Supplementary Data

CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep

Marcela Vilarino^{1,*}, Sheikh Tamir Rashid^{2,*}, Fabian Patrik Suchy^{2,*}, Bret Roberts McNabb³, Talitha van der Meulen⁴, Eli J Fine², Syed Daniyal Ahsan², Nurlybek Mursaliyev², Vittorio Sebastiano², Santiago Sain Diab⁵, Mark O. Huising⁴, Hiromitsu Nakauchi^{2, §}, Pablo Juan Ross^{1, §}

PDX1	gRNA Target Site L Sheep Locus 5 [,] -gggctggcgctgaagtctggcgcccgggccccgggcccggggcccggggccctgaagtctggggccctggaagtccttgtacagctgtgggccc-	3'
MII oocytes	Mono-allelic mutations Mil#1 5'-GGGCTGGCGCTGAAGTCTGGCGCCGGGCCCCGCTGGAACGCGCAGGGGTCCTTGTACAGCTGTGTGGCCG-3' 5'-GGGCTGGCGCTGAAGTCTGGCGCCGGGCCCCGCTGGAACGCGGGGTCCTTGTACAGCTGTGTGGCCG-3' Bi-allelic mutations	(WT) (-3)
	MII#5 5'-GGGCTGGCGCTGAAGTCTGGCGTCGTTGTACAGCTGTGGGGGCCG-3' 5'-GGGCTGGCGCTGAAGTCTGGCGTCGTTGTACAGCTGTGGGGCCCG-3'	(-27;+1) (-27;+1)
	MII #15 5'-GGGCTGGCGCTGAAGTCTGGCGCCGGGGCCCCGCTGGAACGGGTCCTTGTACAGCTGTGGGCCGCGTA-3' MII #16	(-6) (-6)
	5'-GGGCTGGCGCTGAAGTCTGGCGCCCGGTGCAGCTGGGGGGGG	(7subs.;+18;-27) (7subs.;+18;-27)
	5'-GGGCTGGCGCTGAAGTCTGGCGCCGGGGCCCCGGTGGAACCCAGGGGTCCTTGTACAGTTGGGGGGGCCC-3' 5'-GGGCTGGCGCTGAAGTCTGGCGCCGGGCCCCGGCGGACCCAGGGGTCCTTGTACAGTTGGGGGGGCCC-3'	(5subs.;+1;-3) (5subs.;+1;-3)
	Wiii #19 5'-ACAGGCACGCAGGGGGGCGCGGGGCGCGAAGGGGTCCTTGTGGGCCCTGTGTGGGCCC-3' 5'-ACAGGCACGCAGGGGGGCCTGGAGGCCCTGAAGGGGTCCTTGTGGGCCCTGTGTGGGCCC-3'	(-30;4ins.) (-30;4ins.)
	MII#23 5GGGCTGGCGCTGAAGTCTGGCGCCGGGGCCCCGGGACGGCATGAGTCCTTGTACAGCTGTGTGGCCG-3' 2GGGCTGGCGCTGAAGTCTGGCGCCGGGCCCCGGGACGGCATGAGTCCTTGTACAGCTGTGTGGCCG-3'	(2subs.) (2subs.)
Zygotes	Mono-allelic mutations	
	Z. #3 5'-GGGCTGGCGCTGAAGTGGGGTCCTTGGACCCGTGGGTGGCCGCATGGTACGGGTCCTTGTACATCTGTGTGGCCG-3' 5'-GGGCTGGCGCTGAAGTCTGGCGCCGGGGCCCCGGGGGCCCGCAGGGGTCCTTGTACAGCTGTGGGCCG-3'	(-29) (WT)
	2.93 3'-GGGCTGGCGCTGAAGTCTGGCGCCGGGGCCCCGCTGGAACGCGCAGGGGTCCTTGTACAGCTGTGTGGCCGCCTAGT-3' 5'-GGGCTGGCGCTGAAGTCTGGCGCCGGGGCCCCGCTGGAACGCGCAGGGGTCCTTGTACAGCTGTGTGGCCG-3' 2'20	(1subs.) (WT)
	2: -GGGCTGGTGGCGCATGTAGAGGAAGCCAGGGGGGGGGGG	(-26) (WT)
	Drament inductions 2.#2: S'-GGGCTGGCGCTGAAGTCTGGCGCCGGGTCCCGGCTGCTGCGGGGGCCGCGTAGTACTGCTCCGCGCAGATCAAAAACTGCTCCTCGC-3' S'-GGGCTGGCGCTGAAGTCTGGCGCCGGGTCCCGGTCCCGCTGCTGCGGGGCCGCGTAGTACTGCTCCGCGCAGATCAAAAACTGCTCCTCGC-3'	(3subs.;+21;-24) (3subs.;+21;-24)
	L: #12 5'-GGGCTGGCGCTGAAGTCAGGGGTCCTTGTACAGCTGTGTGGCCG-3' 5'-GGGCTGGCGCTGAAGTC	(-26) (-26)
	L.## 5'-GGGCTGGCGCTGAAGTGGGGTCCTTGGACCCGTGGGTGGCCGCATGGTACGGGTCCTTGTAGATCTGTGTGGCCG-3' 5'-GGGCTGGCGCTGAAGTGGGGTCCTTGGACCCGTGGGTGGCCGCATGGTACGGGTCCTTGTAGATCTGTGTGGCCG-3'	(-29;1subs.) (-29;1subs.)

Supplementary Figure S1. Genotypes of the PDX1 edited embryos injected at the MII oocyte or zygote stage. Sanger sequencing results from bi-allelic and a mono-allelic mutant sheep blastocyst are shown. The PAM sequence is underlined and the target region is shown in blue. Red dashes represent deletions and red letters insertions/substitutions.

Supplementary Figure S2. The two left panels are macroscopic appearance of the vestigial pancreas (arrowheads) of the PDX1-KO fetus and the pancreas of a WT fetus (black dashes) at 4 months old of gestation. St.: stomach; D.: duodenum. The right panel is representative images (100X) of the pancreas and vestigial structure stained with hematoxylin and eosin.

Supplementary Figure S3. Confocal microscopy of PDX1 (green) and Insulin (red) double immunostaining, and DAPI staining (blue) of a PDX1-KO 4 month-old fetus compared to a WT fetus of the same age. Scale bars in overviews 500 µm, in details 50 µm.

2 – Wild type 3 – Bi-allelic 5 – Mono-allelic

Full gel image for Figure 4a. Gel electrophoresis of PCR product of Sheep embryos injected with PDX1 sgRNA 1 & PDX1 sgRNA2.

Full gel image for Figure 4d. Gel electrophoresis of PCR product -using specific primers for *PDX1-* from different tissues (liver, lung, heart, kidney, muscle and spleen) of the mutant fetus.

Replicate	IVP method	Group	Lysis rate (%)	Blastocyst rate (%)
1	IVF	Control		7/41 (17.1%)
		MII	4/82 (4.9%)	14/78 (17.9%)
		Zygote	13/74 (17.6%)	4/61 (6.6%)
2	IVF	Control		21/97 (21.6%)
		MII	3/66 (4.5%)	12/63 (19%)
		Zygote	7/67 (10.4%)	6/60 (10.0%)
3	IVF	Control	· · ·	19/31 (61.3%)
		MII	1/58 (1.7%)	25/57 (43.9%)
		Zygote	14/85 (16.5%)	13/71 (18.3%)
4	PA	Control		20/50 (40%)
		MII	2/63 (3.2%)	20/61 (32.8%)
		Zygote	1/50 (2%)	9/49 (18.4%)
5	PA	Control		20/57 (35.1%)
		MII	0/110 (0%)	29/110 (26.4%)
		Zygote	12/100 (12%)	21/88 (23.9%)

Table S1. Lysis and development rate after microinjection of MII oocytes and Zygotes. Embryos were produced by *in vitro* fertilization (IVF) or parthenogenetic activation (PA).

Table S2. Oligos/Primers used in this study (5' - 3'). Underlined sequences are: gRNAs (Oligos for gRNA synthesis); and 16 bp barcodes (Primers for NGS).

Oligos for gRNA synthesis					
Oligo name	Sequence				
oPDX1-single gRNA	GAAATTAATACGACTCACTATAGGG <u>GGCCCCGCTGGAACGCGCAG</u> GTTTTAGAGCTAGAAATAGC				
oPDX1- dual gRNA1	TAATACGACTCACTATA <u>GCGTACGGGGGGGGGGGGGGGG</u>				
oPDX1- dual gRNA2	TAATACGACTCACTATA <u>GCACGCGTGGAAAGGCCAGT</u> GTTTTAGAGCTAGAAATAGC				
T7-Reverse constant	AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC				
Primers for PCR amplification					
Primer name	Sequence				
oPDX1-F	GAACCGCGAGGAGCAGTA				
oPDX1-R-single gRNA	GAGCGGAGGCACCTCGTAT				
oPDX1-R-dual gRNA	CGACGGCACTGAGGAGTC				
Primers for NGS					
Primer name	Sequence				
oPDX1-F-BC1	<u>TCAGACGATGCGTCAT</u> GAACCGCGAGGAGCAGTA				
oPDX1-F-BC17	<u>CATAGCGACTATCGTG</u> GAACCGCGAGGAGCAGTA				
oPDX1-F-BC29	<u>GCTCGACTGTGAGAGA</u> GAACCGCGAGGAGCAGTA				
oPDX1-F-BC34	<u>ACTCTCGCTCTGTAGA</u> GAACCGCGAGGAGCAGTA				
oPDX1-F-BC38	<u>TGCTCGCAGTATCACA</u> GAACCGCGAGGAGCAGTA				
oPDX1-F-BC40	<u>CAGTGAGAGCGCGATA</u> GAACCGCGAGGAGCAGTA				
oPDX1-R-BC48	<u>TCACACTCTAGAGCGA</u> GAGCGGAGGCACCTCGTAT				
oPDX1-R-BC52	<u>GCAGACTCTCACACGC</u> GAGCGGAGGCACCTCGTAT				
oPDX1-R-BC54	<u>GTGTGAGATATATATC</u> GAGCGGAGGCACCTCGTAT				
oPDX1-R-BC62	<u>GACAGCATCTGCGCTC</u> GAGCGGAGGCACCTCGTAT				
oPDX1-R-BC70	<u>CTGCGCAGTACGTGCA</u> GAGCGGAGGCACCTCGTAT				
oPDX1-R-BC09	<u>CTGCGTGCTCTACGAC</u> GAGCGGAGGCACCTCGTAT				