Supplemental Table. Summary of selected ARIC^a cohort studies which demonstrate the use of a wide range of nutrition research methodologies. Review conducted March-August, 2016.

1st Author	Aim	Study Type	Sample Characteristics	Dietary or nutrition-related measure	Outcome Measures	Key Findings
Micronutrient	, Macronutrient and	Individual Foo	od Evaluations			I
Shahar and	To examine	Cross-	14,571 adults not	Baseline/Visit 1	Baseline/Visit 1	Inverse associations between n-
colleagues,	relationship	sectional	taking anti-	(1987-89)	Hemostatic factors	3 FAs and fibrin, vIII, VWF for
199314	between hemostatic		coagulants at baseline	Total and saturated	(fibrinogen, factor VII,	African Americans and whites.
	factors (fibrinogen,		(age, sex, race=NR ^c)	fat, MUFA ^d , PUFA ^e ,	factor VIII, VWF,	For whites only, positive
	factor VII, factor			animal fat, n-3 FA ^f ,	Protein C, and ATIII ^g),	association of n-3 FAs and
	VIII, VWF ^b) and			cholesterol, fiber,	BMI ^h , smoking, alcohol,	protein C. Similar results for
	types of dietary fat			carbohydrates,	and T2DM ⁱ	fish intake (primary source of
				caffeine, and alcohol.		diet n-3 FAs). Relationships
						between other dietary fats, fiber
						and hemostatic factors were
						variable.
Shimakawa	To examine	Case-control	640 individuals with	Baseline/Visit 1	Baseline/Visit 1	Cases had higher homocysteine
and	relationship		and without	Supplement use,	Plasma homocysteine	levels. Folate, vitamins B6, and
colleagues,	between vitamin		atherosclerosis at	intake of vitamins A		B12 (key vitamins in

1997 ¹⁵	intake and plasma		baseline (mean	and B, folate, niacin,		homocysteine metabolism) and
	homocysteine, a		age=NR, 40% F ^j ,	iron, potassium		other nutrients inversely
	risk factor for		18% African	intake, methionine,		associated with homocysteine
	atherosclerosis and		American)	protein, fats,		levels. Supplement users had
	thromboembolic			carbohydrates,		lowest homocysteine levels.
	disease			dietary fiber,		Cold breakfast cereal, milk, and
				cholesterol and select		fruit intakes associated with
				food groups (alcohol,		lower homocysteine levels.
				cold cereals, fruit and		
				milk)		
Kan and	To evaluate	Cross-	11,897 adults with	Baseline/Visit 1	Baseline/Visit 1	All sources of fiber, cereal and
colleagues,	association of fiber	sectional	complete data on	Dietary fiber, cured	FEV and FVC. COPD-	fruit intakes associated with
2008 ¹⁶	intake with COPD ^k		smoking and traffic	meats, carotenoids,	related phenotypes	improved lung function and
			exposure (mean age	vitamins C,D,E, and	(chronic bronchitis and	lower COPD prevalence.
			F=53 y, mean age	n-3 FAs	Global Initiative for	Relationships not explained by
			M ¹ =54 y, 57% F,		Chronic Obstructive	specific nutrients (carotenoids,
			24% African		Lung Disease [derived	vitamins C, D and E, or omega-
			American)		from FEV ^m and FVC ⁿ])	3 fatty acids) or lower cured
						meat intake, or other factors
						associated with improved lung

						function.
Volcik and	To evaluate effect	Cross-	13,614 adults with	Baseline/Visit 1	Baseline/Visit 1	Genotype frequencies varied by
colleagues,	of genetic variants	sectional	complete data and	n-6 and n-3 FAs	BMI, TC ^p , TG ^q , LDL-C ^r ,	race. No associations between
2008 ¹⁷	of PPAR-alpha ^o (a		permission to use		HDL-C ^s . Nine SNPs ^t	lipids and genetic variants.
	genetic regulator of		genetic information		associated with PPAR	Interactions between n-3 and n-
	lipid metabolism)		(age and gender=NR,		gene region. Smoking	6 FAs and lipids differed by
	on the association		26% African		and cholesterol-lowering	race. African Americans with
	between n-6 and n-		American)		medications	higher intake of n-3 FA had
	3 FAs and lipid					higher HDL-C and whites with
	measures					higher intake of n-6 FAs had
						higher TC and LDL-C and
						lower HDL-C.
Imamura and	To examine	Cross-	3,694 adults in CHS ^x	Baseline/Visit 1	Baseline/Visit 1	Higher levels of both 22:1 and
colleagues,	associations of	sectional	(mean age=75 y,	LCMUFAs (29 in	BMI, BP ^z , lipid profile,	24:1 LCMUFA, but not 20:1,
2013 ¹⁸	plasma long-chain		gender=NR, 100%	ARIC and 42 in	hemostatic factors,	were associated with higher
	LCMUFAs ^u with	Prospective	whites); 3,577 adults	CHS). 43 food	physical activity, left	CHF incidence in both cohorts.
	CVD ^v risk factors,	(14-21 yrs.	in ARIC Minnesota	groups derived from	ventricular hypertrophy,	LCMUFAs not associated with
	incident CHF ^w and	of follow-up	Cohort (mean age=54	two FFQs ^y for CHS	and incident CHF	stroke. LCMUFAs levels
	dietary sources of	[differed by	yrs., gender=NR,	and one FFQ for		associated with seafood,
	LCMUFAs	cohort])	100% whites)	ARIC		poultry, meat, mustard and nuts.

Steffen and	To examine	Prospective	11,940 adults free at	Baseline/Visit 1 and	Baseline through 1999	Whole grain intake inversely
colleagues,	relationship	(through 11	baseline of prevalent	Visit 3 (1993-95)	follow-up	related to mortality and CAD.
2003 ¹⁹	between whole and	yrs. of	CAD, ischemic	Foods classified as	All-cause mortality,	Fruit and vegetable intake
	refined grains,	follow-up)	stroke, T2DM and	whole grain, refined	incident CAD and	inversely related to mortality
	fruits, and		cancer (mean age	grain, fruits and	incident ischemic stroke	and for African Americans,
	vegetables with		F=53.4 y, mean age	vegetables, dairy, fish		inversely related to CAD. No
	mortality and		M = 54.1 y, 56% F,	and red meat		beneficial effects of whole
	incidence of CAD ^{aa}		26% African			grains, fruits and vegetables on
	and ischemic stroke		American).			stroke risk.
Fuchs and	To prospectively	Prospective	14,506 adults without	Baseline/Visit 1	Baseline through 1998	For whites, alcohol intake, even
colleagues,	evaluate	(through	CHD at baseline	Servings of wine,	follow-up	at low levels, associated with
2004^{20}	relationship	average of	(mean age=NR, 57%	beer, alcohol and	Incident CHD or CHD	lower CHD risk. Among
	between	9.8 yrs. of	F, 27% African	estimated total	death. Education, family	African American men, alcohol
	consumption of	follow-up)	American)	alcohol intake.	income, smoking, DM,	intake was associated with
	alcoholic beverages				baseline BP, PA ^{cc} , lipid	higher risk. African American
	and incidence of				profile, BMI, and use of	women drank too infrequently
	CHD ^{bb}				anti-hypertension	to assess. Further research
					medications	needed to fully characterize
						alcohol intake and determine
						how it influences CHD.

Steffen and	To prospectively	Prospective	14,962 adults free of	Baseline/Visit 1 and	Baseline through 2001	VTE risk was inversely
colleagues,	evaluate the	(through 12	VTE at baseline	Visit 3	follow-up	associated with fruit, vegetable
2007 ²¹	relationship	yrs. of	(mean age=54 y, 55%	Whole and refined	VTE (deep vein	and fish intake and positively
	between VTE ^{dd}	follow-up)	F, 27% African	grains, fruits and	thrombosis or	associated with "Western" diet
	incidence and foods		American)	vegetables, dairy,	pulmonary embolism)	pattern. Dairy, grains and
	rich in B vitamins			fish, and processed		"prudent" diet pattern not
	and omega-3 fatty			meat. Two "a		related. After clotting factors
	acids			posterior" diet		adjustment, relationships
				patterns ("Healthy"		attenuated but remained
				and "Western")		significant.
				derived from PCA ^{ee} .		
Nettleton and	To prospectively	Prospective	14,153 adults free of	Baseline/Visit 1 and	Baseline through 2003	HF risk lower with greater
colleagues,	evaluate the	(through 13	prevalent HF at	Visit 3	follow-up	whole-grain intake but higher
2008 ²²	associations	yrs. of	baseline (mean age	Whole grains, fruits	Incident HF (death or	with greater intake of eggs and
	between food	follow-up)	=NR, 55% F, 45%	and vegetables, fish,	hospitalization) based on	high-fat dairy. Relationships
	intake and risk of		M, 25% African	nuts, eggs, high fat	deaths certificate and	independent of other foods
	HF ^{ff} in a diverse		American)	dairy, and red meat	hospital discharge lists	associated with HF and CVD
	population					risk factors.
Bomback and	To evaluate	Prospective	15,745 adults (mean	Baseline/Visit 1 and	Baseline/visit 1, Visit 2	Higher intake of sugar-
colleagues,	whether drinking	(through 3	age=NR, 55% F,	Visit 3	(1990-92), Visit 3 and	sweetened soda associated with

2010^{23}	sugar-sweetened or	and 9 yrs. of	26.9% African	Daily intake of sugar-	Visit 4 (1996-98)	prevalent hyperuricemia and
	diet soda is	follow-up)	American, .03%	sweetened and diet	HTN ^{hh} status, DM,	CKD but not on future
	associated with		Other)	soft drinks, sodium,	serum creatinine, uric	hyperuricemia and CKD. Effect
	hyperuricemia and			animal protein and	acid. Prevalent and	more pronounced for those with
	$\mathrm{CKD}^{\mathrm{gg}}$			total energy intake	incident hyperuricemia	elevated uric acid. No
					and CKD	associations with diet drinks.
Dietary Patter	n Analysis		I	I	I	I
Steffen and	To prospectively	Prospective	14,962 adults free of	Baseline/Visit 1 and	Baseline through 2001	"Western" diet pattern was
colleagues,	evaluate	(through 12	VTE at baseline	Visit 3	follow-up	positively associated with VTE
2007 ²¹ (also	relationship	yrs. of	(mean age=54 y, 55%	"A posterior" diet	VTE (deep vein	risk. After adjustment for
listed above)	between foods rich	follow-up)	F, 27% African	patterns derived from	thrombosis or	clotting factors, relationships
	in B vitamins and		American)	PCA.	pulmonary embolism)	attenuated but remained
	omega-3 fatty acids			"Prudent or Healthy":	,	significant. Dairy, grains and
	and VTE incidence			High in fish, fruit and		"Prudent or Healthy" diet
				vegetables; low in		pattern not related to VTE.
				red and processed		
				meats, fast food and		Fruit and vegetable and fish
				high fat dairy.		intake had an inverse
				"Western": High in		relationship with VTE risk.
				red and processed		

				meats, fast food, high		
				fat dairy; low fish,		
				fruit and vegetables.		
				Single foods in		
				analysis: whole and		
				refined grains, fruits		
				and vegetables, dairy,		
				fish, and processed		
				meat.		
Lutsey and	To prospectively	Prospective	9514 adults free of	Baseline/Visit 1 and	Baseline/visit 1 and	After adjusting for
colleagues,	evaluate	(through 9	MetS and CVD at	Visit 3	Visits 2-4	demographic, smoking, and PA,
2008 ³²	relationship	yrs. of	baseline (mean age=	"A posterior" diet	MetS, WC ^{jj} , TG, HDL-	"Western" diet pattern
	between incident	follow-up)	53.6 y, 56% F, 25%	patterns derived from	C, SBP ^{kk} , DBP ^{ll} , anti-	positively associated with
	MetS ⁱⁱ and dietary		African American)	PCA.	HTN medication use,	greater risk of MetS. No
	intake				BG ^{mm} , BG medication	association with "Prudent" diet
				"Prudent": fruit, fish,	use, smoking and PA	pattern. Dairy intake inversely
				seafood, poultry,		associated and meat, fried foods
				whole grains,		and diet soda positively
				tomatoes, low fat		associated with MetS.
				dairy, yogurt, nuts.		

				"Western": refined-		
				grain bread, cereal,		
				rice, and pasta,		
				processed meat, fried		
				foods, eggs, desserts,		
				soda and sweet		
				beverages, high fat		
				dairy, candy.		
Nettleton and	To prospectively	Cross-	1101 adults	Willett 131-item FFQ	Supplemental data	Three of 16 biomarkers were
colleagues,	examine	sectional	representing a range	(2005-2006)	collection (2005-2006)	inversely associated with the
2010 ³³	associations of "a		of carotid intima-	"A posterior" diet	16 biomarkers of	"Healthy" diet pattern; two
	posterior" diet		media thickness	patterns derived from	systemic inflammation	markers positively associated
	patterns and cell-		(mean age F = 70.8 y,	PCA collected	(cell aggregates and	with "Western" diet pattern, and
	specific markers of		mean age M=71.8 y,		multiple platelet and	six markers inversely associated
	activation and		48% F, 100% white)	"Healthy": fruit,	leukocyte markers)	with alcohol.
	inflammation			vegetables, legumes,	measured by flow	
				fish, tomatoes, whole	cytometry measured	
				grain, nuts and		
				poultry.		
				"Western": processed		

				and red meats, fried		
				potatoes, refined		
				grains, high fat dairy,		
				desserts, sugar-		
				sweetened beverages,		
				candy, white		
				potatoes, eggs, pizza		
				and butter.		
Weng and	To prospectively	Prospective	9913 adults free of	Baseline/Visit 1 and	Baseline/visit 1 and	Adjusted for demographics and
colleagues,	examine	(through 10	high normal BP or	Visit 3	Visits 2-4	CVD risk, the "a priori" food
2013 ⁴⁰	associations of an	yrs. of	HTN at baseline.	A priori diet score	High normal BP and	score was associated with lower
	"a priori" diet	follow up	(mean age F =53 y,	(Healthy Food Score)	HTN	HTN risk but not high normal
	score with incident		M=54 y, 55% F, 18%	at baseline and exam		BP. Relationship largely due to
	high normal BP		African American)	3 which included 13		greater dairy and nut intake nuts
	and HTN			food groups.		and lower meat intake.
Folsom and	To prospectively	Prospective	12,744 adults without	Baseline/Visit 1	Baseline through 2007	One of 8 participants had ideal
colleagues,	estimate prevalence	(through 28	HF, CHD or stroke at	Healthy Diet Score	follow-up	CVD health, i.e., met 5-7
2011 ⁴²	of a composite	yrs. of	baseline (mean	(one of Simple 7	PA, smoking, use of BG,	components. CVD incidence
	measure of CVD	follow-up)	age=54 y, 56% F,	measures) included	HTN or cholesterol	associated with Simple 7
	risk factors and		24% African	servings of fruit and	medications, TC, BG,	prevalence; of those with ideal

	health behaviors		American)	vegetable, fish, whole	BP, BMI, and incident	CVD metrics, 3.9/1000 person-
	and assess its			grains, and sugar-	CVD	yrs. had CVD compared to 37.1
	relationship with			sweetened beverages		per 1,000 person-years for those
	incident CVD					with zero ideal health metrics.
Neighborhood	Effects on Diet and I	Health				
Chichlowska	To examine	Cross-	12,709 adults without	Baseline/Visit 1: Diet	Baseline/Visit 1: The	For whites and African
and	association of	sectional	DM at baseline,	or nutrition-related	nSES index used 1990	Americans, both iSES and nSES
colleagues,	iSES ⁿⁿ and nSES ^{oo}		characterized for	measures were not	census block assessment	independently associated with
2008^{46}	on the prevalence		MetS and geocoded	evaluated directly in	of education, income,	an increased prevalence of MetS
	of MetS		for geographic	this study. MetS,	and occupation. The	among women but not men.
			location (mean age	which is associated	iSES index included	Understanding the differential
			=NR, 55% F, 23%	with lifestyle	annual family income	health effects of SES on men
			African American)	characteristics	and educational	and women is crucial to the
				including dietary	attainment, MetS.	development of gender-specific
				behavior, was.		models of MetS risk.
Diez-Roux	To examine	Cross-	13,095 adults living	Baseline/Visit 1:	Baseline/Visit 1:	Living in a lower income
and	whether	sectional	in ARIC-defined	Fruits, vegetables,	Individual income was	neighborhood associated with
colleagues,	neighborhood		census blocks with	meats, and fish,	based upon family	lower intake of fruits,
1999 ⁴⁷	income is related to		complete income and	saturated fat, PUFA,	income. Neighborhood	vegetables and fish and higher
	dietary patterns		diet data (mean=NR,	cholesterol, Keys	median household	meat intake. Relationships

	independent of		55% F, 26% African	score (composite	income was based on	attenuated by individual
	individual income.		American)	measure of saturated	1990 US census tract	income. Close association
				fat, PUFA and	assessment	between neighborhood and
				cholesterol)		individual income made it
						difficult to judge each
						independently.
Diez-Roux	To estimate	Cross-	12,601 adults living	Baseline/Visit 1:	Baseline/Visit 1	Both neighborhood context and
and	association of	sectional	in 567 census block	Keys Score	Address: iSES (average	individual level measures of
colleagues,	neighborhood SES		groups (mean		income, median home	SES provide information about
1997 ⁴⁸	characteristics with		age=NR, 55% F,		value, % adults without	CHD risk among African
	CHD prevalence		24% African		HS degree, % in lower	Americans and whites. One
	and risk factors and		American)		income occupations) and	exception, African American
	evaluate whether				iSES (race, education,	men from Jackson with lower
	these associations				occupation and family	neighborhood SES had lower
	are mediated by				income). PA, CHD,	CHD prevalence.
	individual-level				T2DM, SBP, lipid	
	indicator				profile, and fibrinogen	
Borrell and	To prospectively	Prospective	14,005 adults with	Diet or nutrition-	Baseline/Visit 1 Address	Most advantaged African
colleagues,	evaluate	(through 10	complete income	related measures	nSES index (1990	American neighborhoods had
2004 ⁴⁹	association of CVD	yrs. of	information living in	were not evaluated	census assessment of	similar SES characteristics as

	mortality with	follow-up)	one of 597 census	but SES, which is	amount and sources of	most disadvantaged white
	neighborhood SES		block groups (mean	related to lifestyle	income, education, and	neighborhoods. Independent
	characteristics		age=NR, 55% F,	characteristics,	occupation and iSES	effects of individual and
			27% African	including diet, was.	index (family income,	neighborhood SES difficult to
			American)	Article provided the	education, and	distinguish, but having low
				foundation for the	occupation.) Deaths	individual income and living in
				other neighborhood	classified as related to	a disadvantaged neighborhood
				level studies.	CVD, cancer and other	advanced the age of death for
					causes.	whites by 11 yrs. and African
						American by 13 yrs.
Morland and	To examine	Cross-	216 ARIC-defined	Baseline/Visit 1	Baseline/Visit 1	More supermarkets and gas
colleagues,	distribution of food	sectional	census tracts (56	Address: 1997	Address: 1990 Census	stations with convenience stores
2002 ⁵⁰	stores and food		located in	prevalence of	median price of homes	in wealthier areas than in poor
	service places by		Mississippi, 78 in	supermarkets,	as a marker of	neighborhoods. More
	the level of		North Carolina, 28 in	grocery and	neighborhood wealth.	supermarkets and restaurants of
	neighborhood		Maryland, and 54 in	convenience stores,	Percentage of African	all types in predominantly W or
	wealth and racial		Minnesota)	various types of	Americans represented	mixed race areas.
	segregation			restaurants, carry-out,	the level of	
				specialty shops, and	neighborhood	
				bars in each tract.	segregation	

Morland and	To examine	Cross-	10,763 adults living	Baseline/Visit 1	Visit 3:CVD risk factors	Presence of supermarkets
colleagues,	whether prevalence	sectional	within 207 ARIC-	Address: 1999	(obesity, overweight,	associated with lower
2006 ⁵¹	of cardiovascular		defined census tracts	assessment of	T2DM, HTN and high	prevalence of obesity and
	disease (CVD) risk		(mean age=NR, 56%	number of	TC)	overweight. Presence of
	factors are		F, 23% African	supermarkets,		convenience stores associated
	associated with		American)	convenience stores,		with higher prevalence of
	characteristics of			grocery stores, full		overweight and obesity.
	the local food			service, limited		Associations with T2DM, high
	environment			service or fast food		cholesterol and HTN
				restaurants in 207		inconsistent.
				census tracts.		
Morland and	To evaluate the	Cross-	10,623 adults living	Visit 3: Fruits and	Baseline/Visit 1 Address	For African Americans and to a
colleagues,	association	sectional	within 208 ARIC-	vegetables,	1997 Supermarkets,	lesser extent whites, presence of
2002 ⁵²	between the local		defined census tracts	cholesterol and % of	grocery stores, and full-	supermarkets had a positive
	food environment		(mean age =60, 56%	calories from fat and	service and fast-food	effect on fruit and vegetable
	and self-reported		F, 23% African	saturated fat. Healthy	restaurants were	intake and presence of
	dietary intake		American)	diet score (two fruit,	geocoded to 1990 census	supermarket and full service
				three vegetables,	tracts	restaurants had a positive effect
				30% fat, <10%		on adherence to dietary fat
				saturated fat, and		recommendations.

				<300 mg cholesterol				
				daily)				
Nutritional Genomics								
Lutsey and	To prospectively	Prospective	12,215 adults	Visit 2	Follow-up baseline	Whites had higher levels of		
colleagues,	evaluate if serum	(through 21	without HF at	Serum 25(OH)D	through 2010: Death	serum 25(OH)D. For whites		
2015 ⁶²	25-hydroxyvitamin	yrs. of	baseline (mean age		from HF	only, lower serum 25(OH)D		
	D (25[OH]D) is	follow-up)	=57 y, 56% F, 24%		Visit 2: BMI, BP, DM,	was associated with HF. For		
	associated with		African American)		TC, TG, HDL, Cystatin	both races, those who carried		
	incident HF and if				C (marker of kidney	the genetic variation which		
	the effect is				disease), eGFR ^{qq} , HF,	predisposes them to higher DBP		
	mediated by				Pre-existing CHD	had a greater risk of HF.		
	traditional CVD							
	risk factors, race,				SNPs representing DBP			
	and genetic				gene variants			
	predisposition to							
	higher levels of							
	DBP ^{pp}							
Nettleton and	To evaluate	Cross-	Approximately	Baseline/Visit 1:	Baseline/Visit 1:	Confirmed results from smaller		
colleagues,	whether whole	sectional	48,000 individuals	Daily servings of	FG ^{rr} and FI ^{ss} .	studies, whole grain intake		
2010 ⁶⁶	grain intake		without T2DM from	whole-grain foods	Genotyping of 15 SNPs	inversely associated with FI and		

	modifies		14 European-descent	from FFQ (11	associated with only FI,	FG. A possible interaction
	association		cohorts (7,201 ARIC	cohorts), dietary	1 SNP with only FI, and	between whole grain intake and
	between fasting		[mean age=53.7 y,	recall (1 cohort), food	1 SNP with both FI and	a single insulin-raising allele
	glucose levels and		54% F, 100% white])	record (1 cohorts), or	FG	suggests the potential for
	genetic variants			a combination of		tailored dietary guidance based
	related to glycemic			food diary and FFQ		on genetic profiles.
	traits			(1 cohort)		
Hruby and	To evaluate	Cross-	52,684 European	Baseline/Visit:	Baseline/Visit 1: FG and	After adjusting for BMI and
colleagues,	whether genetic	sectional	descent participants	Dietary intake from	FI. Genotyping of SNPs	demographic and lifestyle
2013 ⁶⁷	variants related to		without T2DM from	FFQ (11 cohorts),	associated with fasting	factors, magnesium was
	glycemic traits or		CHARGE ^{tt}	dietary recall (1	glucose (16 SNPs),	inversely associated with FG
	magnesium		Consortium (15	cohort), food record	insulin (2 SNPs), or	and FI. There were no
	metabolism		cohorts) (8,951 ARIC	(2 cohorts), or food	magnesium (8 SNPs)	magnesium-related SNPs or
	influence		[mean age=54 y, 54%	diary and FFQ		interaction between any SNPs
	relationship		F, 100% white])	combination (1		and magnesium.
	between			cohort). Dietary		
	magnesium intake			magnesium, fiber,		
	and FG and FI			caffeine, and alcohol		
Kanoni and	To evaluate	Cross-	46,021 European	Baseline/Visit 1	Baseline/Visit 1	After BMI adjustment, total
colleagues,	whether zinc intake	sectional	descent participants	Zinc intake from diet	BMI, FI and FG.	zinc associated with lower FG.

2011 ⁶⁸	modifies		without T2DM from	and supplements.	Genotyping of 20 SNPs	Dietary zinc alone not related.
	association		CHARGE and	Total zinc assessment	(18 associated with FG	The effect of a glucose-raising
	between fasting		MAGICuu	limited to the five	or FI and two SNPs	allele (related to zinc transporter
	glucose and genetic		Consortiums from 14	cohorts which	based upon their	variant) on BG was attenuated
	variants related to		cohorts (6,088 ARIC	assessed supplement	potential role in zinc	by higher zinc levels.
	glycemic traits and		[mean age=60.2 y,	intake	metabolism	
	zinc metabolism		54% F, 100% white])			
Lutsey and	To prospectively	Prospective	9,328 white adults	Baseline/visit 1,	SNPs identified from	Lipid gene scores explained
colleagues,	evaluate the	(through 9.0	(mean age M=54 y,	Visits 2 -4	prior GWAS ^{ww} used to	<7% of variation in baseline
2012 ⁷¹	relationship	yrs. of	53% F, 100% white)	Plasma TC, TG,	create lipid-specific gene	lipid values. After 9 yrs., all
	between lipid-	follow-up)		HDL-C, LDL-C	scores	lipid GRS were associated with
	specific GRS ^{vv} and					abnormal lipid values and anti-
	lipid levels and the					HTN medication use. The TG
	association of					GRS was positively related to
	GRSs to					change in TG levels over time,
	longitudinal					but similar longitudinal results
	changes in lipid					not observed for LDL-C or
	levels					HDL-C.

Demerath and	To evaluate results	Cross-	2,097 African	Diet or nutrition-	Visit 2: Methylation of	The EWAS identified numerous
colleagues,	of EWAS ^{xx} of	sectional	Americans with	related measures	leukocyte DNA	methylation variants associated
2015 ⁷⁸	BMI, lipid and		complete methylation	were not evaluated	Baseline/visit 1, visits 2-	with BMI and WC. These
	T2DM-related		data (mean age=56 y,	but BMI, lipids and	4 and visit 5 (2011-	associations were replicated
	traits and identify		64% F, 100% African	T2DM, which are	2013):WC, BMI, T2DM	across tissues types, ethnicities
	novel associations		American)	related to lifestyle	Baseline/visit 1: Self-	and analytic approaches.
	with BMI, WC and			characteristics,	reported weight at age	Identified sites related to
	BMI change among			including diet, were	25	macronutrient metabolism.
	African Americans			evaluated.		

^cNR=not reported ^{bb}CHD=coronary heart disease

^dMUFA=monounsaturated fatty acids ^{cc}PA=physical activity

ePUFA=polyunsaturated fatty acids

fn-3 FA=n-3 fatty acids

dd VTE=venous thromboembolism

eePCA=principal component analysis

gATIII=antithrombin III ffHF=heart failure

^hBMI=body mass index ^{gg}CKD=chronic kidney disease

ⁱT2DM=type 2 diabetes mellitus ^{hh}HTN=hypertension

¹F=female ⁱⁱMetS=metabolic syndrome(BP, TG, HDL-C, BG, and waist-to-hip ratio)

^kCOPD=chronic Obstructive Pulmonary Disease ^{jj}WC=waist circumference

LM=male kkSBP=systolic BP

"FEV=forced expiratory volume "DBP=diastolic BP

"FVC=forced vital capacity "mBG=blood glucose"

°PPAR-alpha=peroxisome proliferated-activated receptor-alpha nniSES=individual socio-economic status

^pTC=total cholesterol °°nSES=neighborhood socio-economic status

 ${}^{\rm q}{\rm TG=triglycerides}$ ${}^{\rm pp}{\rm DBP=vitamin~D~binding~protein}$

 $\begin{tabular}{ll} qq eGFR-estimated glomerular filtration rate \\ \end{tabular}$

^sHDL-C=high-density-lipoprotein cholesterol

^tSNPs=single nucleotide polymorphisms

"LCMUFA=long chain MUFA

^vCVD=cardiovascular disease

^wCHS=Cardiovascular Healthy Study

*FFQ=food frequency questionnaire

^yBP=blood pressure

"FG=fasting glucose

ssFI=fasting insulin

^{tt}CHARGE=Cohorts for Heart and Aging Research in Genomic Epidemiology

^{uu}Meta-Analyses of Glucose and Insulin-related traits Consortium

vvGRS=genetic risk score

wwGWAS=genome-wide association studies

**EWAS=epigenome-wide association studies