Supplementary Data

Strains	Genotype/Phenotype	Source
E. coli	BW25141/pkD4 amp ^R kan ^R	(1)
E. coli	BL21 (DE3) pLysE/hfq::aph + pCSB12 (csrA cloned into	This study
	the NdeI and BamHI sites of pET21a+)	
S. Typhimurium	SL1344	(2)
S. Typhimurium	SL1344 \triangle acrB	(3)
S. Typhimurium	SL1344 acrA::aph	(3)
S. Typhimurium	SL1344 ramA::aph	This study
S. Typhimurium	SL1344(pACYC-ramA::3xFLAG::aph)	(4)
S. Typhimurium	SL1344 csrA::aph + (pACYC-ramA::3xFLAG::aph)	This study
S. Typhimurium	SL1344 pKD46 amp ^R	(5)
S. Typhimurium	ATCC 14028S	(6)
S. Typhimurium	SL1344 ramR::aph	(7)
S. Typhimurium	SL1344 pMW82pramA	(8)
S. Typhimurium	SL1344 pMW82pacrAB	This study
S. Typhimurium	SL1344 <i>csrA</i> ::aph (Kan ^R)	This study
S. Typhimurium	14028S <i>csrA</i> ::aph (Kan ^R)	This study
S. Typhimurium	SL1344 csrA::aph + pMW82-pacrAB	This study
S. Typhimurium	SL1344 csrA::aph + pMW82-pramA	This study
S. Typhimurium	SL1344 csrA::aph + pWSK30csrA	This study
S. Typhimurium	SL1344 pMW82-pacrAB (CsrA BS-SDM)	This study
S. Typhimurium	Ciprofloxacin selected MDR mutant	(5)
S. Typhimurium	Ciprofloxacin selected MDR mutant/csrA::aph	This study
S. Typhimurium	<i>∆ramR/csrA::aph</i> (Kan ^R)	This study
S. Typhimurium	pAcrA-TF-WT	This study
S. Typhimurium	pAcrA-TF-SDM	This study
Plasmids		

Table S1. Bacterial strains and plasmids used in this study.

pMW82	Promoter trap vector containing a promoterless gfp	(9)
	gene	
pMW82-p <i>ramA</i>	DNA fragment carrying the <i>ramA</i> promoter region,	(8)
	flanked by <i>BamH</i> I and <i>Xba</i> I restriction sites cloned into	
	pMW82	
pMW82-p <i>acrAB</i>	DNA fragment carrying the <i>acrAB</i> promoter region,	This study
	flanked by <i>BamH</i> I and <i>Xba</i> I restriction sites cloned into	
	pMW82	
pMW82-p <i>acrAB</i>	DNA fragment carrying the acrAB promoter region with	This study
(CsrA BS-SDM)	mutated CsrA binding sites, flanked by BamHI and XbaI	
	restriction sites cloned into pMW82	
pMW82-p <i>acrAB</i>	DNA fragment carrying the acrAB promoter region with	This study
(RNase E- DEL)	putative RNase E cleavage site region deleted, flanked	
	by BamHI and XbaI restriction sites cloned into pMW82	
pWSK30	Multi-purpose low-copy-number vector	(10)
pWSK30 <i>csrA</i>	csrA gene flanked by BamHI and HindIII restriction sites	This study
	cloned into pWSK30	
pACYC-	DNA fragment carrying the <i>ramA</i> ::3XFLAG::aph flanked	(4)
ramA::3xFLAG::aph	by HindIII and Nrul restriction sites cloned into the	
	multicopy plasmid pACYC	
pCR [®] II-TOPO [®]	Cloning vector with LacZ reporter, T7 and SP6 promoter	Thermo
	sites, amp & kan resistance	Fisher
pCR [®] II-p <i>ramA</i>	DNA fragment carrying the <i>ramA</i> promoter region	This study
	cloned into pCR [®] II-TOPO [®]	
pCR [®] II-p <i>acrAB</i>	DNA fragment carrying the <i>acrAB</i> promoter region	This study
	cloned into pCR [®] II-TOPO [®]	
pCR [®] II-p <i>hfq</i>	DNA fragment carrying the <i>hfq</i> promoter region cloned	This study
	into pCR [®] II-TOPO [®]	
pCR [®] II- p <i>acrAB</i>	DNA fragment carrying the acrAB promoter region with	This study
(CsrA BS-SDM)	mutated CsrA binding sites cloned into pCR [®] II-TOPO [®]	

pAcrA-TF-WT	DNA fragment carrying the WT <i>acrAB</i> promoter region	This study
	plus the acrA CDS minus stop codon flanked by BamHI	
	and KpnI restriction sites cloned into pDOC-G	
pAcrA-TF-SDM	DNA fragment carrying the <i>acrAB</i> promoter region with	This study
	nucleotide substitutions plus the <i>acrA</i> CDS minus stop	
	codon flanked by <i>BamH</i> I and <i>Kpn</i> I restriction sites	
	cloned into pDOC-G	
pT7- <i>acrA</i> -GFP	DNA fragment carrying the <i>acrA</i> -GFP translational fusion	This study
	with wildtype leader sequence cloned into the pET-	
	20b(+) vector (Novagen)	
pT7- <i>acrA</i> -GFP Mut	DNA fragment carrying the <i>acrA</i> -GFP translational fusion	This study
CsrA BS	with mutated CsrA binding sites in the leader sequence	
	cloned into the pET-20b(+) vector (Novagen)	

Table S2.

Phenotype of *Salmonella* Typhimurium *csrA::aph* and MDR mutants

Strain		Antii	microbial su	isceptibiliti	es	Growth in LB an med	Biofilm formation		
	MIC (mg/L)					Generation	OD (600nm)		
	CIP	NAL	CHL	TET	EtBr	LB	MOPs		
SL1344	0.015	4	2	1	2048	47.5 +/- 5.4	100.2 +/- 8.9	0.29 +/- 0.06	
SL1344 csrA::aph	0.015	4	2	1	2048	182.5 +/- 12.5*	374.3 +/- 16.2*	0.05 +/- 0.02*	
SL1344 csrA::aph (pWSK30csrA)	0.015	4	2	1	2048	49.3 +/- 6.2	105.4 +/- 6.7	0.31 +/- 0.04	
SL1344 ramR::aph	0.06	16	16	8	2048	ND	ND	ND	
SL1344 ΔramR/csrA::aph	0.03	8	8	4	256	ND	ND	ND	
SL1344 CIP selected MDR mutant	0.12	32	16	8	2048	ND ND		ND	
SL1344 CIP selected MDR mutant/csrA::aph	0.03	8	4	2	512	ND	ND	ND	

CIP, ciprofloxacin; NAL, nalidixic acid; CHL, chloramphenicol; TET, tetracycline; EtBr, ethidium bromide; LB, Luria-Bertani broth; MOPs, MOPs minimal medium. ND, not done. **P* < 0.05 by Student's t-test.

Table S3. Analysis of the second elution fraction analysed by Fourier transform ion cyclotron resonance (FT-ICR) mass spectro	ometry.
---	---------

Accession	Description		Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pl
A7ZQC4	Carbon storage regulator OS=Escherichia coli O139:H28 (strain	25.83	63.93	5	2	5	7	61	6.9	8.62
	E24377A / ETEC) GN=csrA PE=3 SV=1 - [CSRA_ECO24]									
A0A080J9U6	Carbon storage regulator OS=Escherichia coli 2-460-02_S1_C2	14.93	67.35	4	1	4	5	49	5.5	7.25
	GN=AB34_3203 PE=4 SV=1 - [A0A080J9U6_ECOLX]									
A0A086VAZ1	Molybdopterin synthase small subunit OS=Escherichia coli	9.48	29.17	38	1	1	2	72	7.7	4.42
	GN=moaD PE=4 SV=1 - [A0A086VAZ1_ECOLX]									
D7XFN1	Murein-lipoprotein (Fragment) OS=Escherichia coli MS 198-1	5.87	35.62	16	2	2	2	73	7.7	6.60
	GN=lpp PE=4 SV=1 - [D7XFN1_ECOLX]									
E9YIC2	Entericidin EcnA/B family protein OS=Escherichia coli TA007	3.90	40.43	6	1	1	1	47	4.7	8.21
	GN=ERHG_03462 PE=4 SV=1 - [E9YIC2_ECOLX]									
P49064	Serum albumin OS=Felis catus GN=ALB PE=1 SV=1 -	2.50	2.47	1	1	1	1	608	68.6	5.66
	[ALBU_FELCA]									
K3GH09	Phage portal family protein (Fragment) OS=Escherichia coli	0.00	6.59	1	1	1	1	91	10.2	6.51
	5412 GN=EC5412_1619 PE=4 SV=1 - [K3GH09_ECOLX]									
T8NXA3	Inner membrane protein ytfF OS=Escherichia coli UMEA 3097-1	0.00	13.19	142	1	1	3	235	26.1	9.07
	GN=G907_04361 PE=4 SV=1 - [T8NXA3_ECOLX]									

Figure S1

Expression of GFP from pMW82p*ramA* from eight random transposon mutants, chosen from the four FACS gated populations (P4, P5, P6 and P7).

Figure S2Infection assays with SL1344 and SL1344 *csrA::aph* mutant in INT-407 humanembryonic intestine cells. Association and invasion of the SL1344 *csrA::aph* mutant into INT-407 cells was compared to that of the parental wild-type strain, SL1344.

Figure S3.

Rate of efflux of ethidium bromide. **A.** (—), SL1344; (—), SL1344 *csrA::aph.* **B.** (—), SL1344 Δ*ramR*; (—), SL1344 Δ*ramR/csrA::aph.* **C.** (—), SL1344 MDR mutant; (—), SL1344 MDR/*csrA::aph.*

Figure S4: Uncropped gel images. The images correspond to EMSA gels presented in Figures 4 A-D.

Figure S5. Coomassie blue stained SDS-PAGE gel (A) and anti-His tag Western blot (B) of fractions derived from purification of CsrA-His protein. M = Protein ladder, 1 = Flow through, 2 = Wash 1, 3 = Wash 2, 4 = Elute 1, 5 = Elute 2.

Figure S6. Coomassie blue stained protein gels corresponding to the Western blots described in Figures 3 and 11.

Supplementary References

- 1. Datsenko, K.A. and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A*, **97**, 6640-6645.
- 2. Wray, C. and Sojka, W.J. (1978) Experimental *Salmonella typhimurium* infection in calves. *Res Vet Sci*, **25**, 139-143.
- 3. Buckley, A.M., Webber, M.A., Cooles, S., Randall, L.P., La Ragione, R.M., Woodward, M.J. and Piddock, L.J. (2006) The AcrAB-TolC efflux system of *Salmonella enterica* serovar Typhimurium plays a role in pathogenesis. *Cell Microbiol*, **8**, 847-856.
- 4. Ricci, V., Blair, J.M. and Piddock, L.J. (2014) RamA, which controls expression of the MDR efflux pump AcrAB-TolC, is regulated by the Lon protease. *J Antimicrob Chemother*, **69**, 643-650.
- 5. Ricci, V., Tzakas, P., Buckley, A. and Piddock, L.J. (2006) Ciprofloxacin-resistant *Salmonella enterica* serovar Typhimurium strains are difficult to select in the absence of AcrB and TolC. *Antimicrob Agents Chemother*, **50**, 38-42.
- 6. Fields, P.I., Swanson, R.V., Haidaris, C.G. and Heffron, F. (1986) Mutants of *Salmonella typhimurium* that cannot survive within the macrophage are avirulent. *Proc Natl Acad Sci U S A*, **83**, 5189-5193.
- 7. Ricci, V., Busby, S.J. and Piddock, L.J. (2012) Regulation of RamA by RamR in *Salmonella enterica* serovar Typhimurium: isolation of a RamR superrepressor. *Antimicrob Agents Chemother*, **56**, 6037-6040.
- 8. Lawler, A.J., Ricci, V., Busby, S.J. and Piddock, L.J. (2013) Genetic inactivation of *acrAB* or inhibition of efflux induces expression of *ramA*. *J Antimicrob Chemother*, **68**, 1551-1557.
- 9. Bumann, D. and Valdivia, R.H. (2007) Identification of host-induced pathogen genes by differential fluorescence induction reporter systems. *Nat Protoc*, **2**, 770-777.
- 10. Wang, R.F. and Kushner, S.R. (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in *Escherichia coli*. *Gene*, **100**, 195-199.