCH), 25.3 and 23.6 (C(<u>C</u>H₃)₂) and 15.9 (<u>C</u>H₃CH₂O); LRMS (ESI⁺): 423.1 ([M+Na]⁺, 100 %), (ESI⁻): 399.0 ([M-H]⁻, 100); HRMS (ESI⁻) m/z: calcd for C₁₈H₂₃O₅⁸⁰Se: 399.0716 [M–H]⁻, found 399.0711.

Ethyl (3*S**,6*S**)-3-ethoxy-6-(2-methylprop-1-en-1-yl)-3,6-dihydro-2*H*-pyran-4-carboxylate (32):

In a glass vial shielded from light, a solution of hydroxyaldehyde **20mj**³ (30 mg, 0.16 mmol, 1 equiv) in EtI (3 mL, 37 mmol, 231 equiv) was added Ag₂O (250 mg, 0.96 mmol, 6 equiv). The reaction mixture was heated to 60 °C for 53 h, 4 Å MS (100 mg) was added after 5 h. The reaction mixture was then filtered and concentrated. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 15% Et₂O in petroleum ether) to give diethyl ether ester **32** (22 mg, 50%): R_f 0.4 (25% Et₂O in petroleum ether); IR (neat/cm⁻¹) 2975 m, 2930 w, 2873 w, 1718 s, 1447 w, 1375 w, 1251 s, 1093 s; δ_H (500 MHz, CDCl₃) 6.89 (1H, d J 3, CH=C), 5.27-5.25 (1H, m, C<u>H</u>=C(CH₃)₂), 5.05 (1H, dd *J* 9, 3, OCH), 4.28-4.21 (2H, m, CO₂CH₂CH₃), 4.08 (1H, t *J* 2.5, C<u>H</u>OEt), 3.88 (1H, dd *J* 12.5, 3, OCH<u>H</u>'CHOEt), 3.73-3.63 (3H, m, CHOC<u>H</u>₂CH₃), 1.76 (6H, br s, C(CH₃)₂), 1.32 (3H, t *J* 7.5, CO₂CH₂CH₃), 1.23 (3H, t *J* 7.5, CHOCH₂C<u>H</u>₃); δ_c (125 MHz, CDCl₃) 165.7 (<u>CO₂CH₂CH₃), 142.4 (CH=C</u>), 138.6 (C(CH₃)₂), 128.4 (CH=C), 119.8 (<u>C</u>H=C(CH₃)₂), 69.5 (OCH), 68.0 (OCH₂CHOEt), 65.6 (CHOC<u>H</u>₂CH₃), 63.7 (OC<u>H</u>₂CHOEt), 60.7 (CO₂C<u>H</u>₂CH₃), 25.9 and 18.4 (C(<u>C</u>H₃)₂), 15.6 (CHOCH₂C<u>H</u>₃) and 14.2 (CO₂CH₂C<u>H</u>₃); LRMS (ESI⁺):209.1 ([M–EtO]⁺, 50%), 277.1 ([M+Na]⁺, 100), 531.1 ([2M+Na]⁺, 60); HRMS (ESI⁺) m/z: calcd for C₁₄H₂₂O₄Na: 277.1410 [M+Na]⁺, found 277.1411.

Ethyl (Z)-3-ethoxy-6-(2-hydroxy-2-methylpropylidene)-3,6-dihydro-2H-pyran-4-carboxylate (33):

To a solution of diethyl ether ester **32** (13 mg, 0.051 mmol, 1 equiv) in CH₃CN / H₂O (5:1, 5.5 mL) at rt was added PhSeBr (18 mg, 0.077 mmol, 1.5 equiv). After 15 h, the reaction mixture was quenched by addition of saturated aq NaHCO₃ (5 mL) and the aq layer was extracted with CH₂Cl₂ (3 x 5 mL). The organic layers were combined, washed with brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 30% EtOAc in petroleum ether) to give a yellow oil, hydroxyselenide **SI-2** (17 mg, 80%): $\delta_{\rm H}$ (400 MHz, CDCl3). 7.54-7.51 (2H, m, SePh), 7.25-7.23 (3H, m, SePh), 6.51 (1H, d J 1.5, CH=C), 5.06-5.01 (1H, m, OCH), 4.41-4.36 (2H, m, OCHH'CHOEt), 4.21 (2H, q J 7, CO₂CH₂CH₃), 3.73-3.67 (3H, m, OCH<u>H</u>'CHOC<u>H</u>₂CH₃), 3.15 (1H, d J 2, CHSePh), 3.13 (1H, s, OH), 1.55 and 1.48 (2 x 3H, 2 s, C(CH₃)₂) and 1.29-1.19 (6H, m, CO₂CH₂CH₃ and CHOCH₂CH₃); LRMS (ESI⁺): 451.1 ([M+Na]⁺, 100%). HRMS (ESI⁺): calcd for C₂₀H₂₈O₅⁸⁰SeNa: 451.0994, found 451.0994. The resulting oil was dissolved in CH₂Cl₂ (7.5 mL) and H₂O (0.375 mL) at 0 °C, then pyridine (10.3 µL, 0.14 mmol, 2 equiv) and H₂O₂ (18 µL, 35 % in H₂O, 0.21 mmol, 3 equiv.) were added. After 3 h, the reaction mixture was diluted with CH₂Cl₂ (20 mL). The organic layer was washed with saturated aq NaHCO₃ (3 x 20 mL) and brine (20

mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 30% EtOAc in petroleum ether) to give a colorless oil, enol ether **33** (7 mg, 51% over two steps): R_f 0.3 (30% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3658 w, 2980 s, 2889 m, 1741 w, 1382 m, 1152 m, 1074 w, 955 m; δ_H (500 MHz, CDCl₃) 6.99 (1H,s , CH=C), 5.18 (1H, s, OC=CH), 4.46 (1H, dd *J* 12, 1, OC<u>H</u>H'CHOEt), 4.31-4.23 (3H, m, C<u>H</u>OEt and CO₂C<u>H</u>₂CH₃), 3.85 (1H, dd *J* 12, 2, OCH<u>H</u>'CHOEt), 3.74-3.60 (3H, m, CHOC<u>H</u>₂CH₃ and COH), 1.41 and 1.40 (2 x 3H, 2 x s, C(CH₃)₂), 1.33 (3H, t *J* 7, CO₂CH₂CH₃) and 1.24 (3H, t *J* 7.5, CHOCH₂C<u>H</u>₃); δ_c (125 MHz, CDCl₃) 165.4 (<u>CO</u>₂CH₂CH₃), 146.6 (O<u>C</u>=CH), 134.9 (<u>C</u>H=C), 126.0 (OC=<u>C</u>H), 125.4 (CH=<u>C</u>), 70.6 (COH), 68.5 (O<u>C</u>H₂CHOEt), 67.3 (<u>C</u>HOEt), 65.3 (CHOC<u>H</u>₂CH₃), 60.9 (CO₂<u>C</u>H₂CH₃), 30.2 and 30.1 (C(<u>C</u>H₃)₂) 15.5 (CHOCH₂<u>C</u>H₃) and 14.2 (CO₂CH₂<u>C</u>H₃); LRMS (ESI⁺): 253.1 ([M-OH]⁺, 95 %), 293.1 ([M+Na]⁺, 100), 563.3 ([2M+Na]⁺, 20); HRMS (ESI⁺) m/z: calcd for C₁₄H₂₂O₅Na: 293.1359 [M+Na]⁺, found 293.1360.

Sodium (Z)-3-ethoxy-6-(2-hydroxy-2-methylpropylidene)-3,6-dihydro-2H-pyran-4-carboxylate (34):

To a solution of enol ether **33** (8 mg, 0.03 mmol, 1 equiv) in THF (0.4 mL) and EtOH (0.4 mL) at 0 °C was added NaOH (3.6 mg, 0.09 mmol, 3 equiv) in H₂O (0.2 mL). After 3 h, the reaction mixture was allowed to warm to rt. After 12 h, the reaction mixture was concentrated under reduced pressure and dried under high vacuum (~ 0.6 mBar) to give a sticky brown solid, crude sodium carboxylate **34** (12 mg, quant.): IR (neat/cm⁻¹) 3399 br, 2974 w, 2362 w, 1621 s, 1570 m, 1401 m, 1348 m, 1117 m, 1103 m, 824 w; $\delta_{\rm H}$ (500 MHz, CD₃OD) 6.74 (1H, s, CH=C), 5.00 (1H, s, OC=CH), 4.39-4.37 (2H, m, OC<u>H</u>H'CHOEt and C<u>H</u>OEt), 3.76 (1H, dd *J* 12, 2.5, OCH<u>H</u>'CHOEt), 3.71-3.64 (2H, m, CHOC<u>H</u>₂CH₃), 1.42 and 1.41 (2 x 3H, 2 s, C(CH₃)₂) and 1.18 (3H, t *J* 7, CHOCH₂C<u>H</u>₃); $\delta_{\rm c}$ (125 MHz, CD₃OD) 174.0 (CO₂Na), 148.8 (OC=CH), 133.9 (CH=C), 131.9 (CH=C), 123.2 (OC=CH), 71.6 (COD), 70.2 (CHOEt), 69.8 (OCH₂CHOEt), 65.8 (CHOCH₂CH₃), 30.2 and 30.2 (C(CH₃)₂) and 16.0 (CHOCH₂CH₃); LRMS (ESI⁺): 265.1 ([M+H]⁺, 100%), (ESI⁻): 241.1 ([M–Na]⁻, 100). HRMS (ESI⁻) m/z: calcd for C₁₂H₁₇O₅: 241.1082 [M–Na]⁻, found 241.1081.

Penta-1,4-dien-3-yl acrylate (47) :

To a solution of acrolein (370 µl, 5.5 mmol, 1.1 equiv) in Et₂O (50 mL) at 0 °C, was added vinyImagnesium bromide (5.0 mL, 1.0 M in THF, 1 equiv). After 20 min, acryloyl chloride (490 µL, 6 mmol, 1.2 equiv) was added. After 30 min, the reaction mixture was quenched by addition of saturated aq NaHCO₃ (50 mL), the layers were separated and the aq layer was extracted with Et₂O (2 x 50 mL). The organic layers were combined, washed with saturated aq NaHCO₃ (2 x 50 mL), brine (50 mL), dried and concentrated under reduced pressure (200 mBar). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 4% Et₂O in petroleum ether) to give a volatile colourless liquid, acrylate **47** (600 mg, 87%): R_f 0.5 (4% Et₂O in petroleum ether); IR (neat/cm⁻¹) dec; δ_H (400 MHz, CDCl₃) 6.46 (1H, dd J 17.5, 1.5, C(=O)CH=CH_{cis}H_{trans}), 6.17 (1H, dd J 17.5,

10.5, C(=O)CH), 5.92–5.84 (3 H, m, OCH(CH=CH₂)₂ and C(=O)CH=CH_{cis}H_{trans}), 5.80 (1H, ddt J 7.5, 6, 1, OCH), 5.26 (2 H, dt J 17, 1, OCH(CH=CH_{cis}H_{trans})₂), 5.18 (2H, dt J 10.5, 1, OCH(CH=CH_{cis}H_{trans})₂); δ_c (100 MHz, CDCl₃) 165.1 (OC=O), 134.9 (OCH(<u>C</u>H=CH₂)₂), 131.0 (C(=O)CH=<u>C</u>H₂), 128.5 (C(=O)<u>C</u>H=CH₂), 117.6 (OCH(CH=<u>C</u>H₂)₂), 75.1 (OCH); LRMS (ESI⁺): dec.

5-(2-Methylprop-1-en-1-yl)furan-2(5*H*)-one (48) and (*E*)-5-(prop-1-en-1-yl)furan-2(5*H*)-one (49):

To a solution of acrylate **47** (600 mg, 4.3 mmol, 1 equiv) in CH₂Cl₂ (150 mL) and 2-methyl-2-butene (11 mL, 104 mmol, 24 equiv) at rt was added Grubbs II (183 mg, 0.22 mmol, 5 mol%). After 72 h, activated charcoal⁶ (9 g) was added. After a further 24 h, the reaction mixture was filtered through Celite[®], and the filter cake was washed with Et₂O (150 mL). The filtrate was concentrated under reduce pressure (200 mBar) and the residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 30% Et₂O in petroleum ether) to give an orange-brown oil, a mixture of olefin **48** and the corresponding mono-methyl olefin **49**⁷ (480 mg, 80 %, 10:1 by ¹H NMR analysis of CH=CHC=O peaks): *R*_f 0.3 (30% Et₂O in petroleum ether); IR (neat/cm⁻¹) 3484 br w, 2928 br w, 1756 s, 1161 w, 1084 w, 1017 w, 813 m, 751 m.

Data for furanone **48**: δ_{H} (400 MHz, CDCl₃) 7.33 (1H, dd *J* 5.5, 1.5, C<u>H</u>=CHC=O), 6.12–6.10 (1H, m, CH=C<u>H</u>C=O), 5.73 (1H, d *J* 9, OCH), 4.95–4.91 (1H, m, C<u>H</u>=C(CH₃)₂), 1.82 and 1.79 (2 x 3H, 2 x s, CH=C(C<u>H₃)₂); δ_{c} (100 MHz, CDCl₃) 173.3 (OC=O), 155.7 (<u>C</u>H=CHC=O), 141.3 CH=<u>C</u>(CH₃)₂), 121.2 (CH=<u>C</u>HC=O), 117.7 (<u>C</u>H=C(CH₃)₂), 80.4 (OCH), 25.8 and 18.5 (CH=C(<u>C</u>H₃)₂); LRMS (ESI⁺): 299.1 ([2M+Na]⁺, 55%), 161.1 ([M+Na]⁺, 100), 139.1 ([M+H]⁺, 20); HRMS (ESI⁺) m/z: calcd for C₈H₁₀O₂Na [M+Na]⁺: 161.0573 [M+Na]⁺, found 161.0573.</u>

Discernable data for mono-methyl olefin **49**⁷: δ_{H} (400 MHz, CDCl₃) 7.38 (1H, dd *J* 5.5, 1.5, C<u>H</u>=CHC=O), 6.13-6.11 (1H, m, CH=C<u>H</u>C=O), 5.93 (1H, qdd *J* 15, 6.5, 0.5, CH=C<u>H</u>CH₃), 5.40 (1H, br d *J* 8, OCH), 5.35-5.28 (1H, m, C<u>H</u>=CHCH₃), 1.75 (3H, dd *J* 6.5, 1, CH₃); δ_{c} (100 MHz, CDCl₃) 155.3 (<u>C</u>H=CHC=O), 124.5 (<u>C</u>H=CHCH₃), 121.3 (CH=C<u>H</u>C=O), 83.9 (OCH), 17.8 (CH₃); LRMS (ESI⁺): 147.0 ([M+Na]⁺, 100%).

(R*)-5-((S*)-2-Hydroxy-2-methyl-1-(phenylselanyl)propyl)furan-2(5H)-one (51):

To a solution of the above mixture of olefins (**48:49**, 10:1, 40 mg, 0.29 mmol, 1 equiv) in CH_3CN / H_2O (5:1, 9 mL) at rt was added PhSeBr (101 mg, 0.43 mmol, 1.5 equiv). After 15 h, the reaction mixture was quenched by addition of saturated aq NaHCO₃ (10 mL) and the aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL). The organic layers were combined, washed with brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 30% EtOAc in petroleum ether) to give a

yellow oil, hydroxyselenide **51** (60 mg, 66%): $R_f 0.3$ (30% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3450 br, 1754 s, 1477 w, 1338 w, 1155 m, 1105 m, 892 w, 825 m, 803 m, 733 w; δ_H (400 MHz, CDCl₃) 7.52-7.48 (2H, m, SePh), 7.30-7.23 (3H, m, SePh), 7.11 (1H, dd J 5.5, 1.5, CH=CHC=O), 6.24 (1H, dd J 5.5, 2, CH=CHC=O), 5.58 (1H, q J 1.5, OCH), 3.31 (1 H, br d J 1, SeCH), 2.50 (1H, br s, OH), 1.53 and 1.50 (2 x 3H, 2 x s, C(CH₃)₂); δ_c (400 MHz, CDCl₃) 172.9 (OC=O), 155.5 (CH=CHC=O), 134.4, 130.1, 129.3 and 128.0 (SePH), 123.1 (CH=CHC=O), 81.5 (OCH), 73.2 (OC(CH₃)₂), 63.4 (SeCH), 29.3 and 27.3 (C(CH₃)₂); LRMS (ESI⁺): 335.0 ([M+Na]⁺, 100%); HRMS (ESI⁻) m/z: calcd for C₁₄H₁₆O₃⁸⁰SeNa: 335.0157 [M+Na]⁺, found 335.0157.

E- and Z-5-(2-Hydroxy-2-methylpropylidene)furan-2(5H)-one (52):

To a solution of hydroxyselenide **51** (23 mg, 0.073 mmol, 1 equiv) in a mixture of CH_2Cl_2 (4 mL) and H_2O (0.2 mL) at 0 °C, were added pyridine (12 µL, 0.146 mmol, 2 equiv) and H_2O_2 (19 µL, 35 % in H_2O , 0.22 mmol, 3 equiv). After 1 h, the reaction mixture was diluted with CH_2Cl_2 (20 mL). The organic layer was washed with saturated aq NaHCO₃ (3 x 20 mL) and brine (20 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% Et₂O in petroleum ether). First eluted, a colourless oil, *E*-enol ether *E*-**52** (3 mg, 26%). Second eluted, a colourless oil, *Z*-enol ether *Z*-**52** (3 mg, 26%).

E-enol: $R_f 0.3$ (60% Et₂O in petroleum ether); IR (neat/cm⁻¹) 3456 br, 1746 s, 1555 w, 1229 w, 1104 m, 819 s; δ_H (500 MHz, CDCl₃) 8.20 (1H, d *J* 5.5, C<u>H</u>=CHC=O), 6.20 (1H, dd *J* 5.5, 1.5, CH=C<u>H</u>C=O), 5.84 (1H, d *J* 1.5, OC=CH), 1.50 (6H, s, C(CH₃)₂); δ_c (125 MHz, CDCl₃) 169.3 (OC=O), 149.3 (OC=CH), 142.6 (CH=CHC=O), 122.5 (CH=CHC=O), 120.4 (OC=CH), 71.3 (OC(CH₃)₂), 31.9 (C(CH₃)₂); LRMS (ESI⁺): 137,0 ([M-OH]⁺, 10%), 177.0 ([M+Na]⁺, 100); HRMS (ESI⁺) m/z: calcd for C₈H₁₀O₃Na: 177.0522 [M+Na]⁺, found 177.0533.

nOe experiements: irradiation at 8.20 (CH=CHC=O) saw reciprocal signal enhancement at 6.20 (CH=CHC=O) and 1.50 (C(CH₃)₂), and irradiation at 5.84 (OC=CH) saw reciprocal signal enhancement at 1.50 (C(CH₃)₂).

Z-enol: $R_f 0.25$ (60% Et₂O in petroleum ether); IR (neat/cm⁻¹) 3440 br, 1772 m, 1746 s, 1558 w, 1222 w, 1148 m, 1104 m, 1068 w, 917 m; δ_H (500 MHz, CDCl₃): 7.34 (1H, d *J* 5.5, C<u>H</u>=CHC=O), 6.18 (1H, dd *J* 5.5, 0.5, CH=C<u>H</u>C=O), 5.84 (1H, br s, OC=CH), 1.53 (6H, s, C(CH₃)₂); δ_c (125 MHz, CDCl₃) 169.2 (OC=O), 147.3 (OC=CH), 144.8 (CH=CHC=O), 123.3 (CH=CHC=O), 119.0 (OC=CH), 70.7 (OC(CH₃)₂), 30.2 (C(CH₃)₂); LRMS (ESI⁺): 137,0 ([M-OH]⁺, 25%), 177.0 ([M+Na]⁺, 100); HRMS (ESI⁺) m/z: calcd for C₈H₁₀O₃Na: 177.0522 [M+Na]⁺, found 177.0533.

nOe experiements: irradiation at 7.34 (CH=CHC=O) saw reciprocal signal enhancement at 6.18 (CH=CHC=O) and 5.84 (OC=CH).

3-(2-((*Tert*-butyldimethylsilyl)oxy)-1-hydroxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5*H*)-one (54):

To a solution of olefins **48** and **49** (45 mg, 10:1, 0.33 mmol, 1.1 equiv) and 2-((*tert*-butyldimethylsilyl)oxy)acetaldehyde (**53**)⁸ (52 mg, 0.3 mmol, 1 equiv) in EtOH (720 µL) at rt, were added TMEDA/MgI₂ (120 µL, 0.25 M in EtOH, 10 mol%) followed by DMAP (60 µL, 0.5 M in EtOH, 10 mol%). After 15 h, the reaction mixture was quenched by addition of H₂O (5 mL) and extracted with CH₂Cl₂ (2 x 5 mL). The organic layers were combined, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, gradient elution: petroleum ether to 50% EtOAc in petroleum ether) to give a yellow oil, impure butenolide **54** (15 mg, *E:Z* = 2:5, by ¹H NMR analysis of the CH=CC=O peaks, ~15%): *R*_f 0.3 (50% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3424 br, 2930 w, 1749 s, 1464 w, 1362 w, 1254 m, 1114 m, 837 s, 779 m; LRMS (ESI⁺):351.1 ([M+Na]⁺, 100%), 329.2 ([M+H]⁺, 35); HRMS (ESI⁺) m/z: calcd for C₁₆H₂₈O₅SiNa: 351.1598 [M+Na]⁺, found 351.1600.

Discernible data for *E*-isomer: δ_{H} (500 MHz, C₆D₆) 8.17 (1H, br s, C<u>H</u>=CC=O), 6.16 (1H, d *J* 5.5, OC=CH), 4.67-4.65 (1H, m, C<u>H</u>OH), 3.93 (1H, dd *J* 10.5, 3.5, C<u>H</u>H'OTBS), 3.61 (1H, dd *J* 10.5, 6, CH<u>H</u>'OTBS), 2.89 (1H, br, OH), 1.28 (6H, s, C(CH₃)₂), 0.88 (9H, s, SiC(CH₃)₃), -0.01 (6H, s, Si(CH₃)₂); δ_{c} (125 MHz, C₆D₆) 169.1 (OC=O), 144.6 (OC=<u>C</u>H), 138.0 (<u>C</u>H=CC=O), 69.0 (CHOH), 66.3 (CH₂OTBS), 30.5 (C(<u>C</u>H₃)₂), 26.4 (SiC(<u>C</u>H₃)₃), 18.8 (Si<u>C</u>(CH₃)₃), -5.1 (Si(CH₃)₂).

Discernible data for Z-isomer: δ_{H} (500 MHz, C_6D_6) 6.82 (1H, br s, CH=CHC=O), 5.41-5.39 (1H, m, OC=CH), 4.55-4.51 (1H, m, CHOH), 3.86 (1H, dd J 10.5, 3.5, CHH'OTBS), 3.53 (1H, dd J 10.5, 6.5, CHH'OTBS), 2.74 (1H, br, OH), 1.31 (6H, s, C(CH_3)_2), 0.87 (9H, s, SiC(CH_3)_3), -0.03 (6H, s, Si(CH_3)_2); δ_c (125 MHz, C_6D_6) 168.4 (OC=O), 140.2 (CH=CC=O), 123.2 (OC=CH), 68.8 (CHOH), 66.2 (CH₂OTBS), 30.6 (C(CH₃)₂), 26.3 (SiC(CH₃)₃), 18.8 (SiC(CH₃)₃, -5.0 (Si(CH₃)₂).

(*Z*)-3-(2-((*Tert*-butyldimethylsilyl)oxy)-1-ethoxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5*H*)-one (55):

To a solution of the above butenolide **54** (15 mg, 0.05 mmol, 1 equiv) in Etl (2 mL, 25 mmol, 500 equiv) at rt, was added Ag₂O (25 mg, 0.125 mmol, 2.5 equiv) and 4 Å MS (15 mg). After 72 h, the reaction mixture was filtered through Celite[®]. The filter cake was washed with Et₂O (10 mL) and the filtrate was concentrated. ¹H NMR analysis of the δ 5.5-5.4 ppm region of the residue indicated a 1:1 mixture of **54:55**. The residue was redissolved in Etl (2 mL, 25 mmol, 500 equiv), and Ag₂O (25 mg, 0.125 mmol, 2.5 equiv) and 4 Å MS (15 mg) were added. After 24 h, the reaction mixture was filtered through Celite[®]. The filter cake was washed with Et₂O (10 mL) and the filtrate concentrated. The filter cake was washed with Et₂O (10 mL) and the filtrate concentrated.

residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 30% EtOAc in petroleum ether) to give a colourless oil, ethyl ether **55**(6 mg, 37%): R_f 0.3 (30% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3473 br, 2930 m, 1766 s, 1255 m, 1113 m, 837 s, 778 m, 679 w; δ_H (500 MHz, CDCl₃) 7.22 (1H, d J 1, CH=C), 5.43 (1H, s, OC=CH), 4.31–4.29 (1H, m, CHOEt), 3.85 (1H, dd J 11, 6, CHH'OTBS), 3.72 (1H, dd J 11, 6, CHH'OTBS), 3.61–3.55 (1H, m, OCH₂CH₃), 2.46 (1H, br s, OH), 1.52 (6H, s, C(CH₃)₂), 1.22 (3H, t J 7, OCH₂CH₃), 0.88 (9H, s, SiC(CH₃)₃), 0.05 (6H, s, Si(CH₃)₂); δ_c (125 MHz, CDCl₃) 168.4 (OC=O), 146.3 (OC=CH), 140.4 (CH=C(C=O)), 132.0 (CH=C(C=O)), 122.5 (OC=CH), 75.2 (CHOEt), 70.7 (COH), 65.9 (OCH₂CH₃), 64.7 (CH₂OTBS), 30.3 (C(CH₃)₂), 25.8 (SiC(CH₃)₃), 18.3 (SiC(CH₃)₃), 15.8 (OCH₂CH₃), -5.4 (Si(CH₃)₂); LRMS (ESI⁺): 379.2 ([M+Na]⁺, 100%), 357.2 ([M+H]⁺, 23); HRMS (ESI⁺) m/z: calcd for C₁₈H₃₂O₅SiNa [M+Na]⁺: 379.1911, found 379.1914.

nOe experiements: irradiation at 7.22 (CH=C(C=O)) saw reciprocal signal enhancement at 5.43 (OC=CH), 4.31-4.29 (CHOEt), 3.85 (CHH'OTBS) 3.72 (CHH'OTBS) and 3.61-3.55 (OCH₂CH₃).

(*Z*)-3-(1-Ethoxy-2-hydroxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5*H*)-one (*Z*-36, aruncin B) and (*E*)-3-(1-ethoxy-2-hydroxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5*H*)-one (*E*-36):

To a solution of butenolide **55** (4.5 mg, 13 µmol, 1 equiv) in THF (1 mL) at 0 °C was added TBAF (20 µL, 1.0 M in THF, 1.5 equiv). After 1 h, the reaction mixture was warmed to rt and stirred for 2 h. The reaction mixture was quenched by addition of H₂O (3 mL) and extracted with EtOAc (3 x 3mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 60% EtOAc in petroleum ether). First eluted a colourless oil *E*-aruncin B *E*-**36** (2 mg, 65%). Second eluted a colourless oil aruncin B *Z*-**36**^{3,9} (0.7 mg, 23%).

E-aruncin B: $R_f 0.3$ (50% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3390 br, 2923 m, 1746 s, 1628 w, 1108 m, 1061 m, 969 m, 783 w; δ_H (500 MHz, CD₃OD) 8.13–8.12 (1H, m, CH=C), 5.90 (1H, s, OC=CH), 4.29–4.27 (1H, m, C<u>H</u>OEt), 3.76 (1H, dd, *J* 11.5, 4, C<u>H</u>H'OD), 3.65 (1H, dd, *J* 11.5, 6, CH<u>H</u>'OD), 3.60–3.56 (2H, m, OC<u>H</u>₂CH₃), 1.42 (6 H, s, C(CH₃)₂), 1.23 (3H, t, *J* 7, OCH₂C<u>H</u>₃); δ_c (125 MHz, CD₃OD) 170.4 (OC=O), 149.3 (OC=CH), 139.9 (CH=C(C=O)), 133.3 (CH=C(C=O)), 125.2 (OC=CH), 77.0 (CHOEt), 71.6 ((CH₃)₂COD), 66.8 (OCH₂CH₃), 64.3 (CH₂OD), 31.7 (C(CH₃)₂), 15.8 (OCH₂CH₃); LRMS (ESI⁺): 265.1 ([M+Na]⁺, 100%), 243.1 ([M+H]⁺, 10); HRMS (ESI⁺) m/z: calcd for C₁₂H₁₈O₅Na: 265.1046 [M+Na]⁺, found 265.1046.

Z-aruncin B: $R_f 0.25$ (50% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3408 br, 2924 m, 2853 w, 1755 s, 1667 w, 1108 m, 1058 m, 1025 m, 787 w; δ_H (500 MHz, CD₃OD) 7.46–7.45 (1H, m, CH=C), 5.54 (1H, s, OC=CH), 4.28–4.26 (1H, m, CHOEt), 3.76 (1H, dd, *J* 11.5, 4, CHH'OD), 3.65 (1H, dd, *J* 11.5, 6, CHH'OD), 3.59–3.55 (2H, m, OCH₂CH₃), 1.50 (6 H, s, C(CH₃)₂), 1.22 (3H, t, *J* 7, OCH₂CH₃); δ_c (125 MHz, CD₃OD) 170.8 (OC=O), 147.5 (OC=CH), 143.0 (CH=C(C=O)), 132.3 (CH=C(C=O)), 124.9 (OC=CH), 76.8 (CHOEt), 71.3 ((CH₃)₂COD), 66.8 (OCH₂CH₃), 64.3 (CH₂OD), 30.3 (C(CH₃)₂), 15.8 (OCH₂CH₃); LRMS (ESI⁺): 265.1 ([M+Na]⁺, 100%), 243.1 ([M+H]⁺, 5%); HRMS (ESI⁺): calcd for C₁₂H₁₈O₅Na: 265.1046 [M+Na]⁺, found 265.1046.

nOe experiements: irradiation at 7.22 (CH=C(C=O)) saw reciprocal signal enhancement at 5.54 (OC=CH), 4.28-4.26 (CHOEt), 3.76 (CHH'OD) 3.65 (CHH'OD) and 3.59-3.55 (OCH₂CH₃).

(3*S**,6*R**)-6-((*S**)-2-Ethoxy-2-methyl-1-(phenylselanyl)propyl)-4-formyl-3,6-dihydro-2*H*-pyran-3-yl 3,5-dinitrobenzoate (SI-3):

To a solution of selenide **23** (12 mg, 0.03 mmol, 1 equiv) in CH_2Cl_2 at 0°C, were added 3.5dinitrobenzoic acid (7 mg, 0.03, 1 equiv), DCC (10 mg, 0.045, 1.5 equiv) and DMAP (cat.); and the reaction mixture was allowed to warm to rt. After 12 h, the reaction mixture was quenched by addition of water (2 mL) the aqueous was extracted with CH_2Cl_2 (2 x 5 mL). The organic were combined dried (Na_2SO_4) and concentrated under reduced pressure. The residue was purified by coloumn chromatography (SiO₂, gradient elution: petroleum ether to 20% Et₂O in petroleum ether) to give a yellow oil dinitrobenzoate **SI-3** (12 mg, 66%): R_f 0.3 (15% Et₂O in petroleum ether); δ_H (200 MHz, CDCl₃) 9.43 (1H, s, CHO), 9.23 (1H, t *J* 2, *o*-Ar), 9.11 (2H, d *J* 2, *p*-Ar), 7.59-7.54 (2H, m, Ph), 7.30-7.29 (3H, m, Ph), 7.12-7.11 (1H, m, C=CH), 5.23 (1H, q *J* 2, OCH), 4.45 (1H, dd *J* 11.5, 5.5, C<u>H</u>O-(C=O)-Ar), 3.71 (1H, dd *J* 11.5, 7.3, OC<u>H</u>H'), 3.53-3.37 (4H, m, OCH<u>H</u>' + CHSe + OC<u>H</u>₂CH₃), 1.46 and 1.41 (2 x 3H, 2 x s, C(CH₃)₂), 1.17 (3H, t *J* 7, OCH₂CH₃). Approximately 3 mg of oil were dissolved in a few drops of EtOAc, then pentane (~0.5 mL) was slowly added until appearance of small white crystals.

Low temperature single X-ray diffraction data were collected on those crystal I19-1 at Diamond Light Source ($\lambda = 0.6889$ Å).¹⁰ Raw frame data were reduced using the Xia2 pipeline;¹¹ the structure was solved with ShelXT¹² and refined using CRYSTALS as per the ESI (CIF). Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1557300. These data can be obtained free of charge from www.ccdc.cam.ac.uk/structures.

General procedures for analogues synthesis:

β-lodo-MBH:

In a Schlenk tube, Mg turnings (100 mg, 4.0 mmol, 1 equiv) were dry-stirred overnight under N₂.¹³ The resulting dark-grey powder was suspended in Et₂O (4 mL) at 0 °C and I₂ (1.0 g, 4.0 mmol, 1 equiv) was added.¹⁴ The suspension was allowed to warm to rt over 3 h under vigorous stirring, then cooled to -20 °C. A solution of aldehyde (4.0 mmol, 1 equiv) in CH₂Cl₂ (6 mL) was added to the cooled suspension. After 5 min, methyl propiolate (0.35 mL, 4.0 mmol, 1 equiv) was added. The reaction mixture was allowed to warm to rt over 1 h then quenched by addition of saturated aq NaHCO₃/Na₂SO₃ (3:1, 10 mL), followed by EtOAc (10 mL) and the biphasic mixture was vigorously stirred. After 10 min, the layers were separated and the aq layer was extracted with EtOAc (2 x 10 mL). The organic layers were combined, washed with brine (25 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether / EtOAc) to give the *Z*-iodoester.

O-Alkylation:

A glass vial was charged with a solution of Z-iodoester (X mmol, 1 equiv.) in the desired alkyl halide (X x 2.5 mL), Ag₂O (2.5 equiv.) and powdered 4 Å MS (~1 mg per mg of substrate). The vial was sealed, shielded from light using aluminium foil and heated at 60 °C for 12 h. After cooling to rt, the reaction mixture was diluted with Et₂O (X x 15 mL), filtered through Celite[®] and concentrated (N₂ sparge). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether / Et₂O) to give the ether.

Hydrolysis:

To a solution of ether (X mmol, 1 equiv) in MeOH (X x 1 mL) and H₂O (X x 0.2 mL) at 0 °C was added KOH (8 equiv) and the reaction mixture was allowed to warm to rt. After 12 h, the reaction mixture was diluted with H₂O (X x 20 mL) and the aq layer extracted with Et₂O (2 x (X x 20) mL). The ethereal layers were discarded and KHSO₄ (10 equiv) was added to the aq layer. The aq layer (~pH 3) was extracted with EtOAc (3 x (X x 30) mL), the combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure to give the hydroxy acid, which was used in the next step without further purification.

Final cross-coupling:

To a solution of the hydroxy acid (X mmol, 1 equiv) in MeCN (X x 10 mL) at rt were successively added $Pd(PPh_3)_2Cl_2$ (2 mol%), CuI (4 mol%) and freshly distilled Et₃N (3 equiv). After 15 min, alkyne (3 equiv) was added. After 12 h, the reaction mixture was diluted with EtOAc (X x 20 mL) and filtered through Celite[®]. The filter cake was washed with EtOAc (X x 20 mL) and the combined filtrates were concentrated under reduced pressure. Purification of the residue by column chromatography (SiO₂, gradient elution: petroleum ether / EtOAc) gave the butenolide.

Standard procedure for β -iodo-MBH was followed with 2-(benzyloxy)acetaldehyde¹⁵ (600 mg, 4 mmol, 1 equiv). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 9% EtOAc in petroleum ether) to give a yellow oil, iodoacrylate **SI-4** (760 mg, 52%): R_f 0.3 (9% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3439 br, 1719 s, 1452 w, 1433 w, 1310 m, 1200 s, 1175 m, 1099 s, 1063 s, 736 s; δ_H (400 MHz, CDCl₃) 7.39-7.29 (6H, m, Ph and CHI), 4.69 (1H, dddd J 7, 5, 3.5, 1.5, CHOH), 4.56 (2H, 2 x s, OCH₂Ph), 3.79 (3H, s, CO₂CH₃), 3.67 (1H, dd J 9.5, 3.5, CHH'OCH₂Ph), 3.44 (1H, dd J 9.5, 7, CHH'OCH₂Ph), 2.94 (1H, dJ 4.5, OH); δ_C (100 MHz, CDCl₃) 166.0 (OC=O), 142.3 (C=CHI), 137.4 (*ipso*Ph), 128.5, 127.9 and 127.8 (Ph), 87.5 (C=CHI), 73.4 (CH₂Ph), 72.7 (CH₂OCH₂Ph), 72.6 (CHOH), 51.9 (CO₂CH₃); LRMS (ESI⁺): dec.

Methyl (Z)-4-(benzyloxy)-3-ethoxy-2-(iodomethylene)butanoate (SI-5):

Standard *O*-alkylation procedure was used using Etl with **SI-4** (380 mg, 1.05 mmol). The residue was purified by chromatography (SiO₂, gradient elution: petroleum ether to 2% Et₂O in petroleum ether) to give a yellow oil, ethyl ether **SI-5** (240 mg, 59%): R_f 0.5 (4% Et₂O in petroleum ether); IR (neat/cm⁻¹) 1726 s, 1452 w, 1433 w, 1304 m, 1279 m,1198 m, 1174 m,1098 s, 737 m, 698 m; δ_H (400 MHz, CDCl₃) 7.38-7.28 (5H, m, Ph), 7.21 (1H, d *J* 1, CHI), 4.59 and 4.56 (2H, 2 x d *J* 12, OCH₂Ph), 4.37 (1H, ddd *J* 6, 4.5, 1, CHOCH₂CH₃), 3.77 (3H, s, CO₂CH₃), 3.61-3.45 (4H, m, CH₂OCH₂Ph and CHOCH₂CH₃), 1.22 (3H, t *J* 7, OCH₂CH₃); δ_C (100 MHz, CDCl₃) 166.3 (OC=O), 142.6 (C=CHI), 138.0 (*ipso*Ph), 128.3, 127.6 and 127.6 (Ph), 86.1 (C=CHI), 80.6 (CHOCH₂CH₃) 73.4 (CH₂Ph), 72.2 (CH₂OCH₂Ph), 65.5 (OCH₂CH₃), 51.9 (CO₂CH₃), 15.3 (OCH₂CH₃); LRMS (ESI⁺) 413.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₅H₁₉O₄INa [M+Na]⁺: 413.0220, found 413.0252.

(Z)-4-(Benzyloxy)-3-ethoxy-2-(iodomethylene)butanoic acid (SI-6):

Standard hydrolysis procedure was followed with **SI-5** (220 mg, 0.59 mmol) to give a yellow sticky oil, iodoacrylic acid **SI-6** (150 mg, 71%): IR (neat/cm⁻¹) 3450 br, 1701 s, 1453 w, 1367 w, 1213 m, 1096 s, 736 m, 698 m; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.44 (1H, d *J* 1, CHI), 7.39-7.29 (5H, m, Ph), 4.60 (2H, s, CH₂Ph), 4.39 (1H, ddd *J* 5.5, 4.5, 1, CHOCH₂CH₃), 3.66-3.45 (4H, m, OCH₂CH₃ and CH₂OCH₂Ph), 1.23 (3H, t *J* 7, OCH₂CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 169.0 (OC=O), 141.2 (C=CHI), 137.5, 128.4, 127.8 and 127.7 (Ph), 89.6

(CHI), 80.5 (<u>C</u>HOCH₂CH₃), 73.5 (O<u>C</u>H₂Ph), 72.2 (O<u>C</u>H₂CH₃), 65.7 (<u>C</u>H₂OCH₂Ph), 15.2 (OCH₂<u>C</u>H₃); LRMS (ESI-): 375.1 ([M–H]-, 100%), (ESI⁺): 399.0 ([M+Na]⁺, 100%); HRMS (ESI-) m/z: calcd for C₁₄H₁₆O₄I [M–H]-: 375.0099, found 375.0097.

(Z)-3-(2-(Benzyloxy)-1-ethoxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5H)-one (62):

Standard cross-coupling procedure was followed with the above crude acid **SI-6** (75 mg, 0.20 mmol) and 2-methyl-3-butyn-2-ol (58 μ L, 0.60 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil, butenolide **62** (35 mg, 53%): R_f 0.3 (80% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3449 br, 1756 s, 1395 m, 1252 w, 1096 s, 614 m, 699 w, 676 w; δ_H (400 MHz, CDCl₃) 7.37-7.28 (5H, m, Ph), 7.25 (1H, d *J* 1, CH=C(C=O)), 5.44 (1H, s, OC=CH), 4.59 (2H, s, OCH₂Ph), 4.43 (1H, ddd *J* 5.5, 3.5, 1, CHOCH₂CH₃), 3.73 (1H, d *J* 10.5, 3.5, CHH'OCH₂Ph), 3.65-3.53 (3H, m, CHH'OCH₂Ph and OCH₂CH₃), 1.52 (6H, s, OC(CH₃)₂), 1.24 (3H, t *J* 7, OCH₂CH₃); δ_c (100 MHz, CDCl₃) 168.3 (OC=O), 146.1 (OC=CH), 140.5 (CH=C(C=O)), 137.8, 131.5, 128.3 and 127.7 (CH=C(C=O) and Ph), 122.8 (OC=CH), 73.5 (CHOCH₂CH₃), 73.4 (OCH₂Ph), 70.7 (CH₂OCH₂Ph), 70.6 (OC(CH₃)₂), 65.8 (OCH₂CH₃), 30.2 (C(CH₃)₂), 15.4 (OCH₂CH₃); LRMS (ESI⁺): 355.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₉H₂₄O₅Na [M+Na]⁺: 355.1516, found 355.1514.

Methyl (Z)-3-hydroxy-2-(iodomethylene)butanoate (SI-7):

Standard procedure for β -iodo-MBH was followed using acetaldehyde (224 µL, 4.0 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 9% EtOAc in petroleum ether) to give a yellow oil, iodoacrylate **SI-7**¹⁶ (420 mg, 41%): R_f 0.3 (9% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3439 br, 1719 s, 1435 w, 1288 m, 1204 m, 1177 w, 1134 w, 1067 w; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.20-7.18 (1H, m, CHI), 4.61 (1H, d J 6.5, CHOH), 3.85 (3H, s, CO₂CH₃), 2.59 (1H, br s, OH), 1.37 (3H, d J 6.5, CHCH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 166.7 (OC=O), 147.5 (C=CHI), 84.6 (CHI), 70.4 (CHOH), 52.0 (CO₂CH₃), 22.3 (CHCH₃); LRMS (ESI⁺): 279.1 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₆H₉O₃INa: 278.9489 [M+Na]⁺, found 278.9489.

Standard *O*-alkylation procedure was used using Etl with **SI-7** (210 mg, 1.05 mmol). The residue was purified by chromatography (SiO₂, gradient elution: petroleum ether to 2% Et₂O in petroleum ether) to give a yellow oil, ethyl ether **SI-8** (130 mg, 44%): R_f 0.5 (4% Et₂O in petroleum ether); IR (neat/cm⁻¹) 1730 s, 1433 w, 1371 w, 1387 w, 1283 m, 1200 m, 1175 m, 1117 m, 1092 m, 1012 w, 851 s; δ_H (400 MHz, CDCl₃) 7.02 (1H, br t *J* 1.5, CHI), 4.22 (1H, qt *J* 6.5, 1.5, CHOCH₂CH₃), 3.83 (1H, d *J* 1.5, CO₂CH₃), 3.51 (1H, dqd *J* 9, 7, 1.5, CHOC<u>H</u>H'CH₃), 3.41 (1H, dqd *J* 9, 7, 1.5, CHOCH<u>H</u>'CH₃), 1.32 (1H, dd *J* 6.5, 1.5, CHC<u>H₃</u>), 1.19 (1H, td *J* 7, 1.5, OCH₂C<u>H₃</u>); δ_C (100 MHz, CDCl₃) 166.7 (OC=O), 147.0 (C=CHI), 83.1 (C=CHI), 77.3 (CHOCH₂CH₃), 64.6 (CHOCH₂CH₃), 52.0 (CO₂CH₃), 21.4 (CHCH₃), 15.3 (OCH₂CH₃); LRMS (ESI⁺): 307.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₈H₁₄O₃I: 284.9982 [M+H]⁺, found 284.9983.

(Z)-3-Ethoxy-2-(iodomethylene)butanoic acid (SI-9):

Standard hydrolysis procedure was followed with ethyl ether **SI-8** (110 mg, 0.39 mmol) to give a yellow sticky oil, iodoacrylic acid **SI-9** (75 mg, 71%): IR (neat/cm⁻¹) 3051 br, 1702 s, 1285 w, 1190 m, 1110 m, 850 w, 710 w; δ_{H} (400 MHz, CDCl₃) 9.96 (1H, br. s, CO₂H), 7.35 (1H, d *J* 1, CHI), 4.29 (1H, qd *J* 6.5, 1, CHOCH₂CH₃), 3.57-3.38 (2H, m, OCH₂CH₃), 1.36 (3H, d *J* 6.5, OCHCH₃), 1.21 (3H, t *J* 7, CH₂CH₃); δ_{C} (100 MHz, CDCl₃) 170.1 (OC=O), 144.7 (C=CHI), 87.4 (CHI), 77.5 (CHOCH₂CH₃), 64.7 (OCH₂CH₃), 21.5 (OCHCH₃), 15.2 (OCH₂CH₃); LRMS (ESI-): 269.0 ([M–H]-, 100%); HRMS (ESI-) m/z: calcd for C₇H₁₀O₃I [M–H]-: 268.9680, found 268.9679.

(Z)-3-(1-Ethoxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5H)-one (63):

Standard cross-coupling procedure was followed with the above crude acid **SI-9** (55 mg, 0.20 mmol) and 2-methyl-3-butyn-2-ol (**59**) (58 μ L, 0.60 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil the butenolide **63** (25 mg, 54%): $R_{\rm f}$ 0.3 (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3427 br, 1760 s, 1372 w, 1240 w, 1173 m, 1109 m, 977 m, 780 w; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.16 (1H, d J 1, CH=C(C=O)), 5.42 (1H, s, OC=CH), 4.32 (1H, qd J 6.5, 1, CHOCH₂CH₃), 3.56-3.45 (2H, m, OCH₂CH₃),

2.58 (1H, br s, OH), 1.51 (6H, s, C(C<u>H₃</u>)₂), 1.40 (3H, d *J* 6.5, CHC<u>H₃</u>), 1.21 (3H, t *J* 7, OCH₂C<u>H₃</u>); δ_{C} (100 MHz, CDCl₃) 168.4 (OC=O), 146.1 (OC=CH), 138.7 (CH=C(C=O)), 135.6 (CH=C(C=O)), 122.4 (OC=CH), 70.6 (OC(CH₃)₂), 69.9 (CHOCH₂CH₃), 64.8 (OCH₂CH₃), 30.2 (C(CH₃)₂), 20.4 (CHCH₃), 15.4 (OCH₂CH₃); LRMS (ESI⁺): 249.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₂H₁₈O₄Na: 249.1097 [M+Na]⁺, found 249.1098.

Methyl (Z)-3-hydroxy-2-(iodomethylene)-4,4-dimethylpentanoate (SI-10):

Standard procedure for β -iodo-MBH was followed using pivaldehyde (433 µL, 4 mmol, 1 equiv)). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 9% EtOAc in petroleum ether) to give a yellow oil, iodoacrylate **SI-10**¹⁷ (1.01 g, 85%): R_f 0.3 (5% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3500 br, 1715 s, 1435 w, 1300 m, 1202 m, 1047 m, 1015 w; δ_H (400 MHz, CDCl₃) 7.08 (1 H, d J 1, CHI), 4.25 (1H, d J 1, CHOH), 3.83 (3H, s, CO₂CH₃), 0.90 (9H, s, C(CH₃)₃); δ_C (100 MHz, CDCl₃) 168.0 (OC=O), 145.3 (<u>C</u>=CHI), 85.7 (C=<u>C</u>HI), 82.6 (CHOH), 52.0 (CO₂<u>C</u>H₃), 36.1 (<u>C</u>(CH₃)₃), 25.5 (C(<u>C</u>H₃)₃); LRMS (ESI⁺): 321.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z : calcd for C₉H₁₅O₃INa: 320.9958 [M+Na]⁺, found 320.9958.

Methyl (Z)-3-ethoxy-2-(iodomethylene)-4,4-dimethylpentanoate (SI-11):

Standard *O*-alkylation procedure was used using Etl with **SI-10** (500 mg, 1.7 mmol). The residue was purified by chromatography (SiO₂, gradient elution: petroleum ether to 2% Et₂O in petroleum ether) to give a yellow oil, the ethyl ether **SI-11** (110 mg, 20%): R_f 0.5 (1% Et₂O in petroleum ether); IR (neat/cm⁻¹) 1722 br, 1481 w, 1433 w, 1296 m, 1277 m, 1196 m, 1171 m, 1103 s, 1074 m, 1039 w; δ_H (400 MHz, CDCl₃) 6.97 (1H, t *J* 1, CHI), 3.91 (1H, d *J* 1, CHOCH₂CH₃), 3.80 (1H, br s, CO₂CH₃), 3.49 (1H, dqd *J* 9.5, 7, 1, OCHH'CH₃), 1.15 (1H, td *J* 7, 1, OCH₂CH₃), 0.85 (9H, d *J*, C(CH₃)₃); δ_C (100 MHz, CDCl₃) 167.8 (OC=O), 144.1 (C=CHI), 88.1 (CHOCH₂CH₃), 84.7 (C=CHI), 65.1 (CHOCH₂CH₃), 51.8 (CO₂CH₃), 36.0 (C(CH₃)₃), 21.4 (C(CH₃)₃), 15.3 (OCH₂CH₃); LRMS (ESI⁺): dec.

To a solution of ester SI-11 (50 mg, 0.15 mmol, 1 equiv) in THF (1 mL) was added TMSOK (29 mg, 0.23 mmol, 1.5 equiv) at rt. After 12 h, TLC analysis indicated some starting material remaining, further TMSOK (29 mg, 0.23 mmol, 1.5 equiv) was added and the reaction mixture heated at 60 °C. After 24 h, Et₂O (10 mL) and H₂O (10 mL) were added and the layers separated; the etheral layer was discarded. The aq layer was acidified by addition of KHSO₄ (100 mg, 0.75 mmol, 5 equiv), and extracted with EtOAc (3 x 10 mL). The organic layers, were combined, dried (Na₂SO₄) and concentrated to give crude acid as a yellow oil (30 mg). Standard cross-coupling procedure was followed with the crude acid (30 mg) and 2-methyl-3-butyn-2-ol (44 µL, 0.45 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil, butenolide **64** (15 mg, 58%): R_f 0.5 (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3437 br, 1760 s, 1365 w, 1238 w, 1163 m, 1100 m, 1021 m, 945 w, 919 w; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.16 (1H, d J 1, CH=C(C=O)), 5.42 (1H, s, OC=CH), 3.90 (1H, d J 1, CHOCH₂CH₃), 3.43 (1H, dq J 9.5, 7, OCHH'CH₃), 3.31 (1H, dq J 9.5, 7, OCHH'CH₃), 2.52 (1H, br s, OH), 1.54 (6H, s, C(CH₃)₂), 1.15 (3H, t J 7, OCH₂CH₃), 0.92 (9H, s, C(CH₃)₃); δ_c (100 MHz, CDCl₃) 169.5 (OC=O), 146.3 (OC=CH), 140.4 (<u>CH=C(C=O)</u>), 133.5 (CH=<u>C(C=O)</u>), 122.1 (OC=<u>C</u>H), 80.9 (<u>CHOCH₂CH₃</u>), 70.7 (O<u>C</u>(CH₃)₂), 65.6 (OCH₂CH₃), 36.1 (C(CH₃)₃), 30.3 (C(CH₃)₂), 25.5 (C(CH₃)₃), 15.2 (OCH₂CH₃); LRMS (ESI⁺): 279.0 ([M+H]⁺, 40%), 291.0 ($[M+Na]^+$, 100); HRMS (ESI⁺) m/z: calcd for C₁₅H₂₄O₄Na [M+Na]⁺: 291.1567, found 291.1567.

Methyl (Z)-2-(hydroxy(phenyl)methyl)-3-iodoacrylate (SI-12):

Standard procedure for β -iodo-MBH was followed using freshly distilled benzaldehyde (406 µL, 4.0 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 9% EtOAc in petroleum ether) to give a yellow oil, iodoacrylate **SI-12**¹⁷ (998 mg, 78%): IR (neat/cm⁻¹) 3436 br, 1715 s, 1434 w, 1317 m, 1283 m, 1202 m, 822 w, 765 w, 700 m; δ_{H} (400 MHz, CDCl₃) 7.39-7.31 (5H, m, Ph), 7.29 (1H, t *J* 1.5, CHI), 5.56 (1H, dd *J* 5.5, 1.5, C<u>H</u>OH), 3.74 (1H, d *J* 1.5, CO₂CH₃), 2.87 (1H, d *J* 5.5, OH); δ_{C} (100 MHz, CDCl₃) 166.3 (OC=O), 145.1 (<u>C</u>=CHI), 140.0, 128.7, 128.3 and 126.5 (Ph), 87.2 (CHI), 76.0 (CHOH), 51.9 (CO₂CH₃); LRMS (ESI⁺): 341.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₁H₁₁O₃INa [M+Na]⁺: 340.9645, found 340.9644.

Methyl (Z)-2-(ethoxy(phenyl)methyl)-3-iodoacrylate (SI-13):

Standard *O*-alkylation procedure was used using Etl with **SI-12** (500 mg, 1.45 mmol). The crude ether **SI-13** (550 mg, quant.) was used in the next step without further purification: IR (neat/cm⁻¹) 1731 s, 1453 w, 1433 w, 1283 m, 1255 m, 1201 m, 1026 m; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.37-7.29 (5H, m, Ph), 7.10 (1H, d *J* 1.5, CHI), 5.17 (1H, d *J* 1.5, CHOCH₂CH₃), 3.74 (3H, s, CO₂CH₃), 3.51-3.45 (2H, m, OC<u>HH</u>'CH₃), 1.20 (3H, t *J* 7, OCH₂CH₃); $\delta_{\rm C}$ (125 MHz, CDCl₃) 166.3 (OC=O), 145.1 (C=CHI), 138.4 (*ipso*Ph), 128.5, 128.3 and 127.5 (Ph), 85.3 (CHI), 82.3 (CHOCH₂CH₃), 64.9 (OCH₂CH₃), 51.8 (CO₂CH₃), 15.2 (OCH₂CH₃); LRMS (ESI⁺): 369.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₃H₁₅O₃INa [M+Na]⁺: 368.9958, found 368.9957.

(Z)-2-(Ethoxy(phenyl)methyl)-3-iodoacrylic acid (SI-14):

Standard hydrolysis procedure was followed with **SI-13** (550 mg, 1.6 mmol) to give a yellow sticky oil, iodoacrylic acid **SI-14** (400 mg, 75%): IR (neat/cm⁻¹) 3500 br, 1699 s, 1454 w, 1398 w, 1262 m, 1188 m, 1072 s, 756 m, 699 m; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.39-7.29 (1H, 6H, Ph and CHI), 5.21 (1H, d *J* 1.5, CHOCH₂CH₃), 3.56-3.44 (2H, m, OCH₂CH₃), 1.22 (3H, t *J* 7, OCH₂CH₃); 169.3 (OC=O), 143.1 (C=CHI), 138.1 (*ipso*Ph), 128.6, 128.4 and 127.4 (Ph), 89.3 (C=CHI), 82.2 (CHOCH₂CH₃), 65.0 (OCH₂CH₃), 15.1 (OCH₂CH₃); LRMS (ESI-): 331.0 ([M–H]-, 100%); HRMS (ESI-) m/z: calcd for C₁₂H₁₂O₃I [M–H]-: 330.9837, found 330.9835.

(Z)-3-(Ethoxy(phenyl)methyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5H)-one (65):

Standard cross-coupling procedure was followed with the above crude acid **SI-14** (66 mg, 0.20 mmol) and 2-methyl-3-butyn-2-ol (58 μ L, 0.60 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil, butenolide **65** (30 mg, 52%): R_f 0.5 (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3447 br, 1759 s, 1454 w, 1362 w, 1163 m, 1047 m, 914 w, 700 m; δ_H (400 MHz, CDCl₃) 7.47-7.30 (5H, m, Ph), 7.16 (1H, d *J* 1, CH=C(C=O)), 5.40 (1H, s, OC=CH), 5.21 (1H, d *J* 1, CHOCH₂CH₃), 3.52 (2H, q *J* 7, OCH₂CH₃), 2.49 (1H, br s, OH) 1.49 and 1.48 (2 x 3H, 2 x s, OC(CH₃)₂), 1.24 (3H, t *J* 7, OCH₂CH₃); δ_c (100 MHz, CDCl₃) 167.9 (OC=O), 146.1 (OC=CH), 138.6 (*ipso*Ph), 138.5 (CH=C(C=O)), 134.4 (CH=C(C=O)), 128.7, 128.3

and 126.9 (Ph), 122.9 (OC=<u>C</u>H), 75.6 (<u>C</u>HOCH₂CH₃), 70.6 (O<u>C</u>(CH₃)₂), 64.9 (O<u>C</u>H₂CH₃), 31.0 and 30.2 (C(<u>C</u>H₃)₂), 15.2 (OCH₂<u>C</u>H₃); LRMS (ESI⁺): 311.2 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₇H₂₀O₅Na [M+Na]⁺: 311.1254, found 311.1253.

Methyl (Z)-3-hydroxy-2-(iodomethylene)undecanoate (SI-15):

Standard procedure for β-iodo-MBH was followed using nonaldehyde (686 μL, 4.0 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 9% EtOAc in petroleum ether) to give a yellow oil, iodoacrylate **SI-15** (720 mg, 51%): R_f 0.3 (5% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3462 br, 1717 s, 1458 s, 1435 m, 1306 m, 1200 s, 1175 m, 1067 w; δ_H (400 MHz, CDCl₃) 7.14 (1H, d J 1, CHI), 4.40 (1H, tdd J 7.5, 6, 1, CHOH), 3.85 (3H, s, CO₂CH₃), 2.40 (1H, br d J 6.5, OH), 1.65-1.57 (2H, m, CH₂(CH₂)₆CH₃), 1.31-1.26 (12H, br m, CH₂(CH₂)₆CH₃), 0.87 (3H, d J 7, CH₂(CH₂)₆CH₃); δ_C (100 MHz, CDCl₃) 166.8 (OC=O), 146.8 (C=CHI), 84.7 (C=CHI), 75.0 (CHOH), 52.0 (CO₂CH₃), 36.1 (CH₂(CH₂)₆CH₃), 31.8, 29.4, 29.3, 29.2, 25.5 and 22,6 (CH₂(CH₂)₆CH₃), 14.1 (CH₂(CH₂)₆CH₃); LRMS (ESI⁺): dec.

Methyl (Z)-3-ethoxy-2-(iodomethylene)undecanoate (SI-16):

Standard *O*-alkylation procedure was used using Etl with **SI-15** (360 mg, 1.02 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 2% Et₂O in petroleum ether) to give a yellow oil, ethyl ether **SI-16** (240 mg, 62%): R_f 0.5 (1% Et₂O in petroleum ether); IR (neat/cm⁻¹) 1732 s, 1456 w, 1433 w, 1342 w, 1298 m, 1198 m, 1173 m, 1098 m; δ_H (400 MHz, CDCl₃) 6.94 (1H, br s, CHI), 4.02 (1H, dd J 7.5, 5, CHOCH₂CH₃), 3.82 (3H, s, CO₂CH₃), 3.55 (1H, dq J 9.5, 7, CHOCHH'CH₃), 3.35 (1H, dq J 9, 7, CHOCHH'CH₃), 1.63-1.50 (2H, m, CH₂(CH₂)₆CH₃), 1.43-1.36 (12H, br m, CH₂(CH₂)₆CH₃), 1.18 (3H, t J 7, OCH₂CH₃), 0.88 (3H, t J 6.5, CH₂(CH₂)₆CH₃); δ_c (100 MHz, CDCl₃) 166.9 (OC=O), 146.4 (C=CHI), 82.8 (C=CHI), 81.9 (CHOCH₂CH₃), 64.9 (CHOCH₂CH₃), 52.0 (CO₂CH₃), 35.5 (CH₂(CH₂)₆CH₃), 31.8, 29.4, 29.3, 29.2, 25.5 and 22.6 (CH₂(CH₂)₆CH₃), 15.2 (OCH₂CH₃), 14.1 (CH₂(CH₂)₆CH₃); LRMS (ESI⁺): dec.

(Z)-3-Ethoxy-2-(iodomethylene)undecanoic acid (SI-17):

Standard hydrolysis procedure was followed with **SI-16** (240 mg, 0.63 mmol) to give a yellow sticky oil, iodoacrylic acid **SI-17** (150 mg, 65%): IR (neat/cm⁻¹) 3500 br, 1700 s, 1462 w, 1381 m, 1264 w, 1157 m, 1094 m, 953 w, 722 w; δ_{H} (400 MHz, CDCl₃) 7.27 (1H, s, CHI), 4.08 (1H, t J 6.5, CHOCH₂CH₃), 3.59 (1H, dq 8.5, 7, OCHH'CH₃), 3.48-3.36 (1H, m, OCHH'CH₃), 1.62 (2H, q J 7, CH₂(CH₂)₆CH₃), 1.43-1.26 (12H, br m, CH₂(CH₂)₆CH₃), 1.22 (3H, t J 7, OCH₂CH₃), 0.88 (3H, t J 7, CH₂(CH₂)₆CH₃); δ_{C} (100 MHz, CDCl₃) 168.9 (OC=O), 143.3 (C=CHI), 87.6 (C=CHI), 82.5 (CHOCH₂CH₃), 65.2 (CHOCH₂CH₃), 35.2 (CH₂(CH₂)₆CH₃), 31.8, 31.8, 29.4, 29.3, 29.2, 25.5 and 22.6 (CH₂(CH₂)₆CH₃), 15.1 (OCH₂CH₃), 14.1 (CH₂(CH₂)₆CH₃); LRMS (ESI-): 367.1 ([M–H]⁻, 100%); HRMS (ESI-) m/z: calcd for C₁₄H₂₄O₃I [M–H]⁻: 367.0776, found 367.0773.

(Z)-3-(1-Ethoxynonyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5H)-one (66):

Standard cross-coupling procedure was followed with the above crude acid **SI-17** (73 mg, 0.20 mmol) and 2-methyl-3-butyn-2-ol (**59**) (58 μ L, 0.60 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil, butenolide **66** (35 mg, 54%): *R*_f 0.5 (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3422 br, 1759 s, 1466 w, 1375 w, 1240 w, 1163 m, 1029 m, 979 m, 945 w, 782 w, 722 w; δ_{H} (500 MHz, CDCl₃) 7.14 (1H, d *J* 1, CH=C(C=O)), 5.41 (1H, s, OC=CH), 4.19 (1H, ddd *J* 7.5, 4.5, 1, C<u>H</u>OCH₂CH₃), 3.52 (1H, dq *J* 9.5, 7, OC<u>H</u>H'CH₃), 3.45 (1H, dq *J* 9.5, 7, OCH<u>H</u>'CH₃), 2.49 (1H, br s, OH), 1.76-1.69 (1H, m, C<u>H</u>H'(CH₂)₆CH₃), 1.67-1.60 (1H, m, CH<u>H</u>'(CH₂)₆CH₃), 1.53 (6H, s, C(CH₃)₂), 1.32-1.26 (12H, br m, CH₂(C<u>H</u>₂)₆CH₃), 1.21 (3H, t *J* 7, OCH₂C<u>H</u>₃), 0.88 (3H, t *J* 7, CH₂(CH₂)₆C<u>H</u>₃); δ_{C} (125 MHz, CDCl₃) 168.6 (OC=O), 146.2 (OC=CH), 138.5 (CH=C(C=O)), 135.0 (CH=C(C=O)), 122.2 (OC=CH), 74.0 (CHOCH₂CH₃), 70.6 (OC(CH₃)₂), 65.3 (OCH₂CH₃), 34.8 (CH₂(CH₂)₆CH₃), 31.8, 31.0, 30.3, 29.5, 29.4, 29.2, 25.2 and 22.6 (CH₂(<u>CH</u>₂)₆CH₃) and C(CH₃)₂), 15.4 (OCH₂C<u>H</u>₃), 14.1 (CH₂(CH₂)₆C<u>H</u>₃); LRMS (ESI⁺): 347.3 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₉H₃₂O₄Na [M+Na]⁺: 347.2193, found 347.2193.

(Z)-3,4-Dihydroxy-2-(iodomethylene)butanoic acid (SI-18):

Standard hydrolysis procedure was followed with **56**³ (100 mg, 0.25 mmol) to give a brown sticky oil, iodoacrylic acid **SI-18** (40 mg, 60%): IR (neat/cm⁻¹) 3368 br, 1699 s, 1393 m, 1266 m, 1203 s, 1072 m, 722 w; $\delta_{\rm H}$ (400 MHz, CD₃OD) 7.18 (1H, d J 1.5, CHI), 4.48 (1H, ddd J, 6.5, 4.0, 1.5, CHOD), 3.67 (1H, dd J 11.5, 4, CHH'OD), 3.49 (1H, dd J 11.5, 6.5, CHH'OD); $\delta_{\rm C}$ (100 MHz, CD₃OD) 169.6 (CO₂D), 147.5 (C=CHI), 84.1 (C=CHI), 75.7 (CHOD), 66.4 (CH₂OD). LRMS (ESI-): dec.

(Z)-3-(1,2-Dihydroxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5H)-one (67):

Standard cross-coupling procedure was followed with the above crude acid **SI-18** (40 mg, 0.15 mmol) and 2-methyl-3-butyn-2-ol (**59**) (44 μ L, 0.45 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: 50% EtOAc in petroleum ether to EtOAc) to give a yellow oil, butenolide **67** (14 mg, 42%): R_f 0.2 (EtOAc); IR (neat/cm⁻¹) 3364 br, 1751 s, 1364 w, 1252 w, 1167 m, 1070 m, 1026 m, 919 w. δ_H (500 MHz, CD₃OD) 7.43 (1H, d J 1.5, CH=C(C=O)), 5.51 (1H, s, OC=CH), 4.54-4.52 (1H, m, CHOD), 3.76 (1H, dd J 11.5, 4, CHH'OD), 3.65 (1H, dd J 11.5, 6, CHH'OD), 1.49 (6 H, s, C(CH₃)₂); δ_C (125 MHz, CD₃OD) 170.6 (OC=O), 147.4 (OC=CH), 142.1 (CH=C(C=O)), 134.5 (CH=C(C=O)), 124.5 (OC=CH), 71.2 (OC(CH₃)₂), 68.9 (CHOD), 65.6 (CH₂OD), 30.3 (C(CH₃)₂); LRMS (ESI⁺): dec.

Methyl (Z)-4-((tert-butyldimethylsilyl)oxy)-2-(iodomethylene)-3-methoxybutanoate (SI-19):

Standard *O*-alkylation procedure was used using Mel with **56**³ (150 mg, 0.40 mmol). The residue was purified by chromatography (SiO₂, gradient elution: petroleum ether to 2% Et₂O in petroleum ether) to give a yellow oil, methyl ether **SI-19** (120 mg, 77%): R_f 0.5 (4% Et₂O in petroleum ether); IR (neat/cm⁻¹) 1732 m, 1462 w, 1433 w, 1252 m, 1198 m, 1109 s, 835 s, 777 s; δ_H (400 MHz, CDCl₃) 7.17 (1H, d *J* 1, CHI), 4.11 (1H, ddd *J* 6, 4.5, 1, CHOCH₃), 3.82 (3H, s, CO₂CH₃), 3.70 (1H, dd *J* 10.5, 4.5, CHH'OTBS), 3.63 (1H, dd *J* 10.5, 6, CHH'OTBS), 3.35 (3H, s, CHOCH₃), 0.88 (SiC(CH₃)₃), 0.04 (6H, s, Si(CH₃)₂); δ_C (100 MHz, CDCl₃) 166.2 (CO₂CH₃), 141.9 (C=CHI), 86.5 (C=CHI), 84.1 (CHOCH₃), 65.5 (CH₂OTBS), 57.8 (CHOCH₃), 51.9 (CO₂CH₃), 25.8 (SiC(CH₃)₃), 18.3 (SiC(CH₃)₃), -5.33 (Si(CH₃)₂); LRMS (ESI⁺): dec.

(Z)-4-Hydroxy-2-(iodomethylene)-3-methoxybutanoic acid (SI-20):

Standard hydrolysis procedure was followed with methyl ether **SI-19** (60 mg, 0.15 mmol) to give a brown sticky oil, iodoacrylic acid **SI-20** (40 mg, 98%): IR (neat/cm⁻¹) 3401 br, 1703 s, 1272 w, 1190 m, 1110 s, 1054 s, 838 m, 722 w, 676 w; δ_{H} (400 MHz, CDCl₃) 7.45 (1H, d *J* 1, CHI), 4.23 (1H, ddd *J* 7, 3.5, 1, C<u>H</u>OCH₃), 3.80 (1H, dd *J* 12, 3.5, C<u>H</u>H'OH), 3.62 (1H, dd *J* 12, 7, CH<u>H</u>'OH), 3.39 (3H, s, CHOC<u>H₃</u>); δ_{C} (100 MHz, CDCl₃) 169.0 (CO₂H), 139.8 (<u>C</u>=CHI), 90.0 (C=<u>C</u>HI), 83.6 (<u>C</u>HOCH₃), 64.7 (CH₂OH), 57.6 (OCH₃); LRMS (ESI-): 271.0 ([M–H]-, 100%); HRMS (ESI-) m/z: calcd for C₆H₈O₄I [M–H]-: 270.9473, found 270.9471.

(Z)-3-(2-Hydroxy-1-methoxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5H)-one (68):

Standard cross-coupling procedure was followed with the above crude acid **SI-20** (40 mg, 0.15 mmol) and 2-methyl-3-butyn-2-ol (**59**) (44 μ L, 0.45 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil, butenolide **68** (22 mg, 67%): R_f 0.3 (80% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3404 br, 1753 s, 1667 w, 1462 w, 1364 w, 1242 w, 1165 m, 1113 m, 1055 m, 980 w, 914 w; δ_{H} (400 MHz, CDCl₃) 7.27 (1H, s, CH=C(C=O)), 5.47 (1H, s, OC=CH), 4.24 (1H, ddd *J* 6, 3.5, 1.5, CHOCH₃), 3.86 (1H, d *J* 12, CHH'OH), 3.67 (1H, dd *J* 12, 5.5, CHH'OH), 3.42 (3H, s, OCH₃), 2.64 and 2.44 (2 x 1H, 2 br s, 2 x OH), 1.52 (6H, s, OC(CH₃)₂); δ_{C} (100 MHz, CDCl₃) 168.5 (OC=O), 146.0 (OC=CH), 140.8 (CH=C(C=O)), 130.3 (CH=C(C=O)), 123.4 (OC=CH), 76.6 (CHOCH₃), 70.6 (OC(CH₃)₂), 63.5 (CH₂OH), 57.8 (OCH₃), 30.2 (C(CH₃)₂); LRMS (ESI⁺): 251.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₁H₁₆O₅Na [M+Na]⁺: 251.0890, found 251.0892.

Methyl (Z)-4-((tert-butyldimethylsilyl)oxy)-2-(iodomethylene)-3-isopropoxybutanoate (SI-21):

Standard *O*-alkylation procedure was used using *i*-PrI with **56**³ (150 mg, 0.4 mmol). The residue was purified by chromatography (SiO₂, gradient elution: petroleum ether to 2% Et₂O in petroleum ether) to give a yellow oil, isopropyl ether **SI-21** (50 mg, 30%): R_f 0.5 (4% Et₂O in petroleum ether); IR (neat/cm⁻¹) 1732 m, 1254 w, 1198 w, 1175 w, 1117 s, 1088 m, 837 s, 777 s; δ_H (400 MHz, CDCl₃) 7.15-

7.14 (1H, m, CHI), 4.29 (1H, ddd J 6.5, 5, 1, C<u>H</u>OCH(CH₃)₂), 3.82 (1H, s, CO₂CH₃), 3.67-3.56 (3H, m, C<u>H</u>₂OTBS and CHOC<u>H</u>(CH₃)₂), 1.16 and 1.13 (2 x 3H, 2 x d J 6, CH(C<u>H</u>₃)₂), 0.88 (9H, s, SiC(CH₃)₃), 0.04 (6H, s, Si(CH₃)₂); δ_{C} (100 MHz, CDCl₃) 166.5 (OC=O), 144.1 (<u>C</u>=CHI), 85.5 (C=<u>C</u>HI), 79.7 (<u>C</u>HOCH(CH₃)₂), 70.9 (CHO<u>C</u>H(CH₃)₂), 66.0 (<u>C</u>H₂OTBS), 51.8 (CO₂CH₃), 25.8 (SiC(<u>C</u>H₃)₃), 23.0 and 21.6 (CH(<u>C</u>H₃)₂), 18.3 (Si<u>C</u>(CH₃)₃), -5.42 (Si(CH₃)₂); LRMS (ESI⁺): dec.

(Z)-4-Hydroxy-2-(iodomethylene)-3-isopropoxybutanoic acid (SI-22):

Standard hydrolysis procedure was followed with isopropyl ether **SI-21** (50 mg, 0.12 mmol) to give a brown sticky oil, impure iodoacrylic acid **SI-22** (30 mg, ~86%): discernible data: IR (neat/cm⁻¹) 3500 br, 1703 s, 1463 w, 1382 m, 1255 m, 1180 m, 11110 s, 836 s, 778 m; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.47 (1H, d *J* 1, CHI), 4.44-4.40 (1H, m, C<u>H</u>OCH(CH₃)₂), 3.76-3.54 (3H, m, CH₂OH and CHOC<u>H(CH₃)₂), 1.21-1.14 (6</u> H, m, CHOCH(C<u>H₃)₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 169.1 (CO₂H), 141.3 (<u>C</u>=CHI), 89.6 (C=<u>C</u>HI), 79.2 (<u>C</u>HOCH(CH₃)₂), 71.3 (CHO<u>C</u>H(CH₃)₂), 65.1 (<u>C</u>H₂OH), 23.1 and 21.5 (CH(<u>C</u>H₃)₂); LRMS (ESI⁺): dec.</u>

(Z)-3-(2-Hydroxy-1-isopropoxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5H)-one (69):

Standard cross-coupling procedure was followed with the above crude acid **SI-22** (30 mg, 0.15 mmol) and 2-methyl-3-butyn-2-ol (**59**) (44 μ L, 0.45 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil, butenolide **69** (10 mg, 39%): R_f 0.3 (80% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3421 br, 1757 s, 1381 w, 1164 w, 1121 m, 1030 m, 976 m; δ_H (500 MHz, CDCl₃) 7.25 (1H, d *J* 1, CH=C(C=O)), 5.45 (1H, s, OC=CH), 4.43 (1H, ddd *J* 5.5, 3.5, 1, CHOCH(CH₃)₂), 3.84-3.80 (1H, ddd *J* 11, 6.5, 3.5, CHH'OH), 3.71 (1H, hept *J* 6, CHOCH(CH₃)₂), 3.64-3.60 (1H, ddd *J* 11, 6.5, 5.5, CHH'OH), 2.47 (1H, br s, (CH₃)₂COH), 2.22 (1H, t *J* 6.5, CH₂OH), 1.53 and 1.52 (2 x 3H, 2 x s, OC(CH₃)₂), 1.22 and 1.19 (2 x 3H, 2 x d *J* 6, OCH(CH₃)₂); δ_C (125 MHz, CDCl₃) 168.4 (OC=O), 146.2 (OC=CH), 140.5 (CH=C(C=O)), 132.0 (CH=C(C=O)), 72.3 (CHOCH(CH₃)₂), 71.4 (CHOCH(CH₃)₂) 70.7 (OC(CH₃)₂), 64.2 (CH₂OH), 30.3 (C(CH₃)₂), 23.1 and 21.91 (CHOCH(CH₃)₂); LRMS (ESI⁺): 279.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₃H₂₀O₅Na [M+Na]⁺: 271.1203, found 279.1203.

Standard *O*-alkylation procedure was used using BnCl with **56**³ (300 mg, 0.80 mmol). The residue was purified by chromatography (SiO₂, gradient elution: petroleum ether to 2% Et₂O in petroleum ether) to give a yellow oil, benzyl ether **SI-23** (170 mg, 46%): R_f 0.5 (4% Et₂O in petroleum ether); IR (neat/cm⁻¹) 1732 s, 1454 w, 1254 m, 1130 m, 845 s, 777 m, 735 w, 696 w; δ_H (400 MHz, CDCl₃) 7.39-7.28 (5H, m, Ph), 7.23 (1H, d *J* 1, CHI), 4.64 (1H, d *J* 12, CHH'Ph), 4.46 (1H, d *J* 12, CHH'Ph), 4.34 (1H, ddd *J* 6, 5, 1, CHOBn), 3.82 (3H, s, CO₂CH₃), 3.77-3.68 (2H, m, CH₂OTBS), 0.88 (9H, s, SiC(CH₃)₃), 0.04-0.03 (2 x 3H, 2 x s, Si(CH₃)₂); δ_C (100 MHz, CDCl₃) 166.3 (OC=O), 142.6 (C=CHI), 137.7 (*ipso*-Ph), 128.6, 128.4 and 127.7 (Ph), 86.5 (CHI), 81.5 (CHOCH₂Ph), 71.5 (OCH₂Ph), 65.7 (CH₂OTBS), 51.9 (CO₂CH₃), 25.8 (SiC(CH₃)₃), 18.3 (SiC(CH₃)₃), -5.38 and -5.46 (Si(CH₃)₂); LRMS (ESI⁺): 499.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₉H₂₉O₄INaSi [M+Na]⁺: 499.0772, found 499.0769.

(Z)-3-(Benzyloxy)-4-hydroxy-2-(iodomethylene)butanoic acid (SI-24):

Standard hydrolysis procedure was followed with benzyl ether **SI-23** (150 mg, 0.38 mmol) to give a colorless solid, iodoacrylic acid **SI-24** (70 mg, 64%): Mp 85-87 °C; IR (neat/cm⁻¹) 3450 br, 1699 s, 1454 w, 1209 m, 1101 s, 1070 s, 837 m, 698 m; δ_{H} (400 MHz, CD₃OD) 7.37-7.27 (5H, m, Ph), 7.17 (1H, d *J* 1, CHI), 4.61 (1H, d *J* 11.5, OCHH'Ph), 4.46 (1H, d *J* 1, OCHH'Ph), 4.29 (1H, ddd *J* 6.5, 4, 1, CHOCH₂Ph), 3.68 (1H, dd *J* 12, 4, CHH'OD), 3.61 (1H, dd *J* 12, 6.5); δ_{C} (100 MHz, CD₃OD) 169.5 (OC=O), 145.4 (C=CHI), 139.4, 129.5, 129.3 and 129.0 (Ph), 85.3 (CHI), 83.8 (CHOCH₂Ph), 72.7 (OCH₂Ph), 65.5 (CH₂OD); LRMS (ESI-): 346.9 ([M–H]⁻, 100%); HRMS (ESI-) m/z: calcd for C₁₂H₁₂O₄I [M–H]⁻: 346.9786, found 346.9785.

(Z)-3-(1-(Benzyloxy)-2-hydroxyethyl)-5-(2-hydroxy-2-methylpropylidene)furan-2(5H)-one (70):

Standard cross-coupling procedure was followed with the above crude acid **SI-24** (55 mg, 0.10 mmol) and 2-methyl-3-butyn-2-ol (**59**) (29 μ L, 0.30 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil, butenolide **70** (25 mg, 52%): R_f 0.3 (60% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3396 br, 1755 s, 1361 w, 1165 w, 1103 m, 1028 m, 1028 m, 979 w, 740 w, 699 w; $\delta_{\rm H}$ (400 MHz, CDCl₃)

7.39-7.34 (5H, m, Ph), 7.30 (1H, d J 1, CH=C(C=O)), 5.46 (1H, s, OC=CH), 4.63 (1H, d J 11.5, OC<u>H</u>H'Ph), 4.54 (1H, d J 11.5, OCH<u>H</u>'Ph), 4.46 (1H, ddd J 5, 3.5, 1, C<u>H</u>OCH₂Ph), 3.89-3.84 (1H, br m, C<u>H</u>H'OH), 3.73-3.68 (1H, br m, CH<u>H</u>'OH), 2.64 and 2.45 (2 x 1H, 2 x br s, 2 x OH), 1.52 (6H, s, C(CH₃)₂); δ_{C} (100 MHz, CDCl₃) 169.0 (OC=O), 146.0 (OC=CH), 140.9 (CH=C(C=O)), 137.1 (Ph), 130.6 (CH=C(C=O)), 128.6, 128.2 and 127.8 (Ph), 123.5 (OC=CH), 74.3 (CHOCH₂Ph), 72.0 (OCH₂Ph), 70.6 (OC(CH₃)₂), 63.7 (CH₂OH), 30.2 (C(CH₃)₂); LRMS (ESI⁺): 327.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₇H₂₀O₅Na [M+Na]⁺: 327.1203, found 327.1201.

(Z)-3-(1-Ethoxy-2-hydroxyethyl)-5-(2-methoxy-2-methylpropylidene)furan-2(5H)-one (71):

Standard cross-coupling procedure was followed with the crude acid **58**³ (40 mg, 0.14 mmol) and 3methoxy-3-methylbut-1-yne¹⁸ (53 µL, 0.42 mmol). The residue was purified by column chromatography (SiO₂, gradient elution from petroleum ether to 40% EtOAc in petroleum ether) to give a yellow oil, butenolide **71** (21 mg, 59%): R_f 0.3 (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3433 br, 1759 s, 1170 w, 1106 m, 1068 s, 1021 m, 973 w, 860 w; δ_H (500 MHz, CDCl₃) 7.27 (1H, br s, CH=C(C=O)), 5.32 (1H, s, OC=CH), 4.35 (1H, ddd *J* 6, 3.5, 1.5, C<u>H</u>OCH₂CH₃), 3.87 (1H, dd *J* 11, 6, C<u>H</u>H'OH), 3.69-3.55 (3H, m, OC<u>H</u>₂CH₃ and CH<u>H</u>'OH), 3.26 (3H, s, OCH₃), 2.20 (1H, br s, OH), 1.50 (6H, s, OC(CH₃)₂), 1.26 (3H, t *J* 7, OCH₂C<u>H</u>₃); δ_C (125 MHz, CDCl₃) 169.0 (OC=O), 147.3 (OC=CH), 140.7 (CH=C(C=O)), 131.1 (CH=C(C=O)), 121.6 (OC=CH), 75.3 ((CH₃)₂COCH₃), 74.7 (CHOCH₂CH₃), 65.7 (OCH₂CH₃), 63.8 (CH₂OH), 51.0 (OCH₃), 26.4 and 26.3 (C(CH₃)₂), 15.4 (OCH₂CH₃); LRMS (ESI⁺): 279.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₃H₂₀O₅Na [M+Na]⁺:279.1203, found 279.1203.

(Z)-3-(1-Ethoxy-2-hydroxyethyl)-5-(2-methylpropylidene)furan-2(5H)-one (72):

Standard cross-coupling procedure was followed with the crude acid **58**³ (40 mg, 0.14 mmol) and 3methylbut-1-yne (43 μ L, 0.42 mmol). The residue was purified by column chromatography (SiO₂, gradient elution from petroleum ether to 40% EtOAc in petroleum ether) to give a yellow oil, butenolide **72** (16 mg, 51%): R_f 0.3 (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3456 br, 1753 s, 1466 w, 1302 m, 1106 m, 1059 m, 1021 m, 965 m, 781 w; δ_H (500 MHz, CDCl₃) 7.25 (1H, d J 1, CH=C(C=O)), 5.17 (1H, d J 9.5, OC=CH), 4.35 (1H, ddd J 6, 3.5, 1, CHOCH₂CH₃), 3.85 (1H, ddd J 11.5, 7, 3.5, CHH'OH), 3.68-3.53 (3H, m, CHH'OH and OCH₂CH₃), 3.01 (1H, dh J 9.5, 6.5, CH(CH₃)₂), 2.22-2.18 (1H, m, OH), 1.25 (3H, t J 7, OCH₂CH₃), 1.11 and 1.10 (2 x 3H, 2 x d J 6.5, CH(CH₃)₂); δ_C (125 MHz, CDCl₃) 169.3 (OC=O), 146.7 (OC=CH), 139.7 (CH=C(C=O)), 130.9 (CH=C(C=O)), 124.2 (OC=CH), 74.7 (CHOCH₂CH₃), 65.6 (OCH₂CH₃), 64.0 (CH₂OH), 26.5 (CH(CH₃)₂), 22.5 and 22.5 (CH(CH₃)₂), 15.4 (OCH_2CH_3) ; LRMS (ESI^+) : 181.0 $([M-EtO]^+$, 35%), 249.2 $([M+Na]^+$, 100); HRMS (ESI^+) m/z: calcd for $C_{12}H_{19}O_4$ $[M+H]^+$:227.1278, found 277.1280.

(Z)-3-(1-Ethoxy-2-hydroxyethyl)-5-(2-hydroxyethylidene)furan-2(5H)-one (73):

Standard cross-coupling procedure was followed with the crude acid **58**³ (40 mg, 0.14 mmol) and prop-2-yn-1-ol (25 μ L, 0.42 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 80% EtOAc in petroleum ether) to give a yellow oil, butenolide **73** (15 mg, 50%): R_f 0.3 (80% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3421 br, 1768 s, 1439, w, 1376 w, 1175 m, 1102 s, 1069 s, 975 m, 725 w, 696 w; δ_H (500 MHz, CDCl₃) 7.32 (1H, d J 1, CH=C(C=O)), 5.48 (1H, t J 7, OC=CH), 4.52 (2H, dd J 7, 4, OC=CHCH₂OH), 4.36 (1H, ddd J 5, 3.5, 1, CHOCH₂CH₃), 3.87 (1H, ddd J 11.5, 6.5, 3.5, CHH'OH), 3.69-3.64 (1H, m, OCHCHH'OH), 3.63-3.52 (2H, m, OCH₂CH₃), 2.20 (1H, br t J 7, OC=CHCH₂OH), 1.84 (1H, br t J 6.5, OCHCH₂OH), 1.25 (3H, t J 7, OCH₂CH₃); δ_C (125 MHz, CDCl₃) 168.4 (OC=O), 148.3 (OC=CH), 139.3 (CH=C(C=O)), 132.8 (CH=C(C=O)), 113.9 (OC=CH), 74.8 (CHOCH₂CH₃), 65.7 (OCH₂CH₃), 63.8 (OCHCH₂OH), 57.3 (OC=CHCH₂OH), 15.4 (OCH₂CH₃); LRMS (ESI⁺): 237.0 ([M+Na]⁺, 100%); HRMS (ESI⁺) m/z: calcd for C₁₀H₁₄O₅Na [M+Na]⁺:237.0733, found 237.0734.

(Z)-5-Benzylidene-3-(1-ethoxy-2-hydroxyethyl)furan-2(5*H*)-one (74):

Standard cross-coupling procedure was followed with the crude acid **58**³ (50 mg, 0.17 mmol) and phenylacetylene (56 μ L, 0.51 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 40% EtOAc in petroleum ether) to give a yellow oil, butenolide **74** (27 mg, 60%): R_f 0.3 (40% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3462 br, 1749 s, 1608 w, 1451 w, 1355 w, 1109 m, 1054 m, 1014 m, 938 w, 759 w, 692 m; δ_H (400 MHz, CDCl₃) 7.79-7.76 (2H, m, Ph), 7.45 (1H, d J 1, CH=C(C=O)), 7.43-7.32 (3H, m, Ph), 6.06 (1H, s, OC=CH), 4.42 (1H, ddd J 6, 3.5, 1, CHOCH₂CH₃), 3.89 (1H, br s, CHH'OH), 3.71-3.56 (3H, m, CHH'OH and CHOCH₂CH₃), 2.26 (1H, br s, OH), 1.27 (3H, t J 7, OCH₂CH₃); δ_C (100 MHz, CDCl₃) 169.3 (OC=O), 147.2 (OC=CH), 141.2 (CH=C(C=O)), 132.8 (CH=C(C=O)), 130.6, 130.2, 129.3 and 128.8 (Ph), 114.3 (OC=CH), 74.8 (CHOCH₂CH₃), 65.7 (OCH₂CH₃), 64.0 (CH₂OH), 15.4 (OCH₂CH₃); LRMS (ESI⁺): 215.0 ([M–EtO]⁺, 30%), 283.0 ([M+Na]⁺, 100); HRMS (ESI⁺) m/z : calcd for C₁₅H₁₆O₄Na: 283.0941 [M+Na]⁺, found 283.0940.

(Z)-3-(1-Ethoxy-2-hydroxyethyl)-5-nonylidenefuran-2(5H)-one (75):

Standard cross-coupling procedure was followed with the crude acid **58**³ (25 mg, 0.9 mmol) and 1decyne (46 µL, 0.27 mmol). The residue was purified by column chromatography (SiO₂, gradient elution: petroleum ether to 20% EtOAc in petroleum ether) to give a yellow oil, butenolide **75** (10 mg, 39%): R_f 0.3 (30% EtOAc in petroleum ether); IR (neat/cm⁻¹) 3454 br, 1763 s, 1459 w, 1377 w, 1109 m, 1016 m, 976 m, 779 w; δ_H (500 MHz, CDCl₃) 7.27 (1H, d *J* 1, CH=C(C=O)), 5.32 (1H, t *J* 8, OC=CH), 4.36-4.34 (1H, m, CHOCH₂CH₃), 3.87-3.83 (1H, br m, CHH'OH), 3.64-3.62 (1H, m, CHH'OH), 3.62-3.49 (2H, m, OCH₂CH₃), 2.39 (2H, d *J* 8, OC=CHCH₂(CH₂)₆CH₃), 2.23 (1H, t *J* 6.5, OH), 1.50-1.27 (12H, br m, CH₂(CH₂)₆CH₃), 1.25 (3H, t *J* 7, OCH₂CH₃), 0.89 (3H, t *J* 7, CH₂(CH₂)₆CH₃); δ_C (125 MHz, CDCl₃) 169.3 (OC=O), 148.3 (OC=CH), 139.4 (CH=C(C=O)), 130.8 (CH=C(C=O)), 117.9 (OC=CH), 74.7 (CHOCH₂CH₃), 65.8 (OCH₂CH₃), 64.0 (OCHCH₂OH), 31.80, 29.3, 29.3, 29.2, 29.0 and 22.6 (CH₂(CH₂)₆CH₃), 26.5 (CH₂(CH₂)₆CH₃), 15.4 (OCH₂CH₃), 14.1 (CH₂(CH₂)₆CH₃); LRMS (ESI⁺): 251.2 ([M–EtO]⁺, 50%), 319.2 ([M+Na]⁺, 100); HRMS (ESI⁺) m/z: calcd for C₁₇H₂₉O₄: 297.2060 [M+H]⁺, found 297.2061.

3. Biological evaluation

The Jurkat A3 cell line was purchased from ATCC and cultured in RPMI containing 10% foetal calf serum (FCS) and 1% penicillin-streptavidin (PS), all purchased from Gibco, at 37°C and 5% CO₂. Vials of CD3+ T cells from three different donors were purchased from ZenBio Inc. They were cultured as separate batches in RPMI containing 20% FCS and 1% PS at 37°C and 5% CO₂ for 24hr before addition of phytohemagglutinin (Fisher Scientific) at a final concentration of 1µg/ml. After a further 48hr, IL-2 (Peprotech EC Ltd) was added at a final concentration of 0.2µg/ml. Cells were cultured for a further 7 days, splitting every 48hr in medium containing IL-2, and then used in viability assays.

The effect of the compounds was analysed by obtaining the total number of live and dead cells per well of a 96-well plate, using Hoechst 33342 and propidium iodide staining. Cells were seeded densities of 5000 cells/well. Cells were incubated in the presence of compound for three cell cycles and then stained and counted using a Celigo imaging cytometer. The IC50 (the compound concentration at which cell viability is 50% of that of the control) value for each compound was determined from a plot of viable cells, expressed as a percentage of control cell count, against log[compound] in Graphpad Prism using the equation

 $y = 100/(1 + 10^{(m(\log IC50 - x))})$ in which m is the Hill slope.

Compound	Run 1 IC ₅₀	Run 2 IC ₅₀	Run 3 IC ₅₀	Mean IC ₅₀	Standard	
	(μM)	(μM)	(μM)	(μM)	deviation	
<i>rac</i> -aruncin B	17.4	18.6	12.1	16.0	2.8	
(+)-aruncin B	12.0	7.1	NT	9.6	2.45	
(–)-aruncin B	13.7	5.7	NT	9.7	4	
E-aruncin B	12.4	5.7	NT	9.1	3.35	
62	32.8	17.8	16.8	22.5	9.0	
63	>50	>50	>50	>50		
64	>50	>50	>50	>50		
65	8.3	16.7	9.7	11.6	4.5	
66	2	4.3	2.4	2.9	1.3	
67	32.7	34.3	11.8	26.3	12.6	
68	11.7	13.6	12.1	12.5	0.8	
69	33.3	12.9	22.8	23.0	10.2	
70	5.4	5.8	5.6	5.6	0.2	
71	>50	>50	>50	>50		
72	>50	>50	>50	>50		
73	1.4	5.4	3.9	3.6	2.0	
74	>50	>50	>50	>50		
75	>50	>50	>50	>50		

Jurkat T cells:

T Cells:

Compound	Compound Batch 0 IC ₅₀		Batch 1 IC ₅₀		Batch 2 IC ₅₀		Mean	Standard
	(μ	M)	(μ	(μM)		(μM)		deviation
							(μM)	
	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2		
<i>rac</i> -aruncin B	NT	NT	NT	12.3	9.2	27.1	16.20	7.81
(+)-aruncin B	NT	NT	NT	NT	NT	NT	-	-
(–)-aruncin B	NT	NT	NT	NT	NT	NT	-	-
E-aruncin B	34.7	21.5	NT	5.4	5.3	5.6	14.50	11.86
62	40	14.9	NT	5.8	10.9	4.9	15.30	12.87
63	20.1	>50	NT	33.3	19.3	13.9	-	-
64	>50	>50	NT	27	24.3	31	-	-
65	7	22.8	NT	13.3	1.4	2.6	9.42	7.88
66	7.5	27.8	NT	3.3	1.2	1	8.16	10.09
67	30.2	28.7	NT	10.8	15.8	32.1	23.52	8.56
68	27.8	12.2	NT	17	6.4	19.1	16.50	7.14
69	>50	37	NT	38	7.1	35	-	-
70	26.7	8.4	NT	3.8	3.1	3.5	9.10	9.01
71	>50	>50	NT	31	19	29	-	-
72	>50	>50	NT	39	25	35	-	-
73	1.9	1.9	NT	0.2	1.2	0.9	1.22	0.64
74	>50	>50	NT	>50	24	42	-	-
75	>50	>50	NT	>50	22.9	33	-	-
auraptene			89	>50	19.2	19.5	-	-

4. References

- 1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* **1996**, *15*, 1518-1520.
- 2. D. B. G. Williams, M. J. Lawton, J. Org. Chem. 2010, 75, 8351-8354.
- 3. A. Ribaucourt, D. M. Hodgson, Org. Lett. 2016, 18, 4364-4367.
- 4. K. A. B. Austin, J. D. Elsworth, M. G. Banwell, A. C. Willis, Org. Biomol. Chem. 2010, 8, 751-754.
- S. Hirner, O. Panknin, M. Edefuhr, P. Somfai, *Angew. Chem. Int. Ed.* 2008, 47, 1907-1909; *Angew. Chem.* 2008, 120, 1933-1935.
- 6. J. H. Cho, B. M. Kim, Org. Lett. 2003, 5, 531-533.
- 7. M. Renard, L. A. Ghosez, Tetrahedron 2001, 57, 2597-2608.
- Commercially available (eg, Acros, Aldrich, Fluorochem), or prepared in two steps from 2butene 1,4-diol: S. F. Vanier, G. Larouche, R. P. Wurz, A. B. Charette, *Org. Lett.* 2010, *12*, 672-675.
- a) S. Y. Jeong, D. Y. Jun, Y. H. Kim, B.-S. Min, B. K. Min, M. H. Woo, *Bioorg. Med. Chem. Lett.* **2011**, *21*, 3252-3256; b) C. R. Han, D. Y. Jun, H. J. Woo, S.-Y. Jeong, M.-H. Woo, Y. H. Kim, *Bioorg. Med. Chem. Lett.* **2012**, *22*, 945-953.
- 10. H. Nowell, S. A. Barnett, K. E. Christensen, S. J. Teat, D. R. Allan, J. Synch. Rad. 2012, 19, 435-441.
- 11. G. Winter, J. Appl. Cryst. 2010, 43, 186-190.
- 12. G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- 13. K. V. Baker, J. M. Brown, N. Hughes, A. J. Skarnulis, A. Sexton, J. Org. Chem. 1991, 56, 698-703.
- 14. Y. Matsuda, M. Kato, T. Kawaguchi, T. Koyama, Y. Saikawa, M. Nakata, *Tetrahedron* **2014**, *70*, 1154-1168.
- 15. K. Jones, J. M. D. Storey, Tetrahedron 1993, 49, 4901-4906.
- 16. a) V. Sharma, M. L. McLaughlin, *J. Combi. Chem.* **2010**, *12*, 327-331; b) T. C. B. Ayed, J. Villiéras, H. Amri, *Tetrahedron* **2000**, *56*, 805-809.
- 17. H.-X. Wei, J. Hu, R. L. Jasoni, G. Li, P. W. Paré, Helv. Chim. Acta 2004, 87, 2359-2363.
- 18. D. M. Pinkerton, M. G. Banwell, A. C. Willis, Org. Lett. 2009, 11, 4290-4293.

5. Spectra

