BMJ Open

Interpregnancy weight changes and impact on pregnancy outcome in a cohort of women with a macrosomic first delivery: A Prospective Longitudinal Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016193
Article Type:	Research
Date Submitted by the Author:	04-Feb-2017
Complete List of Authors:	Crosby, David; National Maternity Hospital, Obstetrics and Gynaecology; University College Dublin, School of Medicine Walsh, Jennifer; University College Dublin, School of Medicine; National Maternity Hospital, Obstetrics and Gynaecology Segurado, Ricardo; University College Dublin, CSTAR, School of Public Health, Physiotherapy and Population Science McAuliffe, Fionnuala; University College Dublin, School of Medicine; National Maternity Hospital, Obstetrics and Gynaecology
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Interpregnancy weight change, Body mass index, Fetal macrosomia, tional diabetes mellitus

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 1 of 21			BMJ Open
1			
3	1	Title:	Interpregnancy weight changes and impact on pregnancy outcome
4 5	2		in a cohort of women with a macrosomic first delivery: A
о 7	3		Prospective Longitudinal Study.
8 9	0		roopeeuve zongreaamar eeuagi
10 11	4		
12 13	5	Authors:	David A Crosby, Jennifer Walsh, Ricardo Segurado, Fionnuala M
14 15	6		McAuliffe
16	7		
18			
19 20	8	Source:	UCD Obstetrics and Gynaecology, School of Medicine and Medical
20	9		Science, University College Dublin, National Maternity Hospital,
22 23			
24	10		Dublin 2, Ireland
25 26 27	11		National Maternity Hospital Dublin, Ireland (FB)
28 29	12		CSTAR, UCD (RS)
30 31	13		
32 33	14	Corresponding au	ithor: Prof Fionnuala M McAuliffe
34 35 36	15		
37	16	Telephone:	0035317163216
38 39	4.5		
40	17		
41 42	18	Email:	fionnuala.mcauliffe@ucd.ie
43	10		
44 45	19		
46 47	20	Running Title:	Interpregnancy weight gain and impact on pregnancy outcome
48 49	21		
50	22		
51 52			
53	23		
54 55 56	24		
57 58	25		
59 60			1

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/ 50
58
59
60

Abstract:

27	Objective:
28	To determine the median interpregnancy maternal weight change between first and
29	second pregnancies, and second and third pregnancies and to assess the impact of this
30	weight change on pregnancy outcome in a cohort of women with a macrosomic first
31	delivery.
32	
33	Study Design:
34	Prospective longitudinal study conducted over three pregnancies from 2007 to 2015.
35	
36	Setting:
37	Tertiary referral maternity hospital, Dublin, Ireland
38	
39	Participants:
40	Women were recruited if their first baby weighed over 4.0kg.
41	
42	Methods:
43	The pregnancy outcomes in the second and third pregnancies were analysed separately.
44	Data were also analysed for both interpregnancy intervals comparing outcomes for
45	those who gained any weight, or more weight than the median, with those who did not.
46	
47	Main Outcome Measures:
48	Recurrent fetal macrosomia ≥ 4.0kg
49	Gestational diabetes mellitus

1	
2	
3	
4	
5	
0 7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
30 30	
39 40	
41	
42	
43	
44	
45	
40 47	
48	
49	
50	
51	
52	
53	
54 55	
56	
57	
58	
59	
60	

51	Results:	
52	There were 280 w	omen who delivered a third baby between 2011 and 2015. There
53	were no difference	e in pregnancy outcomes for the second pregnancy in women who
54	gained interpregn	ancy weight compared with those who did not and those who gained
55	more interpregnat	ncy weight than the median compared with those who did not. There
56	was a statistically	significant increase in birthweight ≥ 4.0kg (54.0% vs. 39.6% p=0.03)
57	in those women w	ho gained any weight between the second and third pregnancies. In
58	those women who	gained more interpregnancy weight than the median (1.70kg)
59	between a second	and third pregnancy, there was a significant increase in the rate of
60	gestational diabet	es (6.5% vs 1.4%, p=0.03).
61		
62	Conclusions:	
63	This longitudinal s	study demonstrates that within this cohort, maternal interpregnancy
64	weight change bet	ween a second and third pregnancy is associated with an increase in
65	birthweight ≥ 4.0 k	g. Additionally a gain of more weight than the median (1.70kg) is
66	associated with a l	higher rate of gestational diabetes.
67		
68	Key words:	Interpregnancy weight change
69		Body mass index
70		Fetal macrosomia
71		Gestational diabetes mellitus
72		
73		
74		
75		

2 3 4	76	Article Summary
5 6	77	Strengths and Limitations
7 8	78	• Maternal weight and height were measured at booking visit in each pregnancy <18
9 10	79	weeks gestation and BMI calculated accurately, rather than relying on maternal self-
11 12 12	80	reporting.
13 14 15	81	• Uniform cohort: they delivered a first baby weight >4.0kg and they did not have GDM or
16 16 17	82	hypertensive disorders in the first pregnancy.
18 19	83	• Data was prospectively collected by an investigator and accurately recorded into an
20 21	84	anonymised computerised database.
22 23	85	• Longitudinal study, which has advantages over a cross-sectional study.
24 25	86	• A potential limitation of this study is that we do not have data on women who attended
26 27 28	87	elsewhere for subsequent antenatal care.
20 29 30	88	
31 32 33	89	
34 35	90	
36 37	91 02	
38	92 93	
39 40	94	
40	95	
42	96	
43	97	
44	98	
45	99	
46	100	
47	101	
48	102	
49 50	102	
50	103	
52	105	
53	105	
54	100	
55	10/	
56	108	
57	109	
58	110	
59		
60		

Introduction:

BMJ Open

112	
113	Fetal macrosomia is a common obstetric problem, affecting up to 20% of babies born at
114	term (1, 2). The incidence varies according to the birthweight cut-offs employed, as it is
115	varyingly defined as an absolute birthweight greater than 4000 g, 4500 g, or as a
116	customised birth weight centile of greater than the 90 th , 95 th or 97 th percentile for the
117	infant's gestational age (3). It is associated with adverse obstetric maternal outcomes
118	and neonatal outcomes, such as hypoglycaemia, hypomagnesaemia and
119	hyperbilirubinaemia (4-6). Furthermore, infants with increased weight and body mass
120	index (BMI) are more likely to be obese in childhood (7), and this is contributing to the
121	burden of obesity on global health (3). Women with a history of birth of a macrosomic
122	infant are at significantly increased risk of delivering another macrosomic infant in a
123	subsequent pregnancy (8), and the risk increases further with a history of two
124	macrosomic infants (9). Maternal weight gain during pregnancy influences fetal
125	birthweight (10), and excessive gestational weight gain is strongly associated with fetal
126	macrosomia (11). Interventions to limit gestational weight gain are, however, limited at
127	best, perhaps due to perceived concerns regarding dietary and lifestyle changes during
128	the prenatal period (12).
129	

Less attention has been traditionally focused on weight changes, and weight gain in
particular, during the interval between pregnancies. Interpregnancy weight gain has,
however, been associated with gestational hypertensive disease, gestational diabetes
(GDM), caesarean section (CS), fetal macrosomia and even stillbirth (13-16). The
postpartum and interval pregnancy time period therefore may represent a specific
opportunity for targeted public health education, in women from every BMI category to

	BMJ Open
136	prevent movement into a higher BMI category (17). To date, there are paucity of
137	published longitudinal data on interpregnancy weight changes and the impact on both
138	maternal and neonatal outcomes.
139	
140	The objective of this longitudinal study was to determine the median interpregnancy
141	maternal weight change between first and second pregnancies, and second and third
142	pregnancies and to assess the impact of this weight change on pregnancy outcome in a
143	cohort of women with a macrosomic first delivery.
144	
145	Methods:
146	This is a prospective longitudinal study over three pregnancies. Women were initially
147	recruited to the ROLO study (Randomised cOntrol trial of LOw glycaemic index diet
148	versus no dietary intervention to prevent recurrence of fetal macrosomia) if their first
149	baby weighed over 4.0kg (8). Recruitment to the randomised trial, with institutional
150	ethical approval and maternal written consent, commenced in January 2007 and
151	completed in January 2011. 800 secundigravida women without diabetes, who had
152	previously given birth to a macrosomic baby (> 4.0kg) and were therefore at increased
153	risk of delivering another macrosomic infant (9), were randomised to receive either low
154	glycaemic index (GI) dietary advice or usual antenatal care. Detailed methodology and
155	results of the ROLO study have previously been published (8, 18). In brief; the low GI
156	diet did not impact on birthweight, but maternal benefits were noted in terms of less
157	gestational weight gain (12.2 Kg vs. 13.7Kg, p< 0.05) and less glucose intolerance (21% $$
158	vs. 28%, p<0.05). Low GI dietary advice was given at week 14 of pregnancy and the
159	women in the intervention group were found to have a significantly reduced glycaemic
160	index and glycaemic load following the intervention (8).

BMJ Open

2 3	161	Mothers were then followed prospectively and data collated and anonymised on 280
4 5 6	162	women who delivered two further babies up to 2015. Weight and height were
7 8	163	measured accurately at first presentation prior to 18 weeks gestation in each pregnancy
9 10	164	and BMI calculated. Relevant descriptive statistics were obtained for the study
11 12 13	165	population.
14 15	166	The pregnancy outcomes in the second and third pregnancies were analysed separately
16 17	167	with respect to the previous interpregnancy period, using absolute weight change. Data
18 19	168	were also analysed for both interpregnancy intervals comparing outcomes for those
20 21 22	169	who gained any weight, or those who gained more weight than the median with those
23 24	170	who did not, which may be a more convenient definition for clinical practice. The
25 26	171	pregnancy outcomes analysed were CS, GDM, recurrent fetal macrosomia, gestational
27 28 20	172	hypertensive disease, neonatal intensive care unit (NICU) admission and stillbirth. We
30 31	173	used the Mann-Whitney-U test to evaluate differences in continuous variables between
32 33	174	the groups or over time and χ^2 tests to compare categorical variables between groups.
34 35	175	We set statistical significance at $P<0.05$ and used SPSS version 23.0 for statistical
30 37 38	176	analysis.
39 40	177	
41 42	178	Results:
43 44 45	179	Of the initial 800 women recruited to the ROLO study, 280 (35.0%) women delivered a
46 47	180	third baby between 2011 and 2015. Of these, the median maternal weight in the first
48 49	181	pregnancy was 68.8kg (IQR 16.5) and the median BMI was 24.9 kg/m ² (IQR 4.7). In total,
50 51 52	182	11.4% (n=32) of the cohort were obese in the first trimester of the first pregnancy.
52 53 54	183	Table 1 details the demographic data for the cohort in the first trimester of the first,
55 56	184	second and third pregnancies respectively.
57 58 59	185	
60		

2 3	186	Overall, 72.9% (n=204) gained weight between the first and second pregnancy within a
4 5 6	187	median interpregnancy interval of 24 months (IQR 12.0) and the overall median weight
7 8	188	change was 2.60kg (IQR 3.5). 67.5% (n=189) gained weight between the second and
9 10	189	third pregnancy within a median interpregnancy interval of 36.0 months (IQR 24.0),
11 12 13	190	and the overall median weight change was 1.70kg (IQR 5.3). This resulted in a median
14 15	191	weight gain from first to third pregnancy of 4.30kg (IQR 7.5). Overall the rate of obesity
16 17	192	rose from 11.4% in first pregnancy to 22.1% by the beginning of the third pregnancy.
18 19 20	193	
20 21 22	194	There were no difference in pregnancy outcomes for the second pregnancy (gestational
23 24	195	hypertensive disease, GDM, CS , recurrent fetal macrosomia \ge 4kg, NICU admission and
25 26	196	stillbirth) in women who gained interpregnancy weight compared with those who did
27 28 20	197	not and those who gained more interpregnancy weight than the median compared with
30 31	198	those who did not.
32 33	199	
34 35	200	There was a statistically significant increase in birthweights \ge 4.0kg (54.0% vs. 39.6%
30 37 38	201	p=0.03) in those women who gained weight between the second and third pregnancies.
39 40	202	In those women who gained more interpregnancy weight than the median (1.70kg)
41 42	203	between a second and third pregnancy, there was a significant increase in the rate of
43 44 45	204	gestational diabetes (6.5% vs. 1.4%, p=0.03). There were no differences in gestational
45 46 47	205	hypertensive disease, CS, NICU admission and stillbirth (Table 3).
48 49	206	
50 51	207	To examine the effect of cumulative weight gain over both interpregnancy intervals, and
52 53 54	208	to control for the effect of maternal age and BMI less than 18 weeks gestation in the
55 56	209	index pregnancy on the above results, logistic regression models to predict a
57 58 59	210	birthweight \ge 4.0kg were run. Weight gain between the first and second, second and
UO		For peer review only - http://bmjoper?bmj.com/site/about/guidelines.xhtml

BMJ Open

211	third and overall between first and third pregnancies had broadly similar effects, with a
212	2-3% higher odds of a high birthweight per kilogram gain, which increased to 3-5%
213	when adjusting for maternal age and BMI. Statistical significance was marginal, but
214	present for weight gain in the earlier interval and between first and third pregnancies.
215	
216 217	Discussion:
218 219	<u>Main Findings</u> This longitudinal study found that women who delivered a macrosomic infant ≥4.0kg in
220	their first pregnancy without gestational diabetes gained a median of 2.60kg between a
221	first and second pregnancy and a median of 1.70kg between a second and third
222	pregnancy resulting in a median 4.30kg weight gain from first to third pregnancy. This
223	resulted in increase in obesity rates from 11.4% in first pregnancy to 22.1% in third
224	pregnancy, highlighting the central role pregnancy has in weight gain across the life
225	course. The interpregnancy weight gain between first and second pregnancies did not
226	appear to impact on pregnancy outcome, however interpregnancy weight gain between
227	second and third pregnancies was associated with an increased rate of recurrent fetal
228	macrosomia \geq 4.0kg. Additionally those with a weight gain of more than the median
229	(\geq 1.70kg) between second and third pregnancies was associated with increased
230	incidence of GDM.
231	
232	Interpretation
233	One possible explanation for the lack of associations in second pregnancy may arise due
234	to the Hawthorne effect of trial participation in both the intervention and control arms.
235	Another more likely hypothesis could be that weight gain may be cumulative. The
236	median weights at booking visit in the first, second and third pregnancies were 68.8kg,

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
40	
40	
47	
40	
49 50	
50	
57	
52	
53	
54	
55	
57	
51	
50	
60	
00	

1 2

237	71.3kg and 73.1kg respectively. Is weight gain cumulative so that it is only over a
238	certain level that effects on birthweight and GDM are noted? There are a paucity of
239	longitudinal studies on postpartum weight changes, because these studies are
240	challenging to conduct (19). This longitudinal study adds to the evidence that
241	interpregnancy weight gain causes GDM and macrosomic babies. Many studies relating
242	to interpregnancy weight changes are cross sectional and retrospective in nature.
243	Furthermore, many of these studies use self-reported maternal weight, which can be
244	unreliable and leads to BMI miscategorization (20). High postpartum weight retention
245	is an important contributor to long-term maternal obesity, which has detrimental
246	effects on long-term maternal health (21).
247	Strengths and Limitations in relation to other studies
248	Bogaerts et al. found that in a population of 7,897 women in Belgium, there was an
249	increase rate of GDM (aOR 2.25, 95% CI 1.33-3.78; P=0.002) in those who had
250	interpregnancy weight retention of 2 or more BMI units. However, this study used self-
251	reported prepregnancy weight and no prior information on hypertension and GDM
252	available (15). A large Swedish retrospective epidemiological study of 151,025 women
253	who had their first two consecutive births between 1992 and 2001 found that those
254	who gained 3 or more BMI units between pregnancies compared with those women
255	whose BMI changed between -1.0 and 0.9 units had an adjusted odds ratio of GDM of
256	2.09 (1.68-2.61) (13). Wallace et al. (22) conducted a retrospective cohort study of
257	12,740 women in Aberdeen, Scotland who delivered their first and second children
258	between 1986 and 2007. Weight gain of greater than three BMI units was associated
259	with an increase in large for gestational age infants. Jain et al. (23) analysed a
260	population based historical cohort of 10,444 obese women in Missouri who delivered
261	their first infant between 1998-2005. Interpregnancy weight gain was associated with

BMJ Open

- 3 4	262	an increased risk of a LGA infant (aOR 1.37; 95% CI, 1.21-1.54). These studies are
5 6	263	retrospective. Our study is a prospective longitudinal illustrating that interpregnancy
7 8	264	weight gain is associated with recurrent fetal macrosomia in a unique population of
9 10	265	women who delivered a macrosomic baby ≥ 4.0 kg in their index pregnancy, and that
11 12 13	266	interpregnancy weight gain of greater than the median is associated with an increased
14 15	267	rate of GDM.
16 17	268	
18 19	269	The interpregnancy interval is an important time for diet and lifestyle intervention in
20 21 22	270	women who have delivered a macrosomic infant in their first pregnancy in the
23 24	271	prevention of recurrent macrosomia and the development of GDM.
25 26	272	Strengths and Limitations
27 28	273	This longitudinal study has strengths. Maternal weight and height were measured at
29 30 31	274	booking visit in each pregnancy <18 weeks gestation and BMI calculated accurately,
32 33	275	rather than relying on maternal self-reporting. Furthermore, this cohort of women was
34 35	276	uniform in that they delivered a first baby weight >4.0kg and they did not have GDM or
36 37 38	277	hypertensive disorders in the first pregnancy. Data was prospectively collected by an
39 40	278	investigator and accurately recorded into an anonymised computerised database.
41 42	279	Finally, this longitudinal study has advantages over a cross-sectional study.
43 44	280	
45 46 47	281	A potential limitation of this study is that we do not have data on women who attended
48 49	282	elsewhere for subsequent antenatal care. Another potential limitation is that the
50 51	283	interpregnancy interval varied between subjects within this study. Finally, this study
52 53 54	284	applies to women who delivered a first baby >4kg, which applies to approximately 15%
55 56	285	of our overall primiparous population.
57 58 59	286	

3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
37	
37	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
58	
59	
60	

287 **Conclusions**:

288	This longitudinal study demonstrates that within this cohort maternal interpregnancy
289	weight change between a second and third pregnancy is associated with an increase in
290	birthweight \ge 4.0kg. Additionally a gain of more weight than the median (1.70kg) is
291	associated with a higher rate of gestational diabetes. It is important to identify ways for
292	women to maintain a normal weight and BMI throughout her life, particularly between
293	pregnancies. Obstetricians should consider postnatal advice on interval pregnancy
294	weight gain in order to reduce rates of macrosomia and gestational diabetes in future
295	pregnancy in at risk women.
296	
297	Acknowledgments
298	Nil of note
299	
300	Contribution to Authorship
301	FMMcA conceived and designed the study. JW contributed to the study design and
302	manuscript preparation. DAC performed the analysis and wrote the manuscript. RS
303	performed analysis. All of the authors reviewed and revised the final version of the
304	manuscript. FMMcA is the guarantor.
305	
306	Ethical Approval
307	Not applicable
308	
309	Funding
310	This research received no specific grant from any funding agency in the public,
311	commercial or not-for-profit sectors.

1		
2 3	312	Competing Interests
4	012	
5 6	313	We have read and understood BMJ policy on declaration of interests and declare that
7 8 9	314	we have no competing interests.
10 11	315	
12 13	316	
14 15 16	317	
17 18	318	
19 20	319	
21 22	320	
23 24 25	321	
26 27	322	
28 29	323	
30 31 22	324	
32 33 34	325	
35 36	326	
37 38	327	
39 40 41	328	
42 43	329	
44 45	330	
46 47	331	
48 49 50	332	
51 52	333	
53 54	334	
55 56	335	
57 58 59	336	
60		10

3 4	337	<u>References</u>
5 6	338	(1) Ørskou J, Kesmodel U, Henriksen TB, Secher NJ. An increasing proportion of
7 8	339	infants weigh more than 4000 grams at birth. Acta Obstet Gynecol Scand. 2001
9 10	340	Oct; 80 (10): 931-6.
12 13	341	(2) National Maternity Hospital Clinical Report for the Year 2014.
14 15	342	(3) Walsh JM, McAuliffe FM. Prediction and prevention of the macrosomic fetus. Eur
16 17	343	J Obstet Gynecol Reprod Biol. 2012 Jun;162(2):125-30
18 19 20	344	(4) Boulet SL, Alexander GR, Salihu HM, Pass M. Am J Obstet Gynecol. Macrosomic
20 21 22	345	births in the united states: determinants, outcomes, and proposed grades of risk.
23 24	346	2003 May;188(5):1372-8.
25 26	347	(5) Nold JL, Georgieff MK. Pediatr Clin North Am. Infants of diabetic mothers. 2004
27 28 29	348	Jun;51(3):619-37
30 31	349	(6) Weissmann-Brenner A1, Simchen MJ, Zilberberg E, Kalter A, Weisz B, Achiron R
32 33	350	et al. Maternal and neonatal outcomes of large for gestational age pregnancies.
34 35 26	351	Acta Obstet Gynecol Scand. 2012 Jul;91(7):844-9.
37 38	352	(7) Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood:
39 40	353	association with birth weight, maternal obesity, and gestational diabetes
41 42	354	mellitus. Pediatrics. 2005 Mar;115(3):e290-6
43 44 45	355	(8) Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low glycaemic index
46 47	356	diet in pregnancy to prevent macrosomia (ROLO study): randomised control
48 49	357	trial. BMJ. 2012 Aug 30;345:e5605
50 51 52	358	(9) Walsh CA, Mahony RT, Foley ME, Daly L, O'Herlihy C. Recurrence of fetal
52 53 54	359	macrosomia in non-diabetic pregnancies. J Obstet Gynaecol. 2007
55 56 57 58 59	360	May;27(4):374-8.

1					
2 3 4	361	(10)	Abrams BF, Laros RK Jr. Prepregnancy weight, weight gain, and birth		
5 6	362	weight. Am J Obstet Gynecol. 1986 Mar;154(3):503-9.			
7 8	363	(11)	Godoy AC, Nascimento SL, Surita FG. A systematic review and meta-		
9 10	364	ana	alysis of gestational weight gain recommendations and related outcomes in		
11 12 13	365	Bra	azil. Clinics (Sao Paulo) <u>.</u> 2015 Nov;70(11):758-64.		
14 15	366	(12)	Sagedal LR, Øverby NC, Bere E, Torstveit MK, Lohne-Seiler H, Småstuen M		
16 17	367	et a	al. Lifestyle intervention to limit gestational weight gain: the Norwegian Fit for		
18 19	368	Del	livery randomised controlled trial. BJOG. 2016 Jan 14. doi: 10.1111/1471-		
20 21 22	369	0528.13862. [Epub ahead of print]			
22 23 24	370	(13)	Villamor E, Cnattingius S. Interpregnancy weight change and risk of		
25 26	371	adv	verse pregnancy outcomes: a population-based study. Lancet. 2006 Sep		
27 28	372	30;368(9542):1164-70.			
29 30 31	373	(14)	Paramsothy P, Lin YS, Kernic MA, Foster-Schubert KE. Interpregnancy		
32 33	374	we	ight gain and cesarean delivery risk in women with a history of gestational		
34 35	375	dia	betes. Obstet Gynecol. 2009 Apr;113(4):817-23.		
36 37	376	(15)	Bogaerts A, Van den Bergh BR, Ameye L, Witters I, Martens E, Timmerman		
38 39 40	377	D, I	Devlieger R. Interpregnancy weight change and risk for adverse perinatal		
41 42	378	out	come. Obstet Gynecol. 2013 Nov;122(5):999-1009		
43 44	379	(16)	Cnattingius S, Villamor E. Weight change between successive pregnancies		
45 46	380	and	l risks of stillbirth and infant mortality: a nationwide cohort study. Lancet.		
47 48 49	381	202	16 Feb 6;387(10018):558-65.		
50 51	382	(17)	Walsh JM, Mahony RM, Canty G, Foley ME, McAuliffe FM. Identification of		
52 53	383	tho	se most likely to benefit from a low-glycaemic index dietary intervention in		
54 55	384	pre	egnancy. Br J Nutr. 2014 Aug 28;112(4):583-9.		
50 57 58		_			
59 60					

2 3 4	385	(18)	Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low			
5 6	386	glycae	emic index diet in pregnancy to prevent macrosomia (ROLO study):			
7 8	387	rando	omised control trial. Br Med J. 2012;345.			
9 10	388	(19)	O'Higgins AC, Doolan A, Mullaney L, Daly N, McCartney D, Turner MJ. The			
12 13	389	relati	onship between gestational weight gain and fetal growth: time to take			
14 15	390	stock	? J Perinat Med 2013;21:1–7			
16 17	391	(20)	Turner MJ. The measurement of maternal obesity: can we do better? Clin			
18 19 20	392	Obes 2011;1:127–129				
20 21 22	393	(21)	Gunderson EP. Childbearing and obesity in women: weight before, during,			
23 24	394	and a	fter pregnancy. Obstet Gynecol Clin North Am 2009;36(2):317–332.			
25 26	395	(22)	Wallace JM, Bhattacharya S, Campbell DM, Horgan GW. Inter-pregnancy			
27 28 29	396	weight change impacts placental weight and is associated with the risk of				
30 31	397	adver	se pregnancy outcomes in the second pregnancy. BMC Pregnancy			
32 33	398	Childl	birth. 2014 Jan 22;14:40.			
34 35 26	399	(23)	Jain AP, Gavard JA, Rice JJ, Catanzaro RB, Artal R, Hopkins SA. The impact			
37 38	400	of inte	erpregnancy weight change on birthweight in obese women. Am J Obstet			
39 40	401	Gyneo	col. 2013 Mar;208(3):205			
41 42	402					
43 44 45	403					
46 47	404					
48 49	405					
50 51	406					
52 53 54	407					
55 56	408					
57 58	409					
59 60						

<u>Table 1</u>: Demographics of the cohort at in the first trimester of the first, second and

411 third pregnancies respectively (n=280)

	Pregnancy 1	Pregnancy 2	Pregnancy 3	
Maternal Age (years)	29.0 (8.1)	31.8 (5.5)	34.8 (5.8)	
Maternal Weight (kg)	68.8 (16.5)	71.4 (17.5)	73.1 (19.4)	
BMI (kg/m ²)	24.9 (4.7)	25.7 (5.4)	26.0 (5.7)	
Birthweight (kg)	4.2 (0.26)	4.1 (0.61)	4.0 (0.69)	
Gestational Age (Days)	288 (10.0)	283 (11.0)	280 (13.8)	
Obese $(\geq 30 \text{kg/m}^2)$	11.4% (n=32)	20.0% (n=56)	22.1% (n=62)	

435	
436	All values are median with interquartile ranges in hypotheses, except for obesity
437	(demonstrated in absolute numbers and percentages). Maternal weight and body mass
438	index (BMI) were calculated at \leq 18 weeks gestation.

441 Table 2. Effect of weight gain on odds of birthweight \geq 4kg unadjusted and

442 adjusted for maternal age and BMI calculated at less than 18 weeks gestation in

443 the index pregnancy

		Unadjusted			Adjusted for maternal age		
					and BMI		
		OR	95% CI	p-value	OR	95% CI	p-value
	Weight gain from	1.03	0.99, 1.07	0.169	1.05	1.01, 1.10	0.024
	pregnancy 1 to 2						
	Weight gain from	1.02	0.98, 1.06	0.243	1.03	0.99, 1.08	0.107
	pregnancy 2 to 3		0				
	Weight gain from	1.03	1.00, 1.06	0.093	1.04	1.01, 1.08	0.013
	pregnancy 1 to 3						
444				0,			
445							
446							
447							
448							
449							
450							
451							
452							
453							
454							
455							
456							

Table 3:

Pregnancy outcomes for the third pregnancy based on those who gained inter-

pregnancy weight than the median compared with those who did not.

pregnancy weight compared with those who did not and those who gained more inter-

	interpregnancy weight	Did not gain interpregnancy weight n=91	P value
	n=189	21 (22 10/)	NC
CS OVERAII	41 (21.7%)	21(23.1%)	INS NC
	9 (4.8%)	2(2.2%)	NS D=0.02
DVV 24Kg	102(54.0%)	30(39.0%)	P=0.05
Disease	5 (2.0%)	2 [2.2%]	IN S
NICU	4 (2.1%)	2 (2.2%)	NS
Stillbirth	1 (0.5%)	1 (1.1%)	NS
	Gained > 1.70kg	Gained ≤ 1.70kg inter-	P value
	inter-pregnancy	pregnancy weight	
	weight (n=139)	(n=141)	
CS overall	28 (20.1%)	34 (24.1%)	NS
GDM	9 (6.5%)	2 (1.4%)	0.03
BW ≥4kg	75 (54.0%)	63 (44.7%)	NS
Hypertensive	4 (2.9%)	3 (2.1%)	NS
Disease			
NICU	4 (2.9%)	2 (1.4%)	NS
Stillbirth	0 (0%)	2 (1.4%)	NS
CS overall GDM BW ≥4kg Hypertensive Disease NICU Stillbirth	28 (20.1%) 9 (6.5%) 75 (54.0%) 4 (2.9%) 0 (0%)	34 (24.1%) 2 (1.4%) 63 (44.7%) 3 (2.1%) 2 (1.4%) 2 (1.4%)	NS 0.03 NS NS NS NS NS

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
Bias	9	Describe any efforts to address potential sources of bias	N/A
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A
		(e) Describe any sensitivity analyses	N/A
Results			

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	7
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Outcome data	15*	Report numbers of outcome events or summary measures	8
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	N/A

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Interpregnancy weight changes and impact on pregnancy outcome in a cohort of women with a macrosomic first delivery: A Prospective Longitudinal Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016193.R1
Article Type:	Research
Date Submitted by the Author:	10-Mar-2017
Complete List of Authors:	Crosby, David; National Maternity Hospital, Obstetrics and Gynaecology; University College Dublin, School of Medicine Walsh, Jennifer; University College Dublin, School of Medicine; National Maternity Hospital, Obstetrics and Gynaecology Segurado, Ricardo; University College Dublin, CSTAR, School of Public Health, Physiotherapy and Population Science McAuliffe, Fionnuala; University College Dublin, School of Medicine; National Maternity Hospital, Obstetrics and Gynaecology
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Interpregnancy weight change, Body mass index, Fetal macrosomia, tional diabetes mellitus

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	1 of 21		BMJ Open
1			
3	1	Title:	Interpregnancy weight changes and impact on pregnancy outcome
4 5	2		in a cohort of women with a macrosomic first delivery: A
о 7	3		Prospective Longitudinal Study.
8 9	0		
10 11	4		
12 13	5	Authors:	David A Crosby, Jennifer Walsh, Ricardo Segurado, Fionnuala M
14 15	6		McAuliffe
16	7		
18			
19 20	8	Source:	UCD Obstetrics and Gynaecology, School of Medicine and Medical
20	9		Science, University College Dublin, National Maternity Hospital,
22 23			
24	10		Dublin 2, Ireland
25 26 27	11		National Maternity Hospital Dublin, Ireland (FB)
28 29	12		CSTAR, UCD (RS)
30 31	13		
32 33	14	Corresponding au	ithor: Prof Fionnuala M McAuliffe
34 35 36	15		
37	16	Telephone:	0035317163216
38 39	4.5		
40	17		
41 42	18	Email:	fionnuala.mcauliffe@ucd.ie
43	10		
44 45	19		
46 47	20	Running Title:	Interpregnancy weight gain and impact on pregnancy outcome
48 49	21		
50	22		
51 52			
53	23		
54 55 56	24		
57 58	25		
59 60			1

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/ 50
58
59
60

Abstract:

27	Objective:
28	To determine the median interpregnancy maternal weight change between first and
29	second pregnancies, and second and third pregnancies and to assess the impact of this
30	weight change on pregnancy outcome in a cohort of women with a macrosomic first
31	delivery.
32	
33	Study Design:
34	Prospective longitudinal study conducted over three pregnancies from 2007 to 2015.
35	
36	Setting:
37	Tertiary referral maternity hospital, Dublin, Ireland
38	
39	Participants:
40	Women were recruited if their first baby weighed over 4.0kg.
41	
42	Methods:
43	The pregnancy outcomes in the second and third pregnancies were analysed separately.
44	Data were also analysed for both interpregnancy intervals comparing outcomes for
45	those who gained any weight, or more weight than the median, with those who did not.
46	
47	Main Outcome Measures:
48	Recurrent fetal macrosomia ≥ 4.0kg
49	Gestational diabetes mellitus

1	
2	
3	
4	
5	
0 7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
30 30	
39 40	
41	
42	
43	
44	
45	
40 47	
48	
49	
50	
51	
52	
53	
54 55	
56	
57	
58	
59	
60	

51	Results:	
52	There were 280 we	omen who delivered a third baby between 2011 and 2015. There
53	were no difference	in pregnancy outcomes for the second pregnancy in women who
54	gained interpregna	ncy weight compared with those who did not and those who gained
55	more interpregnar	cy weight than the median compared with those who did not. There
56	was a statistically s	significant increase in birthweight ≥ 4.0kg (54.0% vs. 39.6% p=0.03)
57	in those women w	no gained any weight between the second and third pregnancies. In
58	those women who	gained more interpregnancy weight than the median (1.70kg)
59	between a second a	and third pregnancy, there was a significant increase in the rate of
60	gestational diabete	es (6.5% vs 1.4%, p=0.03).
61		
62	Conclusions:	
63	This longitudinal s	tudy demonstrates that within this cohort, maternal interpregnancy
64	weight change betw	ween a second and third pregnancy is associated with an increase in
65	birthweight ≥ 4.0 k	g. Additionally a gain of more weight than the median (1.70kg) is
66	associated with a h	igher rate of gestational diabetes.
67		
68	Key words:	Interpregnancy weight change
69		Body mass index
70		Fetal macrosomia
71		Gestational diabetes mellitus
72		
73		
74		
75		

Maternal weight and height were measured at booking visit in each pregnancy <18

weeks gestation and BMI calculated accurately, rather than relying on maternal self-

Uniform cohort: they delivered a first baby weight >4.0kg and they did not have GDM or

Data was prospectively collected by an investigator and accurately recorded into an

A potential limitation of this study is that we do not have data on women who attended

Longitudinal study, which has advantages over a cross-sectional study.

There is no additional unpublished data from this study. All co-authors can access this data.

Anonymous data can be obtained by contacting the corresponding **author**.

Article Summary

Strengths and Limitations

reporting.

Data Sharing Statement

hypertensive disorders in the first pregnancy.

anonymised computerised database.

elsewhere for subsequent antenatal care.

•

•

•

Introduction:

BMJ Open

113	
114	Fetal macrosomia is a common obstetric problem, affecting up to 20% of babies born at
115	term (1, 2). The incidence varies according to the birthweight cut-offs employed, as it is
116	varyingly defined as an absolute birthweight greater than 4000 g, 4500 g, or as a
117	customised birth weight centile of greater than the 90 th , 95 th or 97 th percentile for the
118	infant's gestational age (3). It is associated with adverse obstetric maternal outcomes
119	and neonatal outcomes, such as hypoglycaemia, hypomagnesaemia and
120	hyperbilirubinaemia (4-6). Furthermore, infants with increased weight and body mass
121	index (BMI) are more likely to be obese in childhood (7), and this is contributing to the
122	burden of obesity on global health (3). Women with a history of birth of a macrosomic
123	infant are at significantly increased risk of delivering another macrosomic infant in a
124	subsequent pregnancy (8), and the risk increases further with a history of two
125	macrosomic infants (9). Maternal weight gain during pregnancy influences fetal
126	birthweight (10), and excessive gestational weight gain is strongly associated with fetal
127	macrosomia (11). Interventions to limit gestational weight gain are, however, limited at
128	best, perhaps due to perceived concerns regarding dietary and lifestyle changes during
129	the prenatal period (12).
130	

Less attention has been traditionally focused on weight changes, and weight gain in
particular, during the interval between pregnancies. Interpregnancy weight gain has,
however, been associated with gestational hypertensive disease, gestational diabetes
(GDM), caesarean section (CS), fetal macrosomia and even stillbirth (13-16). The
postpartum and interval pregnancy time period therefore may represent a specific
opportunity for targeted public health education, in women from every BMI category to

	BMJ Open
137	prevent movement into a higher BMI category (17). To date there are paucity of
137	published longitudinal data on interpregnancy weight changes and the impact on both
120	maternal and noonatal outcomes
137	mater nar and neonatar outcomes.
140	The objective of this longitudinal study was to determine the median interprogrammy
141	metomoleusisht ekonos ketusen finst and seend anomension and seend and third
142	maternal weight change between first and second pregnancies, and second and third
143	pregnancies and to assess the impact of this weight change on pregnancy outcome in a
144	cohort of women with a macrosomic first delivery.
145	
146	Methods:
147	This is a prospective longitudinal study over three pregnancies. Women were initially
148	recruited to the ROLO study (Randomised cOntrol trial of LOw glycaemic index diet
149	versus no dietary intervention to prevent recurrence of fetal macrosomia) if their first
150	baby weighed over 4.0kg (8). Recruitment to the randomised trial, with institutional
151	ethical approval and maternal written consent, commenced in January 2007 and
152	completed in January 2011. 800 secundigravida women without diabetes, who had
153	previously given birth to a macrosomic baby (> 4.0kg) and were therefore at increased
154	risk of delivering another macrosomic infant (9), were randomised to receive either low
155	glycaemic index (GI) dietary advice or usual antenatal care. Detailed methodology and
156	results of the ROLO study have previously been published (8, 18). In brief; the low GI
157	diet did not impact on birthweight, but maternal benefits were noted in terms of less
158	gestational weight gain (12.2 Kg vs. 13.7Kg, p< 0.05) and less glucose intolerance (21% $$
159	vs. 28%, p<0.05). Low GI dietary advice was given at week 14 of pregnancy and the
160	women in the intervention group were found to have a significantly reduced glycaemic
161	index and glycaemic load following the intervention (8).

BMJ Open

3 4	162	Mothers were then followed prospectively and data collated and anonymised on 280
5 6	163	women who delivered two further babies up to 2015. Weight and height were
7 8	164	measured accurately at first presentation prior to 18 weeks gestation in each pregnancy
9 10	165	and BMI calculated. Relevant descriptive statistics were obtained for the study
11 12 13	166	population.
14 15	167	The pregnancy outcomes in the second and third pregnancies were analysed separately
16 17	168	with respect to the previous interpregnancy period, using absolute weight change. Data
18 19	169	were also analysed for both interpregnancy intervals comparing outcomes for those
20 21 22	170	who gained any weight, or those who gained more weight than the median with those
23 24	171	who did not, which may be a more convenient definition for clinical practice. The
25 26	172	pregnancy outcomes analysed were CS, GDM, recurrent fetal macrosomia, gestational
27 28 20	173	hypertensive disease, neonatal intensive care unit (NICU) admission and stillbirth. We
30 31	174	used the Mann-Whitney-U test to evaluate differences in continuous variables between
32 33	175	the groups or over time and χ^2 tests to compare categorical variables between groups.
34 35 26	176	We set statistical significance at $P<0.05$ and used SPSS version 23.0 for statistical
37 38	177	analysis.
39 40	178	
41 42	179	Results:
43 44 45	180	Of the initial 800 women recruited to the ROLO study, 280 (35.0%) women delivered a
46 47	181	third baby between 2011 and 2015. Of these, the median maternal weight in the first
48 49	182	pregnancy was 68.8kg (IQR 62.0,78.5) and the median BMI was 24.9 kg/m ² (IQR
50 51 52	183	22.7,27.3). In total, 11.4% (n=32) of the cohort were obese in the first trimester of the
52 53 54	184	first pregnancy. Table 1 details the demographic data for the cohort in the first
55 56	185	trimester of the first, second and third pregnancies respectively.
57 58 59 60	186	

187	Overall, 72.9% (n=204) gained weight between the first and second pregnancy within a
188	median interpregnancy interval of 24 months (IQR 23,35) and the overall median
189	weight change was 2.60kg (IQR -0.28,3.28). 67.5% (n=189) gained weight between the
190	second and third pregnancy within a median interpregnancy interval of 36.0 months
191	(IQR 24,48), and the overall median weight change was 1.70kg (IQR -0.68,4.58). This
192	resulted in a median weight gain from first to third pregnancy of 4.30kg (IQR 0.3,7.8).
193	Overall the rate of obesity rose from 11.4% in first pregnancy to 22.1% by the beginning
194	of the third pregnancy.
195	
196	There were no difference in pregnancy outcomes for the second pregnancy (gestational
197	hypertensive disease, GDM, CS , recurrent fetal macrosomia \ge 4kg, NICU admission and
198	stillbirth) in women who gained interpregnancy weight compared with those who did
199	not and those who gained more interpregnancy weight than the median compared with
200	those who did not.
201	
202	There was a statistically significant increase in birthweights \ge 4.0kg (54.0% vs. 39.6%
203	p=0.03) in those women who gained weight between the second and third pregnancies.
204	In those women who gained more interpregnancy weight than the median (1.70kg)
205	between a second and third pregnancy, there was a significant increase in the rate of
206	gestational diabetes (6.5% vs. 1.4%, p=0.03). There were no differences in gestational
207	hypertensive disease, CS, NICU admission and stillbirth (Table 2).
207 208	hypertensive disease, CS, NICU admission and stillbirth (Table 2).
207 208 209	hypertensive disease, CS, NICU admission and stillbirth (Table 2). To examine the effect of cumulative weight gain over both interpregnancy intervals, and
207 208 209 210	hypertensive disease, CS, NICU admission and stillbirth (Table 2). To examine the effect of cumulative weight gain over both interpregnancy intervals, and to control for the effect of maternal age and BMI less than 18 weeks gestation in the
207 208 209 210 211	hypertensive disease, CS, NICU admission and stillbirth (Table 2). To examine the effect of cumulative weight gain over both interpregnancy intervals, and to control for the effect of maternal age and BMI less than 18 weeks gestation in the index pregnancy on the above results, logistic regression models to predict a

BMJ Open

212	birthweight \ge 4.0kg were run. Weight gain between the first and second, second and
213	third and overall between first and third pregnancies had broadly similar effects, with a
214	2-3% higher odds of a high birthweight per kilogram gain, which increased to 3-5%
215	when adjusting for maternal age and BMI. Statistical significance was marginal, but
216	present for weight gain in the earlier interval and between first and third pregnancies
217	(Table 3).
218	
219	Discussion:
220	
221	Main Findings
222	This longitudinal study found that women who delivered a macrosomic infant \geq 4.0kg in
223	their first pregnancy without gestational diabetes gained a median of 2.60kg between a
224	first and second pregnancy and a median of 1.70kg between a second and third
225	pregnancy resulting in a median 4.30kg weight gain from first to third pregnancy. This
226	resulted in increase in obesity rates from 11.4% in first pregnancy to 22.1% in third
227	pregnancy, highlighting the central role pregnancy has in weight gain across the life
228	course. The interpregnancy weight gain between first and second pregnancies did not
229	appear to impact on pregnancy outcome, however interpregnancy weight gain between
230	second and third pregnancies was associated with an increased rate of recurrent fetal
231	macrosomia ≥4.0kg. For each kilogram increase in interpregnancy weight, the odds of
232	giving birth to an infant of \geq 4.0kg increased. Additionally those with a weight gain of
233	more than the median (\geq 1.70kg) between second and third pregnancies was associated
234	with increased incidence of GDM.
235	
236	Interpretation

2	
3	
4	
5	
6	
7	
<i>1</i>	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
24	
25	
30	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
~~	

237	One possible explanation for the lack of associations in second pregnancy may arise due
238	to the Hawthorne effect of trial participation in both the intervention and control arms.
239	Another more likely hypothesis could be that weight gain may be cumulative. The
240	median weights at booking visit in the first, second and third pregnancies were 68.8kg,
241	71.3kg and 73.1kg respectively. Is weight gain cumulative so that it is only over a
242	certain level that effects on birthweight and GDM are noted? There are a paucity of
243	longitudinal studies on postpartum weight changes, because these studies are
244	challenging to conduct (19). This longitudinal study adds to the evidence that
245	interpregnancy weight gain causes GDM and macrosomic babies. Many studies relating
246	to interpregnancy weight changes are cross sectional and retrospective in nature.
247	Furthermore, many of these studies use self-reported maternal weight, which can be
248	unreliable and leads to BMI miscategorization (20). High postpartum weight retention
249	is an important contributor to long-term maternal obesity, which has detrimental
250	effects on long-term maternal health (21).
251	Strengths and Limitations in relation to other studies
252	Bogaerts et al. found that in a population of 7,897 women in Belgium, there was an
253	increase rate of GDM (aOR 2.25, 95% CI 1.33-3.78; P=0.002) in those who had
254	interpregnancy weight retention of 2 or more BMI units. However, this study used self-
255	reported prepregnancy weight and no prior information on hypertension and GDM
256	available (15). A large Swedish retrospective epidemiological study of 151,025 women
257	who had their first two consecutive births between 1992 and 2001 found that those
258	who gained 3 or more BMI units between pregnancies compared with those women
259	whose BMI changed between -1.0 and 0.9 units had an adjusted odds ratio of GDM of
260	2.09 (1.68-2.61) (13). Wallace et al. (22) conducted a retrospective cohort study of
261	12,740 women in Aberdeen, Scotland who delivered their first and second children

BMJ Open

2 3 4	262	between 1986 and 2007. Weight gain of greater than three BMI units was associated
5 6	263	with an increase in large for gestational age infants. Jain et al. (23) analysed a
7 8	264	population based historical cohort of 10,444 obese women in Missouri who delivered
9 10	265	their first infant between 1998-2005. Interpregnancy weight gain was associated with
12 13	266	an increased risk of a LGA infant (aOR 1.37; 95% CI, 1.21-1.54).
14 15	267	
16 17	268	Our study is a prospective longitudinal illustrating that interpregnancy weight gain is
18 19 20	269	associated with recurrent fetal macrosomia in a unique population of women who
20 21 22	270	delivered a macrosomic baby \geq 4.0 kg in their index pregnancy, and that interpregnancy
23 24	271	weight gain of greater than the median is associated with an increased rate of GDM.
25 26 27	272	
27 28 29	273	The interpregnancy interval is an important time for diet and lifestyle intervention in
30 31	274	women who have delivered a macrosomic infant in their first pregnancy in the
32 33	275	prevention of recurrent macrosomia and the development of GDM.
34 35 26	276	Strengths and Limitations
37 38	277	This longitudinal study has strengths. Maternal weight and height were measured at
39 40	278	booking visit in each pregnancy <18 weeks gestation and BMI calculated accurately,
41 42	279	rather than relying on maternal self-reporting. Furthermore, this cohort of women was
43 44 45	280	uniform in that they delivered a first baby weight >4.0kg and they did not have GDM or
46 47	281	hypertensive disorders in the first pregnancy. Data was prospectively collected by an
48 49	282	investigator and accurately recorded into an anonymised computerised database.
50 51	283	
52 53 54	284	A potential limitation of this study is that we do not have data on women who attended
55 56	285	elsewhere for subsequent antenatal care. Another potential limitation is that the
57 58 59 60	286	interpregnancy interval varied between subjects within this study. Finally, this study

Page 12 of 21

BMJ Open

3 4	287	applies to women who delivered a first baby >4kg, which applies to approximately 15%
5 6	288	of our overall primiparous population.
7 8	289	
9 10	290	Conclusions:
11 12 13	291	This longitudinal study demonstrates that within this cohort maternal interpregnancy
14 15	292	weight change between a second and third pregnancy is associated with an increase in
16 17	293	birthweight \ge 4.0kg. Additionally a gain of more weight than the median (1.70kg) is
18 19 20	294	associated with a higher rate of gestational diabetes. It is important to identify ways for
21 22	295	women to maintain a normal weight and BMI throughout her life, particularly between
23 24	296	pregnancies. Obstetricians should consider postnatal advice on interval pregnancy
25 26 27	297	weight gain in order to reduce rates of macrosomia and gestational diabetes in future
27 28 29	298	pregnancy in at risk women.
30 31	299	
32 33	300	Acknowledgments
34 35	301	Nil of note
30 37 38	302	
39 40	303	Contribution to Authorship
41 42	304	FMMcA conceived and designed the study. JW contributed to the study design and
43 44	305	manuscript preparation. DAC performed the analysis and wrote the manuscript. RS
45 46 47	306	performed analysis. All of the authors reviewed and revised the final version of the
48 49	307	manuscript. FMMcA is the guarantor.
50 51	308	
52 53	309	Ethical Approval
54 55 56	310	Not applicable
57 58	311	
59		

2 3	312	Funding
4 5 6	313	This research received no specific grant from any funding agency in the public,
7 8	314	commercial or not-for-profit sectors.
9 10 11	315	Competing Interests
12 13	316	We have read and understood BMJ policy on declaration of interests and declare that
14 15 16	317	we have no competing interests.
17 18	318	
19 20	319	
21 22 23	320	
23 24 25	321	
26 27	322	
28 29 30	323	
31 32	324	
33 34	325	
35 36 37	320	
38 39	328	
40 41 42	329	
42 43 44	330	
45 46	331	
47 48 49	332	
50 51	333	
52 53 54	334	
55 56	335	
57 58	336	
59 60		

3 4	337	References
5 6	338	(1) Ørskou J, Kesmodel U, Henriksen TB, Secher NJ. An increasing proportion of
7 8	339	infants weigh more than 4000 grams at birth. Acta Obstet Gynecol Scand. 2001
9 10	340	Oct; 80 (10): 931-6.
12 13	341	(2) National Maternity Hospital Clinical Report for the Year 2014.
14 15	342	(3) Walsh JM, McAuliffe FM. Prediction and prevention of the macrosomic fetus. Eur
16 17	343	J Obstet Gynecol Reprod Biol. 2012 Jun;162(2):125-30
18 19	344	(4) Boulet SL, Alexander GR, Salihu HM, Pass M. Am J Obstet Gynecol. Macrosomic
20 21 22	345	births in the united states: determinants, outcomes, and proposed grades of risk.
23 24	346	2003 May;188(5):1372-8.
25 26	347	(5) Nold JL, Georgieff MK. Pediatr Clin North Am. Infants of diabetic mothers. 2004
27 28	348	Jun;51(3):619-37
29 30 31	349	(6) Weissmann-Brenner A1, Simchen MJ, Zilberberg E, Kalter A, Weisz B, Achiron R
32 33	350	et al. Maternal and neonatal outcomes of large for gestational age pregnancies.
34 35	351	Acta Obstet Gynecol Scand. 2012 Jul;91(7):844-9.
36 37 28	352	(7) Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood:
30 39 40	353	association with birth weight, maternal obesity, and gestational diabetes
41 42	354	mellitus. Pediatrics. 2005 Mar;115(3):e290-6
43 44	355	(8) Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low glycaemic index
45 46 47	356	diet in pregnancy to prevent macrosomia (ROLO study): randomised control
48 49	357	trial. BMJ. 2012 Aug 30;345:e5605
50 51	358	(9) Walsh CA, Mahony RT, Foley ME, Daly L, O'Herlihy C. Recurrence of fetal
52 53	359	macrosomia in non-diabetic pregnancies. J Obstet Gynaecol. 2007
54 55 56 57 58 59	360	May;27(4):374-8.
60		

1						
2 3 4	361	(10)	Abrams BF, Laros RK Jr. Prepregnancy weight, weight gain, and birth			
5 6	362	we	ight. Am J Obstet Gynecol. 1986 Mar;154(3):503-9.			
7 8	363	(11)	Godoy AC, Nascimento SL, Surita FG. A systematic review and meta-			
9 10	364	ana	alysis of gestational weight gain recommendations and related outcomes in			
11 12 13	365	Bra	azil. Clinics (Sao Paulo) <u>.</u> 2015 Nov;70(11):758-64.			
14 15	366	(12)	Sagedal LR, Øverby NC, Bere E, Torstveit MK, Lohne-Seiler H, Småstuen M			
16 17	367	et a	al. Lifestyle intervention to limit gestational weight gain: the Norwegian Fit for			
18 19	368	Del	livery randomised controlled trial. BJOG. 2016 Jan 14. doi: 10.1111/1471-			
20 21 22	369	052	28.13862. [Epub ahead of print]			
22 23 24	370	(13)	Villamor E, Cnattingius S. Interpregnancy weight change and risk of			
25 26	371	adv	verse pregnancy outcomes: a population-based study. Lancet. 2006 Sep			
27 28	372	30;368(9542):1164-70.				
29 30 31	373	(14)	Paramsothy P, Lin YS, Kernic MA, Foster-Schubert KE. Interpregnancy			
32 33	374	we	ight gain and cesarean delivery risk in women with a history of gestational			
34 35	375	dia	betes. Obstet Gynecol. 2009 Apr;113(4):817-23.			
36 37	376	(15)	Bogaerts A, Van den Bergh BR, Ameye L, Witters I, Martens E, Timmerman			
38 39 40	377	D, I	Devlieger R. Interpregnancy weight change and risk for adverse perinatal			
41 42	378	out	come. Obstet Gynecol. 2013 Nov;122(5):999-1009			
43 44	379	(16)	Cnattingius S, Villamor E. Weight change between successive pregnancies			
45 46	380	and	l risks of stillbirth and infant mortality: a nationwide cohort study. Lancet.			
47 48 49	381	202	16 Feb 6;387(10018):558-65.			
50 51	382	(17)	Walsh JM, Mahony RM, Canty G, Foley ME, McAuliffe FM. Identification of			
52 53	383	tho	se most likely to benefit from a low-glycaemic index dietary intervention in			
54 55	384	pre	egnancy. Br J Nutr. 2014 Aug 28;112(4):583-9.			
50 57 58		_				
59 60						

3 4	385	(18)	Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low
5 6	386	glyca	emic index diet in pregnancy to prevent macrosomia (ROLO study):
7 8	387	rando	omised control trial. Br Med J. 2012;345.
9 10 11	388	(19)	O'Higgins AC, Doolan A, Mullaney L, Daly N, McCartney D, Turner MJ. The
12 13	389	relati	onship between gestational weight gain and fetal growth: time to take
14 15	390	stock	? J Perinat Med 2013;21:1–7
16 17	391	(20)	Turner MJ. The measurement of maternal obesity: can we do better? Clin
18 19 20	392	Obes	2011;1:127–129
20 21 22	393	(21)	Gunderson EP. Childbearing and obesity in women: weight before, during,
23 24	394	and a	fter pregnancy. Obstet Gynecol Clin North Am 2009;36(2):317–332.
25 26	395	(22)	Wallace JM, Bhattacharya S, Campbell DM, Horgan GW. Inter-pregnancy
27 28 29	396	weig	ht change impacts placental weight and is associated with the risk of
30 31	397	adve	rse pregnancy outcomes in the second pregnancy. BMC Pregnancy
32 33	398	Child	birth. 2014 Jan 22;14:40.
34 35 26	399	(23)	Jain AP, Gavard JA, Rice JJ, Catanzaro RB, Artal R, Hopkins SA. The impact
37 38	400	of int	erpregnancy weight change on birthweight in obese women. Am J Obstet
39 40	401	Gyne	col. 2013 Mar;208(3):205
41 42	402		
43 44 45	403		
46 47	404		
48 49	405		
50 51	406		
52 53 54	407		
55 56	408		
57 58 59 60	409		

BMJ Open

- **<u>Table 1</u>**: Demographics of the cohort at in the first trimester of the first, second and
 - 411 third pregnancies respectively (n=280)

	Pregnancy 1	Pregnancy 2	Pregnancy 3
Maternal Age (years)	29.0 (23.9,32.0)	31.8 (29.0,34.5)	34.8 (31.6,37.4)
Maternal Weight (kg)	68.8 (62.0,78.5)	71.4 (63.6,81.1)	73.1 (65.1,84.5)
BMI (kg/m ²)	24.9 (22.7,27.3)	25.7 (23.4,28.8)	26.0 (23.6,29.3)
Birthweight (kg)	4.2 (4.07,4.33)	4.1 (3.74,4.35)	4.0 (3.68,4.36)
Gestational Age (Days)	288 (282,292)	283 (277,288)	280 (273,287)
Obese $(\geq 30 \text{kg/m}^2)$	11.4% (n=32)	20.0% (n=56)	22.1% (n=62)

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

All values are median with interquartile ranges (25th and 75th) in hypotheses, except for

obesity (demonstrated in absolute numbers and percentages). Maternal weight and

body mass index (BMI) were calculated at \leq 18 weeks gestation.

Table 2:

442 Pregnancy outcomes for the third pregnancy based on those who gained inter-

443 pregnancy weight compared with those who did not and those who gained more inter-

444 pregnancy weight than the median compared with those who did not.

	Gained interpregnancy weight n=189	Did not gain interpregnancy weight n=91	P value
CS overall	41 (21.7%)	21 (23.1%)	NS
GDM	9 (4.8%)	2 (2.2%)	NS
BW ≥4kg	102 (54.0%)	36 (39.6%)	P=0.03
Hypertensive Disease	5 (2.6%)	2 (2.2%)	NS
NICU	4 (2.1%)	2 (2.2%)	NS
Stillbirth	1 (0.5%)	1 (1.1%)	NS
	Gained > 1.70kg	Gained ≤ 1.70kg inter-	P value
	inter-pregnancy	pregnancy weight	
	weight (n=139)	(n=141)	
CS overall	28 (20.1%)	34 (24.1%)	NS
GDM	9 (6.5%)	2 (1.4%)	0.03
BW ≥4kg	75 (54.0%)	63 (44.7%)	NS
Hypertensive	4 (2.9%)	3 (2.1%)	NS
Disease	4 (0.00/)	0 (1 10/)	NG
	4 (2.9%)	2 (1.4%)	NS
Stillbirth	0 (0%)	2 (1.4%)	NS

 458 Table 3. Effect of weight gain on odds of birthweight \geq 4kg unadjusted and

459 adjusted for maternal age and BMI calculated at less than 18 weeks gestation in

the index pregnancy

	Unadjusted			Adjusted for maternal age		
				and BMI		
	OR	95% CI	p-value	OR	95% CI	p-value
Weight gain from	1.03	0.99, 1.07	0.169	1.05	1.01, 1.10	0.024
pregnancy 1 to 2						
Weight gain from	1.02	0.98, 1.06	0.243	1.03	0.99, 1.08	0.107
pregnancy 2 to 3		0				
Weight gain from	1.03	1.00, 1.06	0.093	1.04	1.01, 1.08	0.013
pregnancy 1 to 3						

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2		
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3		
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5		
Objectives	3	State specific objectives, including any prespecified hypotheses	6		
Methods					
Study design	4	Present key elements of study design early in the paper	6		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7		
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7		
Bias	9	Describe any efforts to address potential sources of bias	N/A		
Study size	10	Explain how the study size was arrived at			
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7		
		(b) Describe any methods used to examine subgroups and interactions	N/A		
		(c) Explain how missing data were addressed	N/A		
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A		
		(e) Describe any sensitivity analyses	N/A		
Results					

BMJ Open

Participants 13*		(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	7
		(b) Give reasons for non-narticination at each stage	Ν/Δ
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7
		(b) Indicate number of participants with missing data for each variable of interest	N/A
Outcome data	15*	Report numbers of outcome events or summary measures	8
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	N/A

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.