

Supplementary Figure 1: Fitted parameters, "a" and "b", for the TM and CM evolutions.
On the top is the average "a", the fitted exponential term, for the 6 replicate populations
of each strain/condition pairing. On the bottom is "b", the fitted lag term. Errors bars are
one s.d. (n = 6 independently evolved populations each).

Supplementary Figure 2: The growth rates measured at Time = 3 during the evolution (blue) are compared to the fitness distributions measured in the populations at Time = 3 (red). Population fitness data was based on 96 randomly chosen colonies. Errors bars are one s.d. (n = 96 independent colonies).

Supplementary Figure 3: Growth rate distributions of each set of evolved populations at
Time = 3 for the growth rate on glycerol evolution. Distribution based on 96 randomly
chosen colonies.

Supplementary Figure 4: The relative fitness improvement over the wild-type of each reconstructed mutant for strain MG1655. Dark gray box with a '+': mutated genotype. White box with a '-': wild-type genotype. Error bars are s.e.m. (n = 15 biological replicates for single mutant and wild-type and n = 9 biological replicates for double and n = 6 biological replicates for triple mutants).

Supplementary Figure 5: Calibration curves for each set of primers used to measure allele
frequency, comparing measured DNA composition (wild type to mutant) versus true
composition, errors bars are one s.d. (n = 3 technical replicates each).

Population	Gene	Location	Mutation	Frequency
GIG1 Time 1	curA	519	A→C	11.70%
GIG1 Time 1	rpoC	1022	A→G	12.00%
GIG1 Time 1	leuQ	80	.→G	11.60%
GIG1 Time 2	mraZ	238	C→T	12.60%
GIG1 Time 2	glsA	829	G→A	10.90%
GIG1 Time 2	cyaA	797	T→C	24.00%
GIG1 Time 2	glpK	695	C→T	11.30%
GIG1 Time 2	glpK	694	C→T	15.60%
GIG1 Time 2	glpK	288	C→A	23.90%
GIG1 Time 2	azoR1	150-161	-12 bp	7.50%
GIG1 Time 2	rpoC	1022	A→G	83.00%
GIG1 Time 3	lpxC/secM	+91/-140	G→T	12.80%
GIG1 Time 3	cof/ybaO	+34/-119	T→.	10.60%
GIG1 Time 3	ubiF/glnX	+153/+1	G→T	10.30%
GIG1 Time 3	суаА	797	T→C	45.10%
GIG1 Time 3	суаА	2227	C→T	29.80%
GIG1 Time 3	glpK	695	C→T	44.10%
GIG1 Time 3	glpK	288	C→A	42.50%
GIG1 Time 3	azoR1	150-161	-12 bp	26.30%
GIG1 Time 3	rpoC	1022	A→G	100.00%
GIG2 Time 1	ygfA/traM	-220/-194	A→C	11.00%
GIG2 Time 1	traJ	124	.→T	10.80%
GIG2 Time 1	сстВ	149	G→A	14.90%
GIG2 Time 1	pdxK	315	G→A	25.00%
GIG2 Time 1	gspB	202	C→T	29.00%
GIG2 Time 1	rpoC	1022	A→G	25.70%
GIG2 Time 2	miaB	1306	G→A	11.70%
GIG2 Time 2	treA	1372	A→G	11.60%
GIG2 Time 2	rsxC	2012	C→A	10.00%
GIG2 Time 2	gspB	202	C→T	10.60%
GIG2 Time 2	суаА	1378	A→G	19.50%
GIG2 Time 2	glpK	196	C→T	27.10%
GIG2 Time 2	glpK	164	G→A	53.00%
GIG2 Time 2	rpoC	1022	A→G	72.00%
GIG2 Time 2	traJ	126	.→T	59.30%
GIG2 Time 2	rpoC	1401	-18 bp	13.40%

34 Supplementary Table 1: Curated mutation list from each sequenced population and time.

GIG2 Time 2	hrpB/mrcB	+85/-111	T→G	10.80%
AIG1 Time 1	bcsQ	218	A→C	29.80%
AIG1 Time 1	glpK	694	C→T	18.10%
AIG1 Time 1	glpK	164	G→A	11.20%
AIG1 Time 2	yhj Y	6	G→T	11.30%
AIG1 Time 2	glpK	238	A→G	88.40%
AIG1 Time 2	rpoB	1330	G→T	10.80%
AIG1 Time 2	rpoB	1576	$C \rightarrow T$	77.60%
AIG1 Time 3	glpK	238	A→G	100.00%
AIG1 Time 3	rpoB	1576	$C \rightarrow T$	100.00%
AIG2 Time 1	sseA/sseB	+371/+447	G→T	15.50%
AIG2 Time 1	glpK	695	C→T	19.90%
AIG2 Time 1	glpK	692	$C \rightarrow T$	13.80%
AIG2 Time 1	glpK	565	G→T	27.80%
AIG2 Time 2	glpK	565	G→T	87.20%
AIG2 Time 2	rpoB	1927	+64 bp	37.70%
AIG2 Time 3	glpK	565	$G \rightarrow T$	100.00%
AIG2 Time 3	rpoB	1927	+64 bp	100.00%

37 Supplementary Table 2: p-values for comparisons of growth rates between single mutant

38 constructs.

	Wild Type	rpoC1022	cyaA797	cyaA2227	glpK695	glpK288	glpK694
Wild Type	1	-	-	-	-	-	-
rpoC1022	2.15E-07	1	-	-	-	-	_
cyaA797	0.0107	0.000720	1	-	-	-	-
cyaA2227	0.000199	0.0445	0.135	1	-	-	-
glpK695	9.25E-19	4.75E-08	4.45E-13	1.85E-10	1	-	-
glpK288	1.17E-15	0.000234	5.63E-10	3.10E-07	2.13E-06	1	-
glpK694	1.61E-17	7.17E-07	1.93E-12	1.16E-09	0.195	0.00210	1

42 Supplementary Table 3: p-values for comparisons of growth rates between double/triple

Genotype	WT	rpoC	cyaA	glpK	rpoC+cyaA	rpoC+glpK	cyaA+glpK
rpoC1022							
cyaA2227	4.49E-10	7.23E-05	1.11E-06	_	-	-	-
rpoC1022							
cyaA797	6.22E-09	0.000178	3.59E-07	-	_	-	-
cyaA2227							
glpK694	8.66E-14	-	6.01E-11	0.0472	-	-	-
cyaA2227							
glpK288	1.46E-14	-	4.23E-08	0.00121	-	-	-
cyaA2227							
glpK695	1.48E-07	-	5.42E-06	0.114	-	-	-
cyaA797							
glpK694	1.70E-10	-	7.70E-06	0.452	-	-	-
cyaA797							
glpK288	2.39E-11	-	7.42E-08	0.00173	-	-	-
cyaA797							
glpK695	1.94E-16	-	1.11E-09	0.0261	-	-	-
rpoC1022							
glpK694	8.45E-19	6.613-14	-	2.42E-09	-	-	-
rpoC1022							
glpK288	2.65E-21	9.23E-17	-	7.638E-18	-	-	-
rpoC1022							
glpK695	2.04E-18	3.89E-14	-	3.83E-09	-	-	-
rpoC1022							
cyaA2227							
glpK694	1.34E-11	3.54E-10	1.10E-10	2.54E-08	1.86E-07	0.000383	5.97E-07
rpoC1022							
<i>cyaA2227</i>							
glpK288	9.00E-11	2.05E-09	8.03E-10	2.34E-08	9.94-07	0.0159	1.16E-06
rpoC1022							
<i>cyaA2221</i>	C 0 C 1 T 1 1	4 0 CE 10	2.075.10	2 1 1 1 1 0 0	1 405 07	0.000566	
glpK695	6.861E-11	4.06E-10	3.97E-10	3.11E-08	1.48E-07	0.000566	8.12E-06
rpoC1022	7.522015						
cyaA/9/	1.5229E-	2 225 11	1.075.12	1 105 00	2 105 09	2 945 05	1.275.00
<u>gipK094</u>	13	2.22E-11	1.0/E-12	1.10E-09	2.10E-08	2.84E-05	1.2/E-09
<i>rpoC1022</i>							
cyaA/9/	1 205 10	4 70E 12	0 24E 14	2 OPE 15	2.06E 10	1.02E.06	1 201 11
gipK200	1.29E-19	H./UE-12	0.24E-14	2.001-13	5.00E-10	1.051-00	1.20E-11
rpoC1022							
cyuA/9/ alnK605	6.97F-15	1.00E-11	$2.00E_{-1.3}$	1 38E-10	8 20E-09	0.000190	9.76E_00
gιρπ095	0.9/E-I3	1.00E-11	2.00E-15	1.30E-10	0.20E-09	0.000190	7./0E-09

43 mutant constructs and their composite mutations.

44

46 Supplementary Table 4: Strains utilized in this study.

Strain	Source
MG1655	CGSC
genderless (BW25113 HFR-2xoriT-SFX)	Winkler et al 2012 ¹
BW25113 2xoriT	Winkler et al 2012 ¹
genderless λ::[Pbad- <i>dam kan</i>]	this work
BW25113 2xoriT λ::[Pbad- <i>dam kan</i>]	this work
BW25113 rpoC1022	this work
BW25113 cyaA797	this work
BW25113 cyaA2227	this work
BW25113 glpK695	this work
BW25113 glpK228	this work
BW25113 glpK694	this work
BW25113 cyaA797 glpK695	this work
BW25113 cyaA797 glpK228	this work
BW25113 cyaA797 glpK694	this work
BW25113 cyaA2227 glpK695	this work
BW25113 cyaA2227 glpK228	this work
BW25113 cyaA2227 glpK694	this work
BW25113 rpoC1022 cyaA797	this work
BW25113 rpoC1022 cyaA2227	this work
BW25113 rpoC1022 glpK695	this work
BW25113 rpoC1022 glpK228	this work
BW25113 rpoC1022 glpK694	this work
BW25113 rpoC1022 cyaA797 glpK695	this work
BW25113 rpoC1022 cyaA797 glpK228	this work
BW25113 rpoC1022 cyaA797 glpK694	this work
BW25113 rpoC1022 cyaA2227 glpK695	this work
BW25113 rpoC1022 cyaA2227 glpK228	this work
BW25113 rpoC1022 cyaA2227 glpK694	this work
genderless rpoC1022	this work
genderless cyaA797	this work
genderless cyaA2227	this work
genderless glpK695	this work
genderless glpK228	this work
genderless glpK694	this work
MG1655 rpoC1022	this work

MG1655 cyaA797	this work
MG1655 cyaA2227	this work
MG1655 glpK695	this work
MG1655 glpK228	this work
MG1655 glpK694	this work
MG1655 cyaA797 glpK695	this work
MG1655 cyaA797 glpK228	this work
MG1655 cyaA797 glpK694	this work
MG1655 cyaA2227 glpK695	this work
MG1655 cyaA2227 glpK228	this work
MG1655 cyaA2227 glpK694	this work
MG1655 rpoC1022 cyaA797	this work
MG1655 rpoC1022 cyaA2227	this work
MG1655 rpoC1022 glpK695	this work
MG1655 rpoC1022 glpK228	this work
MG1655 rpoC1022 glpK694	this work
MG1655 rpoC1022 cyaA797 glpK695	this work
MG1655 rpoC1022 cyaA797 glpK228	this work
MG1655 rpoC1022 cyaA797 glpK694	this work
MG1655 rpoC1022 cyaA2227 glpK695	this work
MG1655 rpoC1022 cyaA2227 glpK228	this work
MG1655 rpoC1022 cyaA2227 glpK694	this work

Name	Sequence 5'->3'
P1	CCG AAG TAT ACG GTC AGA CTA ACA TTG CCG
P2	TTC CGA AGT ATA CGG TCA GAC TAA CAT TGC CA
Р3	CTC GCC AGT GTT CAT CAG CAT AAA GCA G
P4	CCAG ACA ATG GCG TTA TAG ATA GGC
Р5	GCC AGA CAA TGG CGT TAT AGA TAG GA
P6	CTC CAC GCT GGT AGA AGT GCT G
P7	TAC GCG TGC CGC CTG TGC
P8	GAA TAC GCG TGC CGC CTG TGT
Р9	CCG ATT ACA CCA ACG CCT CTC GTA C
P10	CCC CAT ACA AAG CGG TAC TGA AAA AAC T
P11	CCC CAT ACA AAG CGG TAC TGA AAA AAC C
P12	CAC GGC TGA GCT TTT CGC AC
P13	TTT GCC AGC GAA GGG ATC TTC C
P14	TTT GCC AGC GAA GGG ATC TTC T
P15	GTT GAT GAA GCT TGA GCC GTA GG
P16	GGT AAA CAG GGT CGT TTC CGT CTG AA
P17	GGT AAA CAG GGT CGT TTC CGT CTG AG
P18	GCG GAT AAC TTC GTC CAG GAT ATC C
P19	CGTAAAAACCCGCTTCGGCG
P20	ACATCCCGCAACCTGCGATT
P21	CCTCGCTGGGTGTGGAAGTC
P22	AGCAGGCGGGTGAAACAGTC
P23	CAT CGC TTC CAG CAC GTC AC
P24	GAT TGG TCT ACT GAT TGC GGT CAT TG
	GCGAAGATTGTGGCTCCACCCAGCATATACTGCTGCTTGACGAATTTTATATC AAA
P25	GGG AAA ACT GTC CAT AT
D26	CGGATAAGCCICGCITICCGGCACGITCAICACGAAAAATATIGCIGIAATGI GAC
P26	
D27	
P27	
D 28	GGA AGA TCA CTT CG
1 20	GGCAAGGATTCGATACTATTCCTGTGTAACTTTCTTAAGGAACGAGAATGATCAAA
P29	GGG AAA ACT GTC CAT AT
127	TGGCGAAACCCACCTTAAGGTGGGTTTTGTTATTTTGAGGGGCTGAGGAAGTGT GAC
P30	GGA AGA TCA CTT CG
P31	CAGTAGAATTCATG AAG AAA AAT CGC GCT TTT TTG
P32	CAC TTG AAT TCC ATC CGC TTC TCC TTG AGA ATT A
P33	TTGTCGGTGAACGCTCTCCT
P34	CACATTGATTATTTGCACGG
P35	CGTTCATCTTTCCCTGGT
P36	AGGATGCGTCATCGCCATTA
P37	GGCATCACGGCAATATAC
P38	TCTGGTCTGGTAGCAATG
P39	ACTTAACGGCTGACATGG
P40	ACGAGTATCGAGATGGCA

- Supplementary References
- 1. Winkler, J. & Kao, K. C. Harnessing recombination to speed adaptive evolution in Escherichia coli. *Metab Eng* **14**, 487–495 (2012).