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Supplementary	Figure	1:	The	mobile	phone	coverage	and	general	travel	patterns	for	
each	country.		We	analyzed	mobility	patterns	extracted	from	mobile	phone	data	for	a)	
Kenya,	b)	Pakistan,	and	c)	Namibia.	These	data	were	provided	by	various	mobile	phone	
providers	(see	Materials	and	Methods)	and	encompass	mobility	aggregated	from	call	data	
records	for	subscribers	over	various	time	frames.		In	general,	population	density	d)	Kenya,	
e)	Pakistan,	and	f)	Namibia	(show	in	white	–	grey)	correlates	with	tower	coverage	(areas	
shown	in	grey,	see	Materials	and	Methods).		These	data	were	obtained	over	different	time	
periods	with	the	earliest	from	Kenya	(2008-2009)	and	most	recent	and	longest	from	
Namibia	(2010-2014).		Using	these	data,	we	analyzed	mobility	patterns	based	on	travel	
between	administrative	level	2	areas.	District	boundaries	were	obtained	from:	www.diva-
gis.org	(a	–	f),	population	data	(d,	e,	f)	was	obtained	from:	www.worldpop.org.uk	and	
were	created	using	ArcGIS	10.3.	
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Supplementary	Table	1:	The	average	monthly	percentage	of	the	population	who	
have	traveled.	We	calculated	the	total	percentage	of	trips	between	districts	for	
consecutive	days.	Using	these	country-wide	values,	we	calculated	the	average	percentage	
of	travel	per	month.	
	 Kenya	data*	 Pakistan	

data	
Namibia	
data	2012	

Namibia	
data	2013	

Namibia	
data	2014	

Jan	 5.03	 	 15.05	 12.87	 12.45	
Feb	 	 	 15.20	 12.89	 12.66	
Mar	 5.17	 	 15.21	 13.00	 13.13	
Apr	 5.24	 	 15.22	 13.22	 12.90	
May	 5.32	 	 15.35	 13.36	 13.16	
Jun	 4.57		

(2008)	
5.24	(2009)	

34.02	 14.77	 12.46	 12.57	

Jul	 4.78	 32.48	 14.66	 12.77	 12.94	
Aug	 5.08	 32.71	 15.13	 13.12	 13.37	
Sep	 5.08	 33.02	 14.86	 13.11	 13.10	
Oct	 5.02	 33.44	 15.03	 13.15	 13.02	
Nov	 5.29	 34.27	 14.20	 12.86	 12.95	
Dec	 5.95	 34.51	

	
14.35	 13.79	 13.52	

*	Note:	January	–	June	data	are	from	2009,	June	–	December	data	are	from	2008.	
	
	

	
Supplementary	Figure	2:	The	distribution	of	percentage	of	subscribers	who	travel	
between	districts	per	day.		
	
	
Supplementary	Note	1:	Variability	in	space	and	additional	drivers	
	
To	identify	how	consistent	these	general	patterns	were	on	finer	scales,	we	next	
investigated	the	travel	patterns	on	a	finer	spatial	scale	to	identify	if	there	exists	
heterogeneity	on	small	administrative	units.	We	aggregated	district-level	travel	patterns	
to	the	province	(administrative	level	1)	and	country	scale	based	on	the	location	of	each	
district.	In	all	three	countries,	the	province	level	seasonal	travel	patterns	were	similar	to	
the	country-level	pattern	(mean	Pearson’s	correlation	coefficient	for	Kenya:	0.90,	
Namibia:	0.78,	Pakistan:	0.95).	The	relationship	was	the	strongest	in	Pakistan	and	
weakest	in	Namibia.		
	



To	investigate	the	relationship	further,	we	compared	the	travel	percentage	time	series	of	
a	province	with	the	time	series	for	all	districts	within	the	province	and	calculated	the	
correlation	for	each	pair	between	district	level	and	the	province	level	travel.	Overall,	
district	level	travel	patterns	are	correlated	with	the	province	level	pattern,	although	this	
relationship	varies	geographically	and	by	country.	In	Pakistan,	the	majority	of	districts’	
travel	patterns	were	similar	to	the	province	average	travel	pattern	(see	Supplementary	
Fig.	3).	In	contrast,	the	weakest	correlations	were	in	Namibia	and	in	all	three	countries,	
the	most	rural	areas	of	the	countries	tended	to	have	weaker	relationships	(see	
Supplementary	Fig.	3).	These	results	suggest	that	seasonal	travel	is	fairly	consistent	
within	a	single	country	on	various	spatial	scales;	discrepancies	can	be	attributed	to	
statistical	fluctuations.		
	
To	analyze	the	relationship	between	travel	volumes	and	climatic	drivers,	we	first	
compared	seasonal	travel	values	from	each	country	with	two	climatic	variables:	
temperature	and	precipitation.	For	each	country,	we	analyzed	temperature	and	
precipitation	values	measured	at	weather	stations	(www.ncdc.noaa.gov)	during	the	time	
period	of	each	data	set.	For	each	district,	the	mean	of	all	weather	stations’	monthly	
temperature	(deg	C)	and	total	amount	of	precipitation	(mm)	were	calculated	using	all	of	
the	weather	stations	in	each	district.	For	districts	that	did	not	have	a	weather	station,	we	
used	the	values	from	the	nearest	(using	Euclidean	distance)	weather	station.	The	climate	
data	shows	remarkable	temporal	and	spatial	variation	within	each	country.	Of	the	three	
countries,	Pakistan	has	the	most	extreme	climate	with	large	geographic	and	temporal	
differences	in	both	temperature	and	precipitation.	In	general,	there	are	four	distinct	
seasons	in	the	country:	dry/cool,	dry/hot,	monsoon,	and	light	rains.	These	temperatures	
can	range	between	12C-35C	(monthly	mean	range	over	the	data	set,	13-33C).	Namibia	
has	a	more	temperate	climate	with	two	rainy	seasons	(long	rains	often	between	February	
–	April,	short	rains	between	September	–	November)	although	the	rainfall	patterns	have	
increasingly	become	more	variable	with	droughts	common.	Kenya’s	climate	ranges	from	
tropical	along	the	coast	to	mountainous	terrain	in	the	highlands.		
	
We	compared	these	climatic	variables	with	average	monthly	travel	volume	in	each	
country.	Based	on	anecdotal	evidence,	we	would	expect	travel	to	have	a	negative	
relationship	with	precipitation	values.	During	months	of	peak	rainfall,	non-paved	roads	
may	be	impassable	in	very	rural	areas	reducing	travel.	In	Pakistan	we	found	very	little	
evidence	that	seasonal	changes	in	travel	are	related	to	either	climate	variable	(see	
Supplementary	Fig.	3).	In	all	three	countries,	the	relationship	with	precipitation	may	be	
affected	by	poor	precipitation	data	collection.		
	
In	Kenya,	all	travel	is	positively	correlated	with	temperature	(more	travel	during	hotter	
seasons)	with	the	strongest	relationships	in	central	Kenya	(see	Supplementary	Fig.	3).	
Surprisingly	travel	was	positively	correlated	with	precipitation	(more	travel	during	
rainier	seasons)	in	central	Kenya	with	a	negative	relationship	found	along	the	coast	and	
in	western	Kenya.		
	
The	clearest	relationship	between	climate	and	travel	is	in	Namibia.	We	found	a	linear	
relationship	between	the	correlation	between	travel	and	precipitation	and	temperature.	
Districts	with	a	strong	positive	relationship	between	travel	and	temperature	also	had	a	
strong	positive	relationship	between	travel	and	precipitation	(and	vice	versa).	The	areas	
of	the	country	that	had	a	negative	relationship	between	travel	and	climate	(less	travel	
during	hotter	temperatures	or	more	precipitation)	were	often	less	populated	districts.	



Unlike	Kenya,	there	is	no	clear	spatial	difference	between	what	parts	of	the	country	have	
a	positive	or	negative	correlation	between	climate	and	travel	(see	Supplementary	Fig.	3).	
In	Pakistan,	there	are	no	clear	trends	between	climate	and	travel.	There	does	not	appear	
to	be	any	clear	geographic	pattern,	although	the	limited	timeframe	of	the	data	may	make	
any	signal	difficult	to	detect.	Overall,	travel	between	districts	in	Kenya	and	Namibia	was	
negatively	correlated	with	school	terms	implying	that	greater	amounts	of	travel	occurred	
during	school	breaks.	
	

	
Supplementary	Figure	3:	The	relationship	between	population	and	the	
correlation	between	province	and	district	level	travel	patterns.	For	each	district,	
we	compared	the	percentage	of	subscribers	traveling	to	other	districts	to	the	province	
level	pattern	of	the	percentage	of	subscribers	traveling	to	other	provinces.	The	
Pearson’s	correlation	coefficient	between	the	district	and	corresponding	province	level	
travel	is	shown	versus	the	population	of	the	district.	Each	district	is	colored	by	the	
province.	In	general,	there	is	a	weak	relationship	between	the	correlation	and	the	
population.	District	boundaries	were	obtained	from:	www.diva-gis.org	and	were	
created	using	ArcGIS	10.3.	
	



	
Supplementary	Figure	4:	We	calculated	the	district	level	correlation	between	the	
monthly	average	percentage	of	subscribers	traveling	to	other	districts	and	the	
corresponding	monthly	average	temperature	and	monthly	total	precipitation.	
The	values	for	Kenya	(top),	Namibia	(middle),	and	Pakistan	(bottom)	are	shown.	In	
each	map,	districts	are	colored	red	if	the	relationship	was	negative,	blue	if	the	
relationship	is	positive.	The	color	of	the	points	corresponds	to	the	corresponding	
province.	The	correlation	values	are	the	strongest	in	Namibia	with	weaker	
relationships	in	Kenya	and	Pakistan.	In	Kenya	travel	volumes	for	the	majority	of	places	
are	positively	correlated	with	temperature	(higher	temperatures	~	higher	percentage	
of	travel).	This	is	untrue	in	both	Namibia	and	Pakistan.	In	Namibia,	places	that	are	
strongly	correlated	with	temperature	are	also	strongly	correlated	with	precipitation	
possibly	due	to	the	stronger	relationship	between	temperature	and	precipitation.	
There	does	not	appear	to	be	a	systematic	relationship	between	correlations	with	



temperature	and	precipitation	in	Pakistan.	District	boundaries	were	obtained	from:	
www.diva-gis.org	and	were	created	using	ArcGIS	10.3.	
	
We	tested	the	role	of	social	drivers	(school	terms,	national	holidays)	versus	climatic	
drivers	for	monthly	values.	If	the	majority	of	the	days	in	the	month	were	during	a	school	
break,	we	assumed	that	month	counted	as	a	non-school	time.	We	performed	a	stepwise	
linear	regression	to	predict	the	monthly	average	percentage	of	travelers	per	district	using	
school	terms,	temperature,	precipitation,	a	location	indicator,	and	a	major	holiday	
indicator.		
	
Supplementary	Note	2:	Differences	in	travel	patterns	based	on	income	bracket	and	
percentage	of	the	population	urban	
	
Supplementary	Table	2:	The	number	of	districts	classified	urban	in	each	country.	
For	each	country,	we	calculated	the	percentage	of	the	population	considered	urban	in	
each	district	(see	Materials	and	Methods).		In	the	main	text,	we	used	the	25%	threshold	
to	classify	districts,	i.e.	if	at	least	25%	of	the	population	was	considered	urban	then	the	
district	would	be	classified	urban.	Using	different	thresholds,	the	number	of	districts	
considered	urban	in	each	location	varied.	
Threshold	-	
percentage	of	the	
population	
considered	urban	

Number	of	
districts	classified	
urban	-	Namibia	

Number	of	
districts	classified	
urban	-	Kenya	

Number	of	
districts	classified	
urban	-	Pakistan	

5	 5	 6	 8	
10	 3	 2	 4	
15	 3	 2	 4	
20	 2	 2	 3	
25	 2	 2	 3	
30	 2	 1	 3	
35	 2	 1	 3	
	
Supplementary	Table	3:	The	number	and	percentage	of	routes	in	each	country	
classified	by	the	percentage	of	the	population	in	the	origin	and	destination	
considered	urban.		
Country	 Rural	to	Rural	 Rural	to	Urban	 Urban	to	Rural	 Urban	to	Urban	
Kenya	 4489		(94.3%)	 134		(2.8	%)	 134	(2.8%)				 4	(0.1%)	
Namibia	 10609			

(96.2%)	
206			(1.9%)	 206			(1.9%)	 4	(0.0%)	

Pakistan	 10000			
(78.3%)	

300	(2.3%)	 300	(2.3%)	 9	(0.01%)	

	



	
Supplementary	Figure	5:	Travel	from	rural	to	urban	areas	in	Namibia.	Data	from	
Namibia	allows	us	to	evaluate	the	consistency	of	these	patterns	through	time	(time	
series	starts	at	January	2011	until	April	2014).	Each	boxplot	represents	the	distribution	
of	district	level	route	z-scores	for	rural	to	urban	travel.	We	varied	the	threshold	used	to	
classify	a	district	as	urban	(labeled)	and	calculated	the	corresponding	z-scores	for	
urban	to	rural	travel.	Seasonal	trends	remain	consistent	across	years	for	the	majority	of	
routes	with	peaks	during	December,	regardless	of	the	threshold.	
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Supplementary	Figure	6:	Travel	from	urban	to	rural	areas	in	Namibia.	Data	from	
Namibia	allows	us	to	evaluate	the	consistency	of	these	patterns	through	time	(time	
series	starts	at	January	2011	until	April	2014).	Each	boxplot	represents	the	distribution	
of	district	level	route	z-scores	for	urban	to	rural	travel.	We	varied	the	threshold	used	to	
classify	a	district	as	urban	(labeled)	and	calculated	the	corresponding	z-scores	for	
urban	to	rural	travel.	Seasonal	trends	remain	consistent	across	years	for	the	majority	of	
routes	with	peaks	during	December,	regardless	of	the	threshold.		
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Supplementary	Figure	7:	The	coefficient	of	variation	for	different	routes	of	travel	
including	Rural	to	Rural	(R->R),	Rural	to	Urban	(R->U),	Urban	to	Rural	(U->R)	
and	Urban	to	Urban	(U->U)	for	all	three	countries.		
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Supplementary	Figure	8:	The	z-scores	for	different	routes	of	travel	per	month	in	
Kenya.	For	each	route	of	travel	between	districts,	the	z-score	of	travel	was	calculated	
(see	Materials	and	Methods).	These	routes	were	classified	based	on	the	percentage	
urban	of	the	origin	and	destination	district.	The	distribution	of	monthly	z-scores	is	
shown.		
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Supplementary	Figure	9:	The	z-scores	for	different	routes	of	travel	per	month	in	
Namibia.	For	each	route	of	travel	between	districts,	the	z-score	of	travel	was	calculated	
(see	Materials	and	Methods).	These	routes	were	classified	based	on	the	percentage	
urban	of	the	origin	and	destination	district.	The	distribution	of	monthly	z-scores	is	
shown.		
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Supplementary	Figure	10:	The	z-scores	for	different	routes	of	travel	per	month	in	
Pakistan.	For	each	route	of	travel	between	districts,	the	z-score	of	travel	was	
calculated	(see	Materials	and	Methods).	These	routes	were	classified	based	on	the	
percentage	urban	of	the	origin	and	destination	district.	The	distribution	of	monthly	z-
scores	is	shown.		
	
High	income	versus	low	income	travel	patterns: The urban versus rural divide likely 
obscures between district socio-economic status heterogeneity. We utilized the 
Demographic Health Survey (DHS) data for all three countries as a proxy for 
socioeconomic status 1. In each country, information on household assets is used to 
create an index that represents the wealth of households who were interviewed. This 
provides a measure each of the largest administrative units (normally a province) of the 
proportion of the province population in each wealth quintile. However, it is important 
to note that these results are relative to each country – i.e. low income in one country 
may not be comparably low income in another country – meaning it is not possible to 
compare these measures between countries.  
 
For each country, we considered the percentage of the de jure population in the lowest 
wealth quintile. A location was considered low income if at least 25% of the population 
was in the lowest wealth quintile, otherwise high income (see Supplementary Fig. 11). 
We then compared the results between travel patterns from/to high-low income 
provinces.  
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Supplementary	Figure	11:	The	percentage	of	the	population	in	the	lowest	wealth	
quintile	per	country.	 

 
 

 

Kenya

Perc Pop in Lowest Wealth Quintile

Fr
eq

ue
nc

y

0 20 40 60 80

0
2

4

Pakistan

Perc Pop in Lowest Wealth Quintile

Fr
eq

ue
nc

y

0 10 20 30 40 50

0.
0

1.
0

2.
0

Namibia

Perc Pop in Lowest Wealth Quintile

Fr
eq

ue
nc

y

0 10 20 30 40 50

0
2

4

6 7 8 9 10 11 12 1 3 4 5 6

−2
−1

0
1

2
3

Low to High Route

6 7 8 9 10 11 12 1 3 4 5 6

−2
−1

0
1

2
3

High to Low Route



Supplementary	Figure	12:	The	z-scores	for	different	routes	of	travel	between	
high	and	low	income	provinces	per	month	in	Kenya.	For	each	route	of	travel	
between	districts,	the	z-score	of	travel	was	calculated	(see	Materials	and	Methods).	
These	routes	were	classified	based	on	income	levels	of	the	origin	and	destination	
district.	The	distribution	of	monthly	z-scores	is	shown. 

 

 
Supplementary	Figure	13:	The	z-scores	for	different	routes	of	travel	between	
high	and	low	income	provinces	per	month	in	Namibia.	For	each	route	of	travel	
between	districts,	the	z-score	of	travel	was	calculated	(see	Materials	and	Methods).	
These	routes	were	classified	based	on	income	levels	of	the	origin	and	destination	
district.	The	distribution	of	monthly	z-scores	is	shown. 
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Supplementary	Figure	14:	The	z-scores	for	different	routes	of	travel	between	
high	and	low	income	provinces	per	month	in	Pakistan.	For	each	route	of	travel	
between	districts,	the	z-score	of	travel	was	calculated	(see	Materials	and	Methods).	
These	routes	were	classified	based	on	income	levels	of	the	origin	and	destination	
district.	The	distribution	of	monthly	z-scores	is	shown.		

 
Supplementary Note 3: Simulating a general diffusion process 	
	
For	each	month,	the	total	number	of	trips	between	all	pairs	of	districts	was	calculated.	
These	values	formed	a	normalized	(by	the	number	of	outgoing	trips	per	location)	travel	
matrix	(𝑁"# 	-	normalized	trips	between	𝑖	and	𝑗)	that	was	also	converted	into	a	quasi-
distance	matrix	(𝑑𝑖𝑠𝑡"# = 1 − 𝑙𝑜𝑔	 𝑁"# )	between	all	pairs	of	districts	per	month	2.	Using	
these	monthly	distance	matrices	two	connectivity	measures	were	calculated.	The	weight	
connectance	3,	equal	to	the	weighted	edge	density	divided	by	the	total	number	of	edges,	
was	calculated.		
	
Using	these	distance	matrices,	we	also	calculated	the	shortest	paths	between	all	pairs	of	
districts	to	form	a	connectivity	matrix.	We	performed	a	simple	diffusion	process	on	the	
monthly	connectivity	matrices.	Given	an	identified	starting	location,	in	each	time	step	a	
location	is	‘infected’	if	it	is	the	closest	(based	on	the	shortest	path)	to	all	currently	
‘infected’	locations.	In	this	method,	each	location,	once	‘infected’,	remains	infected	for	the	
remaining	time	steps.	We	ran	each	simulation	until	every	district	was	infected.	We	
started	each	simulation	in	the	most	populated	district.	We	then	compared	the	order	
districts	become	‘infected’	between	months.	We	calculated	the	z-score	of	the	monthly	
order	per	location	over	the	time	period	of	the	data.	
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Our	main	aim	here	was	to	illustrate	that	seasonal	variation	in	the	magnitude	of	travel	as	
well	as	the	direction	of	travel	can	substantially	alter	the	spread	of	pathogens	over	the	
course	of	a	year.	In	future	applications,	more	detailed	analyses	encompassing	the	
sequence	of	connectivity	patterns	over	the	course	of	a	year,	including	the	relative	
magnitude	of	travel	in	each	season,	and	in	the	context	of	a	particular	pathogen	biology,	
might	allow	prediction	of	the	order	of	risk	of	pathogen	spread,	and	could	inform	
deployment	of	control	efforts.	

	
Supplementary	Figure	15:	The	general	results	of	a	diffusion	simulation.	We	
performed	a	diffusion	simulation	starting	in	the	most	populated	district	(Windhoek	East	
in	Namibia).	Based	on	the	shortest	path,	a	district	becomes	‘infected’	in	each	time	step	if	it	
is	the	closest	(as	measured	by	mobility)	‘non-infected’	district	to	all	currently	‘infected’	
districts.	a)	We	compared	the	order	that	districts	became	‘infected’	(y-axis,	i.e.,	1	means	
infected	first,	20	means	infected	after	19	other	districts,	etc.)	against	physical	distance	(x-
axis)	from	the	starting	infected	location	for	each	district	in	Namibia.	The	bars	shows	the	
range	in	ranks.	If	travel	was	purely	determined	by	physical	distance,	every	location	would	
fall	on	a	straight	diagonal	line.	For	places	nearby	Windhoek,	the	order	they	become	
‘infected’	is	roughly	consistent	with	physical	distance,	i.e.	those	closest	to	Windhoek	
become	‘infected’	earlier.	However,	as	distance	from	Windhoek	increases,	the	order	
locations	become	‘infected’	deviates	from	physical	distance	(does	not	fall	on	the	straight	
diagonal	line).	The	timing	at	which	a	district	becomes	infected	will	also	depend	on	when	
during	the	year	the	pathogen	was	introduced,	given	seasonal	fluctuations	in	mobility	(we	
assume	rapid	spread,	so	retain	the	connectivity	matrix	for	each	month	for	the	full	course	
of	the	pathogens’	spread).	Given	their	striking	differences,	we	focus	on	a	comparison	
between	January	and	December	of	2013.	On	the	plot	(a),	and	the	map	(b),	If	a	district	
became	‘infected’	faster	following	a	January	introduction	of	the	pathogen,	it	is	shown	in	
blue,	if	it	became	‘infected’	faster	following	a	December	introduction,	it	is	shown	in	
brown.	Districts	that	had	the	same	rank	for	introductions	in	either	month	are	shown	in	
grey.	Locations	in	the	southern	part	of	the	country	were	reached	earlier	following	a	
January	introduction	of	the	pathogen.	District	boundaries	were	obtained	from:	
www.diva-gis.org	and	were	created	using	ArcGIS	10.3.	
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Supplementary	Figure	16:	The	general	results	of	a	diffusion	simulation	for	all	
three	countries.	We	performed	a	simple	diffusion	simulation	starting	in	the	most	
populated	district	(Windhoek	East	in	Namibia,	Nairobi	in	Kenya,	and	Karachi	in	
Pakistan).	Using	the	method	described	in	the	Materials	and	Methods	(and	Fig.	4),	we	
compared	the	order	the	districts	became	‘infected’	(y-axis,	i.e.,	1	means	infected	first,	
20	means	infected	after	19	other	districts,	etc.)	against	physical	distance	(x-axis)	from	
the	starting	infected	location	for	each	district	in	each	country.	We	then	identified	if	the	
location	became	‘infected’	later	in	December	(brown)	versus	January	(blue)	or	were	the	
same	order	(grey),	for	Kenya	and	Namibia.	Since	the	data	set	in	Pakistan	is	over	a	
shorter	time	frame	in	Pakistan,	we	compared	the	order	a	location	became	‘infected’	in	
December	versus	July	(yellow).		
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Supplementary	Figure	17:	The	general	results	of	a	diffusion	simulation	for	all	
three	countries.	We	performed	a	simple	diffusion	simulation	starting	in	the	most	
populated	district	(Windhoek	East	in	Namibia)	for	each	year	(2012	–	2014).	Using	the	
method	described	in	the	Materials	and	Methods	(and	Fig.	4),	we	compared	the	order	
the	districts	became	‘infected’	(y-axis,	i.e.,	1	means	infected	first,	20	means	infected	
after	19	other	districts,	etc.)	against	physical	distance	(x-axis)	from	the	starting	
infected	location	for	each	district	in	each	country.	We	then	identified	if	the	location	
became	‘infected’	later	in	December	(brown)	versus	January	(blue)	or	were	the	same	
order	(grey).	In	all	three	comparisons,	results	are	similar	to	those	shown	in	
Supplementary	Fig.	15.	
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Supplementary	Figure	18:	Consequences	of	seasonal	travel	in	a	spatial	diffusion	
model	for	a	5%	proportion	of	the	population	susceptible.	As	in	Fig.	4,	we	simulated	
spatial	spread	of	a	pathogen	(see	Materials	and	Methods)	starting	in	the	most	
populated	district	(Windhoek	East	in	Namibia).	Pathogen	transmissibility,	proportion	
of	the	population	susceptible,	and	monthly	connectivity	value	between	districts	defined	
a	time	varying	hazard	of	introduction	into	each	district.	We	compared	the	time	(y-axis	
in	days)	each	location	became	infected	versus	Euclidean	distance	from	Windhoek	(x-
axis).	Each	district	is	colored	by	the	slowest	month	(i.e.	when	the	pathogen	on	average	
took	the	longest	to	reach	a	particular	district).		To	explore	the	impact	of	different	
pathogen	life	histories,	we	compared	varying	magnitudes	of	transmission	(𝛽)	ranging	
from	low	(𝛽 = 2)	to	intermediate	(𝛽 = 5)	to	high	(𝛽 = 15).	The	bars	show	the	range	in	
timings	across	the	different	months.	We	performed	each	hazard	simulation	100	times	
per	month	and	then	average	across	simulations	and	months.	For	many	locations,	the	
pathogen	will	not	reach	the	district,	aside	from	those	that	become	infected	early	on.	For	
places	nearby	Windhoek	when	transmission	is	high,	the	time	they	become	infected	is	
consistent	with	physical	distance,	i.e.	those	closest	to	Windhoek	become	infected	
earlier.	For	locations	nearby	Windhoek,	the	pathogen	reaches	these	locations	the	
slowest	in	December	when	transmission	is	high,	reflective	of	the	decrease	in	travel	
from	Windhoek	East	to	nearby	locations	in	this	month.	For	majority	of	other	districts	
have	the	latest	relative	timing	in	January	or	February	since	increases	in	these	months	
to	nearby	districts	decreases	the	amount	of	travel	to	all	other	districts.	
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Supplementary	Figure	19:	Consequences	of	seasonal	travel	in	a	spatial	diffusion	
model	for	a	20%	proportion	of	the	population	susceptible.	As	in	Fig.	4,	we	
simulated	spatial	spread	of	a	pathogen	(see	Materials	and	Methods)	starting	in	the	
most	populated	district	(Windhoek	East	in	Namibia).	Pathogen	transmissibility,	
proportion	of	the	population	susceptible,	and	monthly	connectivity	value	between	
districts	defined	a	time	varying	hazard	of	introduction	into	each	district.	We	compared	
the	time	(y-axis	in	days)	each	location	became	infected	versus	Euclidean	distance	from	
Windhoek	(x-axis).	Each	district	is	colored	by	the	slowest	month	(i.e.	when	the	
pathogen	on	average	took	the	longest	to	reach	a	particular	district).		To	explore	the	
impact	of	different	pathogen	life	histories,	we	compared	varying	magnitudes	of	
transmission	(𝛽)	ranging	from	low	(𝛽 = 2)	to	intermediate	(𝛽 = 5)	to	high	(𝛽 = 15).	
The	bars	show	the	range	in	timings	across	the	different	months.	We	performed	each	
hazard	simulation	100	times	per	month	and	then	average	across	simulations	and	
months.	For	places	nearby	Windhoek	when	transmission	is	high,	the	time	they	become	
infected	is	consistent	with	physical	distance,	i.e.	those	closest	to	Windhoek	become	
infected	earlier.	For	locations	nearby	Windhoek,	the	pathogen	reaches	these	locations	
the	slowest	in	December	when	transmission	is	high,	reflective	of	the	decrease	in	travel	
from	Windhoek	East	to	nearby	locations	in	this	month.	For	majority	of	other	districts	
have	the	latest	relative	timing	in	January	or	February	since	increases	in	these	months	
to	nearby	districts	decreases	the	amount	of	travel	to	all	other	districts.	
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Supplementary	Figure	20:	The	distribution	of	district	areas	in	each	country.	In	
Kenya	and	Namibia,	the	area	of	districts	are	similar	(mean	value	in	Kenya:	11,500	km2,	
Namibia:	8,000	km2)	with	similar	maximum	areas	(Kenya:	72,000	km2,	Namibia:	
52,500	km2).	The	areas	of	districts	in	Pakistan	are	on	average	smaller	(mean:	5,700	
km2,	max:	45,000	km2).			

	

	
Supplementary	Figure	21:	The	number	of	subscribers	in	Namibia	over	the	course	of	
the	data	set	analyzed.	The	number	of	subscribers	in	Namibia	substantially	changes	over	
the	course	of	the	data	set	from	fewer	than	1	million	in	early	2011	to	nearly	2	million	in	
early	2014.	As	a	result	of	these	large	subscriber	changes,	we	normalized	each	yearly	data	
set	by	the	total	number	of	subscribers	in	that	year.	
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