Mairobys Socorro^{1,2,8}, Angela Criscimanna^{1,2,8}, Patricia Riva^{1,2}, Manuj Tandon^{1,2}, Krishna Prasadan^{1,2}, Ping Guo^{1,2,#}, Abhinav Humar¹, Sohail Z. Husain³, Steven D. Leach⁴, George K. Gittes^{1,2}, and Farzad Esni^{1,2,5,6,7,*}

- ¹ Department of Surgery, ² Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA 15244, USA.
- ³ Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, USA.
- ⁴ Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- ⁵ Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15244, USA.
- ⁶ Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15244, USA.
- ⁷ University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15123, USA.
- ⁸ These authors contributed equally to this work

[#]Current address: Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston,1881 East Road, 3SCR6.4621, Houston, Texas 77054

Correspondence and request for materials should be addressed to Farzad Esni (farzad.esni@chp.edu).

Supplementary Figure Legends

Supplementary Figure 1: Isolation of a pool of cells enriched for duct cells. (A) Flow cytometric analysis of unstained cells, Ecadherin alone, DBA alone, or Ecadherin and DBA combined. This cell population is enriched for duct cells from the adult pancreas according to the protocol described in the Methods. (B) Representative flow cytometric analysis of ALDH-activity (Aldefluor) in a similar pool of cells enriched for duct cells from the pancreas of adult mice (n=10). (C) qRTPCR for insulin or amylase expression in duct cells (DBA⁺), Aldefluor⁺ cells, or total pancreas (n=3, where each sample was pooled cells from 3-5 mice). (D, E) Representative flow cytometric analysis of ALDH-activity in cells from the pancreas of (D) post-natal mice (n=2, pooled samples from 7-10 pups for each time point), (E) pregnant (GD11 n=8, GD14 n=14, GD17 n=44) or postpartum dams (PP1 n=31, PP4 n=37, PP7 n=12, PP14 n=5, PP21 n=4). Aldefluor⁺ cells are highly abundant before weaning in neonatal mice, as well as in pregnant and postpartum dams. Aldefluor⁺ cells isolated from human pancreas display a similar expansion pattern to their mouse counterparts. P0-P21: post-natal days 0 to 21; GD11-GD17: gestational days 11 to 17; PP1-PP21: postpartum days 1 to 21; DBA: Dolichos Biflorus Agglutinin.

Supplementary Figure 2: Cells with ALDH-activity are abundant in the mouse pancreas. (A) Representative flow cytometric analysis of ALDH-activity (Aldefluor) in cells from the head, body or tail of the pancreas of pregnant mice (upper panel) showed equal distribution of Aldefluor⁺ cells in different parts of the adult mouse pancreas. Flow cytometric analysis of Ecadherin expression in Aldefluor⁺ cells from the head, body and tail of the pancreas of pregnant mice showed a similar ratio of Aldefluor⁺/Ecadherin⁺ cells throughout the gland (lower panel) (n=5). (B) Representative flow cytometric analysis of Ecadherin and ALDH-activity (Aldefluor) in cells from the pancreas of gestational day 17 pregnant (n=24), or postpartum days 14 (n=10) or 21 dams (n=12). (C)

Quantification of percentages of Ecad⁺ cells within the Aldefluor⁺ population in the pancreas of nonpregnant (n=7), pregnant (GD11 n=5, GD14 n=14, GD17 n=24) or postpartum dams (PP1 n=25, PP4 n=26, PP7 n=12, PP14 n=5, PP21 n=4). (D) Representative flow cytometric analysis of F4/80 and CD11b, or CD31 expression in Aldefluor⁺ cells from the pancreas of pregnant (GD17) dams, showing that Aldefluor⁺ cells isolated from the pancreas are not macrophages nor endothelial cells (n=5). (E) Representative flow cytometric analysis of Ecadherin expression in Aldefluor⁺ cells from the pancreas of postnatal day 7 pups (n=2, pooled samples from 7-10 pups), caerulein-treated (n=5) or diabetic NOD mice (n=4) showed expansion of both Ecadherin-positive as well as Ecadherin-negative cells in these conditions (n=5). (F) Representative flow cytometric analysis of Ecadherin expression in Aldefluor⁺ cells from the pancreas of healthy pediatric (n=3), chronic pancreatitis (n=3), or T1D (n=3) patients showed expansion of both Ecadherin-positive as well as Ecadherin-negative cells in human pancreas.

Supplementary Figure 3: Characterization of different Aldefluor⁺ cell populations. (A, B) Representative flow cytometric analysis of stem cell markers Sca-1, CD44, CD45, CD105, or CD133 expression, in Aldefluor⁺ cells from the pancreas of non-pregnant (A), or postpartum (B) dams showing that Aldefluor⁺ cells isolated from the mouse pancreas do not express the aforementioned stem cell markers (n=5).

Supplementary Figure 4: Aldefluor⁺ cells can be separated into four sub-populations. (A) Representative flow cytometric analysis of Ecadherin and CD90 expression in Aldefluor⁺ cells from the pancreas of gestational day 17 pregnant, postpartum days 14 and 21 dams. (B) Quantification of the actual number of the four Aldefluor⁺ sub-population in the pancreas of non-pregnant adult, pregnant, or postpartum dams at indicated stages. GD: Gestational Day; PP: Postpartum. Results are expressed as the mean \pm SD. (C) Quantification of the percentage of the four Aldefluor⁺ sub-population in the pancreas of non-pregnant adult, pregnant, or postpartum dams at indicated stages.

Results are expressed as the mean \pm SD. (D) Breakdown of pancreases at different gestational days (GD) or post-partum days (PP) that contain only CD90⁺ cells. (A-C) non-pregnant (n=7), pregnant (GD11 n=5, GD14 n=4, GD17 n=4), postpartum dams (PP1 n=6, PP4 n=16, PP14 n=3, PP21 n=1).

Supplementary Figure 5. The Aldefluor⁺ cells display different degrees of heterogeneity within each sub-population. The Aldefluor⁺ cells isolated from the pancreas of postpartum day 1 dams were stained for CD90 and Ecadherin (left column), and the localization of each sub-population (black dots) was determined on the Aldefluor plot (middle column), or on the forward and side scatter plot (right column)

Supplementary Figure 6: Gene expression analysis of different Aldefluor⁺ cell populations. (A) Hierarchical clustering of gene expression data among the cells analyzed in this study cluster CD90⁻/Ecad⁻, CD90⁺/Ecad⁻, and CD90⁺/Ecad⁺ populations together, indicating that these three sub-populations may share the same origin. (B) Scatter plot demonstration of genes differentially expressed in CD90⁻/Ecad⁻, CD90⁺/Ecad⁻, and CD90⁺/Ecad⁻, and CD90⁺/Ecad⁺ populations compared to CD90⁻/Ecad⁺ cells. (n=3, where each sample was pooled cells from 3-5 mice).

Supplementary Figure 7: Existence of Aldefluor⁺/**CD29**⁺/**CD90**⁻/**Ecad**⁻ **cells in the embryonic dorsal mesenchyme.** Representative flow cytometric analysis of ALDH1-activity, or Ecadherin and CD29 expression in Aldefluor⁺ cells from the E10.5 dorsal pancreatic mesenchyme (dm) shows the presence of CD29⁺/CD90⁻/Ecad⁻ cells in the mesenchyme surrounding the dorsal pancreatic anlagen (n=3, where each sample was pooled dorsal mesenchyme from 10-15 embryos).

Supplementary Figure 8: Expansion of Aldefluor⁺ cells in DT-treated PdxCre;R26^{DTR} mice. (A) Whole-mount X-gal staining of DT-treated PdxCre;R26^{DTR/LacZ} mice show that DT-treatment results into ablation of acinar and endocrine cells, while the ductal cells survive. (B) Flow cytometric analysis of ALDH1-activity, or Ecadherin expression in Aldefluor⁺ cells isolated from the pancreas of PdxCre;R26^{DTR} on days 3 post DT-treatment, showing expansion of Aldefluor⁺ cells following DT/DTR-mediated cell ablation (n=3). (C, D) Pancreatic tissues obtained from PdxCre;R26^{DTR/mTmG} mice on day 3 post DT-treatment were immunostained for the endothelial marker PECAM (C), or macrophage marker F4/80 (D). The mTomato⁺/mGFP⁺ cells did not express PECAM or F4/80, indicating that these are not endothelial cells nor macrophages. Arrows in (C) and (D) mark mTomato⁺/mGFP⁺/PECAM⁻, or mTomato⁺/mGFP⁺/F480⁻ cells, respectively. Bars 20 μm.

8

10² 10³ 10⁴ 10⁵

Aldefluor.

SSC-A.

100

100

10

102

Aldefluor

105

SSC-A

10

5

10² 10³ 10⁴ 10⁵

Aldefluor -

SSC-A.

100

10² 10³

Aldefluor

10⁴ 10⁵

SSC-A-

Α

SFig2

% Ecad-positive cells

	Control	GD11	GD14	GD17	PP1	PP4	PP14	PP21
Median	79	70	67	67	61	64	53.5	65
Maximum	93	94	80	89	83	74	78	79
Minimum	63	26	25	47	31	26	30	28

F

Aldefluor+ cell (Non pregnant dams)

в

3

Aldefluor+ cell (Pregnant or postpartum dams)

SFig4

Number of each Cell Population (x1000)								
	Control	GD11	GD14	GD17	PP1	PP4	PP14	PP21
CD90 / Ecad	21,6± 9,6	95,4± 8,4	29,0± 4,9	42,5± 9,6	45,8±27,1	80,0± 47,0	67,9± 6,7	40,4
CD90+/ Ecad-			99,2 ± 40,7	184,4± 86,8	58,9±12,7	64,0± 34,3	52,8±23,1	32,0
CD90*/ Ecad*			23,7± 12,9	101,0± 17,5	27,8±16,8	25,2± 10,7	49,9± 6,0	36,1
CD90 / Ecad+	74,2± 9,6	204,7± 8,4	236,2± 48,3	294,5±103,9	112,7±27,3	180,1±55,6	311,0±23,9	225,6

С

D

в

% of each Cell Population								
	Control	GD11	GD14	GD17	PP1	PP4	PP14	PP21
CD90/Ecad-	22.6 ± 10.0	31.8 ± 28.1	7.3 ± 1.3	6.8 ± 1.6	18.7 ± 11.0	22.9 ± 13.5	14.0 ± 1.4	12.1
CD90*/ Ecad-			25.6 ± 10.5	29.6 ± 14.0	24.0 ± 5.2	18.3 ± 9.8	11.0 ± 4.8	9.6
CD90 ⁺ / Ecad ⁺			6.1 ± 3.3	16.2 ± 2.8	11.3 ± 6.8	7.2 ± 3.1	10.4 ± 1.2	10.8
CD90 ⁻ / Ecad ⁺	77.4 ± 10.0	68.2 ± 28.1	61.0 ± 12.4	47.4 ± 16.7	46.0 ± 11.2	51.6 ± 15.9	64.6 ± 5.0	67.5

Presence of Aldefluor+/CD90+/Ecad+ cells					
GD11	(0/5)	0%			
GD14	(4/7)	57%			
GD17	(4/5)	80%			
PP1	(6/8)	75%			
PP4	(16/27)	59%			
PP21	(1/3)	33%			

CD90-/Ecad-

SFig6

SFig. 7

DT-treated PdxCre;R26-DTR/LacZ

PdxCre;R26-DTR DT-treated

С

D

F4/80
mTomato
mCFP
Merge

Image: Image

Supplementary Methods

Supplementary Table 1: List of antibodies

Antigen	Species	Comapany	Cat. No.	Dilution
Amylase	goat	Santa Cruz	SC-12281	1:300
BrdU	mouse	BD Horizon	563445	5 µl/test
CD11b-APC	mouse	Miltenyi	130-091-241	1:20 (Flow)
CD11b-VioBlue	mouse	Miltenyi	130-097-336	1:20 (Flow)
CD326-biotin	mouse	Miltenyi	130-101-859	1:10 (Flow)
CD326-Vioblue	mouse	Miltenyi	130-102-421	1:10 (Flow)
CD29-APC	mouse	Miltenyi	130-102-557	1:10 (Flow)
CD31 (PECAM)	rat	BD	BD550274	1:100 (Flow) 1:50 (IF)
CD44-APC	mouse	Miltenyi	130-102-563	1:10 (Flow)
CD45-APC	mouse	Miltenyi	130-102-544	1:10 (Flow)
CD90.1-VioBlue	mouse	Miltenyi	130-102-637	1:10 (Flow)
CD105-APC	mouse	Miltenyi	130-102-495	1:10 (Flow)
CD133-APC	mouse	Miltenyi	130-102-197	1:10 (Flow)
Cytokeratin	rabbit	Dako	Z0622	1:100 (IF)
DBA	Fitc	Vector Lab	FL1031-2	1:100 (IF)
DBA	biotin	Vector Lab	B1035	1:100 (Flow, IF)
DCLK1	rabbit	Abcam	ab37994	1:33 (Flow)
Ecad	goat	R&D	AF748	1:200 (IF) 1:100 (Flow)
F4/80	rat	Invitrogen	MF48000	1:100 (IF)
F/480 eFluor 660	rat	eBioscience	50-4801-82	1:100 (Flow)
Insulin	guinea pig	DAKO	Millipore	1:1000
PDX1	goat	Abcam	Ab47383	1:10000 (IF)
PSA-NCAM-APC	mouse	Miltenyi	130-093-273	1:10 (Flow)
Sca-1-APC	mouse	Miltenyi	130-102-343	1:10 (Flow)

All of the secondary antibodies used for Immunostaining were purchased from Jackson ImmunoResearch Laboratories: biotin-conjugated anti-rabbit (1:500), biotin-conjugated anti-rat (1:500), biotin conjugated anti-guinea pig (1:500), biotin-conjugated anti-goat (1:250); Cy2-conjugated streptavidin (1:500); Cy3-conjugated streptavidin (1:500); Cy5-conjugated streptavidin (1:100); and Cy2- and Cy3- anti-guinea pig, anti-rabbit, anti-rat, anti-goat (all 1:300). For flow cytometry, secondary antibodies used were Cy5 anti-goat, anti-rat, anti-rabbit (1:100), Cy5-conjugated streptavidin (1:100) and Donkey anti-Goat IgG (H+L) Alexa Fluor® 350 conjugate (Thermo fisher).

Supplementary Table 2: List of primers

Primers				
Amy	mouse	Qiagen	Mm_Amy2a5_2_SG	QT01766961
GAPDH	mouse	Qiagen	Mm_Gapdh_3_SG	QT01658692
Ins2	mouse	Qiagen	Mm_Ins2_1_SG	QT00114289