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A Mean unzipping forces

The mean unzipping forces as a function of salt concentrationin in the Na+ and

Mg2+ cases are shown in Figure S1. The inset shows the expected logarithmic

dependence and the validity of the approximate 100th rule, recently reported

in force experiments in DNA [13] and RNA [1], by which the non-specific

binding affinity of divalent cations at a given concentration is equivalent to

that of monovalent cations taken at 100-fold concentration.

B Abundances of different NNBP along the

DNA sequence

Our 6.7kb sequence contains an even amount of all different NN motifs, to

exclude misrepresentation of any of them (see Table S1).

C Extracting the Equilibrium Force-Distance

Curve (FDC) in regions with hysteresis

In the absence of hysteretic effects between unzipping and rezipping we sim-

ply average the filtered unzipping and rezipping FDCs to extract the ther-

modynamic FDC. However, there are force rips in the FDC that exhibit
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NNBP Fraction (%)

AA/TT 16.4

AC/TG 11.2

AG/TC 10.9

AT/TA 7.6

CA/GT 14.1

CC/GG 9.1

CG/GC 6.0

GA/CT 12.8

GC/CG 6.5

TA/AT 5.4

Table S1: Abundances of the different NN motifs in the DNA sequence. Notice that

abundances are similar. For those six motifs where they appear to be too high (AA/TT,

AC/TG, AG/TC, CA/GT, GA/CT, CC/GG) there is the double degeneracy due to

Watson-Crick bp symmetry (e.g. the fraction of AA/TT includes AA/TT and TT/AA).

hysteresis. In these regions, the pulling speed is too fast with respect to

the equilibration time, so multiple transitions (corresponding to coexistence)

between the open and closed states are not observed (Fig. S2a) and the

unziping/rezipping process does not proceed under quasi-static conditions.

A simple average of both (unzipping and rezipping) FDCs provides an es-

timate of the equilibrium FDC (orange curve in Fig. S2d). However such

estimate strongly deviates from the expected theoretical FDC posing conver-

gence problems to the fitting algorithm of the NN free energies. A different

strategy is thus required to extract FDCs in regions with hysteresis.

First, we determine the start and end points of the regions where hystere-

sis is observed (Fig. S2a). Then, we calculate the work along the unzipping

(zipping) process from the start (end) point up to a given intermediate dis-

tance x:

WU(x) =
∫ x

x1
fU(x) · dx

WR(x) =
∫ x

x2
fR(x) · dx. (S1)

The unzipping (rezipping) work is positive (negative) (Fig. S2b). We also
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THE 100TH RULE 

Figure S1: Mean unzipping forces from experimental data. Mean unzipping force

as a function of salt concentration for varying Mg2+ and Na+ concentrations. The inset

shows data in a linear-log scale and the approximated validity of the 100th rule.
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calculate the average work function, Wavg(x) = (WU(x) +WR(x))/2 (orange

curve in Fig. S2b) determining the coexistence point (xc) where the average

work equals 0, Wavg(xc) = 0. An estimate of the free energy along each

branch is given by:

GU(x) = GU(x1) +WU(x)

GR(x) = GR(x2) +WR(x) (S2)

where GU(x) (GR(x)) is the free energy of the unzipping (rezipping) branch

at distance x. GU(x1) is the free energy of the molecule when it is closed at

distance x1; and GR(x2) is the free energy of the molecule when it is unzipped

at distance x2. Here we introduce a simplifying approximation i.e. that:

WU(xc) = −WR(xc) =
GR(x2)−GU(x1)

2
.

This is exact in cases with special symmetry and is a very good approximation

in most other cases. Also, in the following, the value GU(x1) is set to zero to

get simpler expressions. As a consequence we can rewrite Eqs. S2 in terms

of quantites that can be obtained directly from the FDCs:

GU(x) = WU(x)

GR(x) = 2WU(xc) +WR(x) (S3)

Figure S2c shows the calculated free energy of both branches. The free

energy of the system can be obtained from the partial free energies of the

two metastable states as:

Geq(x) = −kBT · ln
(
e−βGU(x) + e−βGR(x)

)
(S4)

where Geq(x) is the predicted equilibrium free energy, kB is the Boltzmann

constant, T is the temperature and β = (kBT )−1. Finally, the equilibrium

FDC (feq(x)) is obtained as:

feq(x) =
∂ Geq(x)

∂x
(S5)

Figure S2d shows the estimated equilibrium FDC.
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Figure S2: Estimation of the equilibrium FDC in force rips with hysteresis.

(a) Unzipping and rezipping FDC in a region with hysteresis. The shaded areas show the

unzipping and rezipping work. (b) WU (x), WR(x) and Wavg(x). Start (end) point for the

integration are shown with a black solid circle (square). At the coexistence point xc the

average work is zero. (c) Unzipping and rezipping estimated free energy branches. The

global free energy of the system at different positions is estimated as the potential of mean

force of the two free energy branches. (d) Estimation of the equilibrium FDC. Notice the

difference between the resulting FDC using the average work or the the potential of mean

force.
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D The self-consistent Nearest-Neighbor Base-

Pair (NNBP) relations

The derivation of the nearest neighbor base-pair (NNBP) energies using ei-

ther bulk or single molecule methods is often done in terms of a set of 10

parameters defining the nearest-neighbor (NN) model. However one can take

advantage of the circular symmetry of the NN model[11, 12], which results

into additional self-consistent relations between the NNBP energies. This

reduces the total number of free parameters from 10 to 8.

Let any adjacent stacks or dimer along a given DNA duplex be denoted

by (i, j) where indices i, j take the possible values A, T, C,G along either

of the two DNA strands. A pair (i, j) indicates that base j is stacked on

top of base i as read from the 5’ to 3’. For example AC indicates that the

dinucleotide 5′−AC − 3′ is hybridized with the complementary dinucleotide

5′ −GT − 3′. In the NN model the free energy of formation of an arbitrary

DNA duplex can be written as,

E =
∑

i,j=A,T,C,G

nijεij (S6)

where εij stands for the different NNBP energies between adjacent stacks or

dimers (i, j) and nij is the occupancy of that dimer along the sequence. There

are 16 elements in the matrix εij. However, complementary strand symmetry

imposes that only 10 out of the 16 energies are different (for instance, εAC =

εGT ). Finally, if we neglect end effects then the occupation numbers nij
satisfy additional closure relations,∑

i=A,T,C,G

nAi =
∑

i=A,T,C,G

niA (S7)

∑
i=A,T,C,G

nCi =
∑

i=A,T,C,G

niC (S8)

∑
i=A,T,C,G

nGi =
∑

i=A,T,C,G

niG (S9)

∑
i=A,T,C,G

nT i =
∑

i=A,T,C,G

niT (S10)

Due to complementary strand symmetry the four closure relations Eqs. S7,S8,S9,S10
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can be reduced to two independent constraints:

2nCG + nCA + nTG + nCT + nAG = 2nGC + nTC + nGA + nAC + nGT (S11)

2nAT + nAG + nCT + nAC + nGT = 2nTA + nGA + nTC + nTG + nCA. (S12)

It is not difficult to verify that the previous closure relations impose equiva-

lent self-consistent relations for the energies (see Section D.1 below),

2 εCG + εCA + εAG = 2 εGC + εGA + εAC (S13)

2 εAT + εAG + εAC = 2 εTA + εGA + εCA. (S14)

further reducing the set of 10 parameters to 8 independent energies. It is

convenient to recast these relations in terms of the following ratios,

r1 =
εAT − εTA − εGC + εCG

(εGA − εAG)
(S15)

r2 =
εAT − εTA + εGC − εCG

(εCA − εAC)
(S16)

which are be equal to 1 if Eqs.(S13,S14) hold. Previous bulk and single

molecule derivations of NNBP energies were performed with the 10 param-

eters. The UO data set gives r1 = 3.1, r2 = 15.5 at 25◦C, 1M NaCl or

r1 = 5.8, r2 = 18.5 at 37◦C, 1M NaCl, quite far from 1. Interestingly, force

unzipping measurements [9] give ratios typically between 0.5 and 1.5. This

shows that, despite of the fact self-consistency relations were not used in

Ref.[9] the minimization algorithm employed in the analysis of FDC data

converged to the relevant 8-dimensional subspace of energy solutions. This

is a consequence of the cicular symmetry, which is approximately valid for

long linear molecules.

An alternative method to test the approximate validity of the circular

symmetry in unzipping experiments is to analyze the Hessian of the mean-

squared error function defined as:

E({εi}) =
1

N

N∑
i=1

(
f exp
i − f the

i ({εi})
)2

(S17)

where {εi} = {εAA/TT, εAC/GT, εAG/CT, εAT/AT, εCA/GT, εCC/GG, εCG/CG, εGA/CT,

εGG/CC, εTA/T} are the 10 NNBP energies, which are the fitting parameters,
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hereafter denoted as ε; N is the number of sampling points of the experimen-

tal FDC; f exp
i is the experimental force exerted on the molecule at distance

di; and f the
i is the theoretical FDC predicted by the mesoscopic model (see

Section E). Fitting the model to the experimental data consists in minimiz-

ing E by tuning the values of {εi}. At the minimum we can approximate

E({εi}) as:

∆E =
1

2
δεT ·H · δε (S18)

where ∆E = E(ε) − E0, E0 is the error at the minimum; ε0 are the values

of the parameters at the minimum and H is the Hessian matrix, given by

Hij = ∂2E(ε)/∂εi∂εj. The diagonalization of the Hessian matrix gives:

H = V ΛV −1 (S19)

where V is the matrix of eigenvectors V = (v1|v2|...|v10); Λ is the diagonal

matrix of eigenvalues λi. The approximate circular symmetry generates two

zero modes in the 10-dimensional landscape defined by the error function,

so that the Hessian matrix exhibits two eigenvectors with zero eigenvalue,

λ1 = λ2 = 0. The corresponding eigenvectors v1, v2 span a two dimensional

subspace defined by Eqs.(S11,S12). The two experimentally measured lowest

eigenvalues, albeit small, should not be exactly zero because the circular sym-

metry is weakly broken due to end effects. As we can see in Figure S3a, the

spectrum of eigenvalues clearly shows two small eigenvalues that differ by at

least one order of magnitude with respect to the rest. Changing the energy

parameters along the directions defined by the corresponding eigenvectors

barely affects the error function. Good overlap is found between these exper-

imental eigenvectors and the prediction based on the circular symmetry (see

Fig. S3b). Figure S3c shows the reproducibility of these results for several

molecules.

D.1 Self-consistent relations and eigenvectors of the

Hessian

Here we show how the closure relations Eqs.(S7,S8) reduce, from 10 to 8, the

number of energy parameters to be determined according to Eqs.(S11,S12).

9



λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.01

0.1

1

10

100

V
al

ue
 (p

N
·m

ol
/k

ca
l)2

1 2 3 4 5 6 7 8 9 10
Component

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

V
al

ue
 (k

ca
l/m

ol
)

Calculated
Expected

1 2 3 4 5 6 7 8 9 10
Component

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

V
al

ue
 (k

ca
l/m

ol
)

Calculated
Expected

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.01

0.1

1

10

100

V
al

ue
 (p

N
·m

ol
/k

ca
l)2 Molec 1

Molec 2
Molec 3
Molec 4

Spectrum of eigenvalues
a v

1
v

2
b

c

Figure S3: Eigenvalues and eigenvectors of the Hessian of the error function.

(a) Spectrum of eigenvalues for one molecule. The two smaller eigenvalues (highlighted

in red and blue) differ from the other ones by one order of magnitude. (b) The left panel

shows the components of the eigenvector v1, which has the lowest eigenvalue (depicted in

red in panel a). The right panel, shows the components of the eigenvector v2, which has the

next-to-lowest eigenvalue (depicted in blue in panel a). The bars show the components of

v1 and v2 after diagonalizing the Hessian matrix (Eq. S19). The lines show the theoretical

prediction based on the circular symmetry. (c) Spectra of eigenvalues for 4 different

molecules.

We also show that the Hessian matrix of the energy function, defined in the

subspace of 10 energies, has two eigenvectors of zero eigenvalue. To prove the

first result we consider the relevant 10 occupation numbers nij and energies

εij as 10-dimensional vectors, n10
k , ε

10
k k ∈ {0, 9}, through the map:εAA =

ε0, εAC = ε1, εAG = ε2, εAT = ε3, εCA = ε4, εCC = ε5, εCG = ε6, εGA = ε7, εGC =

ε8, εTA = ε9 and similarly for nij. In this language the free energy of formation
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of a DNA duplex can be written as:

E =
∑
i

niεi = n · ε, (S20)

where by · we mean the scalar product in the 10-dimensional space. Also,

in the same notation, the two closure relations Eqs.(S7,S8) are conveniently

written as:

2n8 = 2n6 + n4 + n2 − n7 − n1 (S21)

2n9 = 2n3 + n2 + n1 − n7 − n4. (S22)

In this form the closure relations show how, once the first 8 occupation

numbers are fixed (i ∈ {0, 7}), the values of the last two follow. The 10-

dimensional occupation number vector can be obtained from a reduced 8-

dimensional vector, n8
k, k ∈ {0, 7} by a linear operation:

n10 = An8, (S23)

where

A =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 −1
2

1 0 1
2

0 1
2
−1

2

0 1
2

1
2

1 −1
2

0 0 −1
2



. (S24)

Inserting Eq. S23 in Eq. S20 and using the usual property of the scalar

product we get:

E = n10 · ε10 =
(
An8

)T
· ε10 = n8 ·

(
AT ε10

)
, (S25)

where by AT we mean the transpose of A.
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Consider now two different energy vectors: ε10, η10, such that ε10 = η10 +

δ10 with

AT δ10 = 0. (S26)

The total stacking energy computed using the two different energy vectors is

the same:

n10 · ε10 = n8 ·
(
AT ε10

)
= n8 ·

(
AT

(
η10 + δ10

))
=

= n8 ·
(
ATη10

)
+ n8 ·

(
AT δ10

)
= n8 ·

(
ATη10

)
. (S27)

Solutions to Eq. (S26) belong to a two dimensional vector subspace V ,

spanned by the vectors

u =
1√
8

(0, 1,−1, 0,−1, 0,−2, 1, 2, 0) , v =
1√
8

(0,−1,−1,−2, 1, 0, 0, 1, 0, 2) .

(S28)

Energy vectors satisfying Eq. (S26) are ”invisible” in the sense they do not

contribute to the total energy. An energy vector is ”visible” if it belongs to

the complement of V i.e. to the space of vectors which have 0 projection on

(or scalar product with) both u and v. Enforcing these conditions we get the

defining equations for the 8-dimensional space of “visible vectors”:

ε10
8 =

1

2

(
ε10

2 + ε10
4 − ε10

1 − ε10
7

)
+ ε10

6 (S29)

ε10
9 =

1

2

(
ε10

1 + ε10
2 − ε10

4 − ε10
7

)
+ ε10

3 , (S30)

which are equivalent to Eqs.(S13,S14). It is now easy to show that the Hessian

of the mean squared error function has two null eigenvalues. Indeed the

mean squared error function depends on ε only through the scalar products

n · ε where n does always fulfill Eqs.(S7,S8) to a good approximation. As

a consequence, changing ε along along the subspace spanned by vectors u, v

does not change neither E, Eq.(S20), nor E , Eq.(S17). In other words the

directional derivative of E(ε) along u or v is 0, and so is the Hessian. The

vectors u and v will thus be eigenvectors of the Hessian with null eigenvalue.
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E Fit of unzipping FDCs

The values of the free energies of the NN motifs mostly define the shape of the

FDC, i.e. the location and the height of the force rips. The estimation of the

free energy motifs is done by fitting the theoretical FDC to the experimental

one. This is achieved by performing a minimization of the mean squared error

function Eq.(S17).The theoretical FDC is calculated from the mesoscopic

model introduced in Ref. [9]. In this model the free energy of each element

involved in the unzipping experiment (elastic handles, bead in the optical

trap, hybridization energy of the dsDNA and elastic energy of the partially

unzipped DNA) is computed to calculate the total free energy (Gtot) of the

system:

Gtot(x, n) = Eb(xb) + 2Gh(xh) + 2Gs(xs, n) +GDNA(n) (S31)

where x is the total extension of the system and n is the number of open

base pairs. Eb(xb) is the elastic energy of the bead in the optical trap, which

depends on the bead to trap distance xb and on the optical trap stiffness k

according to Eb(xb) = kx2
b/2. The elastic free energy of one handle, Gh(xh),

depends on the extension of the handle xh and is calculated from the FDC

(fh(x)) as predicted by the Worm-Like Chain model with appropriate pa-

rameters (persistence and contour length). Such contribution is given by:

Gh(xh) =
∫ xh

0
fh(x)dx . (S32)

Moreover Gs(xs, n) is the elastic free energy of the partially unzipped DNA,

which depends on its extension xs and on the number of open base pairs n

(which determine the contour length L of the ssDNA according to L = n · b,
where b is the contour length of one base). The free energy Gs(xs, n) is then

calculated from the FDC (fs(x)) of a Worm-Like Chain or a Freely-Jointed-

Chain model with the specific parameters of a ssDNA molecule,

Gs(xs) =
∫ xs

0
fs(x)dx . (S33)

Finally, GDNA(n) is the hybridization free energy of the DNA duplex with

n partially unzipped base pairs, as given by the NN model Eq.(S20) plus
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initiation terms:

GDNA(n) = IF(n+ 1) + IF(N) +
N−1∑
n

∆gi (S34)

where N is the total number of base pairs of the DNA duplex, IF(n + 1)

is the Initiation Factor of the first free base pair at one end of the duplex,

IF(N) is the Initiation Factor of the last base pair at the other end of the

duplex, and the summation runs over all formed base pairs of the partially

unzipped DNA molecule (from now on we will use ∆gi instead of εi to denote

the NN energies). The total energy of the system, Gtot(x, n) (Eq.(S31)), is

constrained by the total distance (x), which is the control parameter in our

experiments and constrains the extensions of the different elements according

to: x = xb+ 2xh+ 2xs. Then the partition function of the system (Z(x)) can

be computed at every value of x by summing over all possible configurations:

Z(x) =
∑
n

e−βGtot(x,n) (S35)

where β = (kBT )−1, kB is the Boltzmann constant and T is the temperature.

From this expression the theoretical FDC can be calculated with the following

relation:

f the(x) = −kBT
∂ lnZ(x)

∂x
(S36)

which is the prediction of the FDC that we use in Eq. S17.

For each unzipping experiment (i.e. one molecule at a given salt con-

centration) we have a FDC. Using this FDC, the value of the mean squared

error Eq.(S17) is minimized with a Monte Carlo algorithm (see Ref. [9] for

a detailed description) and the values of the fitting parameters (∆gi) are

obtained. Table S2 summarizes the results and the total amount of data

available from Mg2+ unzipping experiments. Similarly, Table S3 shows the

same results for the Na+ experiments carried out in Ref. [9]. Note that,

compared to Ref. [9], here we improved our methodology by performing the

minimization over the eight parameters (as discussed in the previous section)

plus the initiation factors as described in the main text.
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∆gi (kcal/mol)

i NNBP 10 µM 100 µM 500 µM 1 mM 2 mM 4 mM 10 mM

1 AA/TT -0.70 (0.03) -0.86 (0.04) -1.09 (0.02) -1.13 (0.03) -1.16 (0.01) -1.25 (0.02) -1.24 (0.01)

2 AC/TG -1.03 (0.02) -1.22 (0.02) -1.40 (0.02) -1.45 (0.04) -1.47 (0.01) -1.52 (0.03) -1.49 (0.05)

3 AG/TC -1.01 (0.02) -1.13 (0.03) -1.31 (0.02) -1.34 (0.04) -1.38 (0.01) -1.44 (0.01) -1.47 (0.00)

4 AT/TA -0.44 (0.02) -0.73 (0.04) -0.91 (0.06) -0.94 (0.01) -0.95 (0.02) -1.01 (0.02) -1.11 (0.01)

5 CA/GT -1.22 (0.06) -1.42 (0.05) -1.65 (0.03) -1.67 (0.02) -1.65 (0.01) -1.74 (0.02) -1.74 (0.01)

6 CC/GG -1.81 (0.06) -1.89 (0.03) -1.90 (0.02) -2.01 (0.02) -2.01 (0.03) -2.03 (0.01) -1.99 (0.01)

7 CG/GC -1.93 (0.04) -2.17 (0.04) -2.22 (0.05) -2.31 (0.05) -2.31 (0.02) -2.37 (0.02) -2.29 (0.02)

8 GA/CT -1.01 (0.04) -1.15 (0.01) -1.34 (0.03) -1.40 (0.04) -1.42 (0.02) -1.52 (0.02) -1.46 (0.02)

∆IF -0.37 (0.32) -0.38 (0.22) -0.04 (0.38) 0.02 (0.25) -0.19 (0.22) 0.02 (0.38) 0.47 (0.26)

# molecules 6 4 12 8 12 11 8

Table S2: The free energies of the motifs obtained from the unzipping experiments with

Mg2+ buffer. These free energy data were fit to a logarithmic salt dependency (Eq.1 in

main text). Minimization was performed over the eight parameters plus the initiation

factors.

∆gi (kcal/mol)

i NNBP 10 mM 25 mM 50 mM 100 mM 250 mM 500 mM 1 M

1 AA/TT -0.75 (0.02) -0.77 (0.02) -0.87 (0.01) -0.91 (0.02) -1.07 (0.02) -1.16 (0.02) -1.24 (0.03)

2 AC/TG -1.09 (0.05) -1.06 (0.06) -1.22 (0.02) -1.22 (0.02) -1.36 (0.02) -1.45 (0.02) -1.49 (0.03)

3 AG/TC -1.02 (0.04) -1.04 (0.05) -1.15 (0.03) -1.11 (0.02) -1.24 (0.02) -1.31 (0.02) -1.33 (0.02)

4 AT/TA -0.69 (0.02) -0.74 (0.05) -0.77 (0.01) -0.84 (0.05) -0.95 (0.02) -1.05 (0.02) -1.07 (0.05)

5 CA/GT -1.44 (0.04) -1.46 (0.05) -1.50 (0.02) -1.48 (0.02) -1.65 (0.03) -1.72 (0.03) -1.76 (0.05)

6 CC/GG -1.66 (0.04) -1.64 (0.04) -1.76 (0.02) -1.84 (0.01) -1.86 (0.03) -1.91 (0.03) -1.92 (0.02)

7 CG/GC -1.91 (0.08) -1.89 (0.10) -2.00 (0.06) -2.22 (0.04) -2.23 (0.08) -2.30 (0.08) -2.34 (0.05)

8 GA/CT -0.99 (0.05) -1.03 (0.05) -1.17 (0.02) -1.26 (0.02) -1.32 (0.03) -1.46 (0.03) -1.52 (0.02)

∆IF 0.65 (0.07) 0.44 (0.06) 0.55 (0.12) 0.46 (0.08) 0.48 (0.03) 0.58 (0.02) 0.49 (0.06)

# molecules 6 4 6 4 5 5 5

Table S3: The free energies of the motifs obtained from the unzipping experiments with

Na+ buffer. These free energy data were fit to a logarithmic salt dependency (Eq.1 in main

text). Minimization was performed over the eight parameters plus the initiation factors.
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F Correlation of salt dependent correction fac-

tors with GC content

Salt dependent corrections are available for melting temperature and the en-

tropy of duplex sequences (and for their free energy as the enthalpy is com-

monly taken as sequence independent). One of them is Eq.(22) in Ref. [16]

for the entropy,

∆S0([Mg2+]) = ∆S0(1MNa+) + ∆H0
(
a+ b log([Mg2+]) +

fGC(c+ d log([Mg2+])) +
e+ f log([Mg2+]) + g log2([Mg2+])

2(Nbp − 1)

)
(S37)

with ∆S0(1MNa+) the reference entropy at 1M Na+, ∆H0 is the tempera-

ture and salt independent enthalpy, fGC is the fraction of GC base pairs in

the duplex and Nbp is total the number of base pairs and a, b, c, d, e, f, g are

experimentally determined parameters (see Ref. [16]). A common aspect of

Eq.(S37) and related ones is the fact that magnesium salt correction depends

on the fraction of GC content, fGC . We have looked whether such correlation

exists by plotting the NN dependent salt correction parameter m as a func-

tion of the GC content of the NN motif which can be 0 (e.g. AA/TT), 0.5

(e.g. AC/TG), 1 (e.g. CC/GG). As we show in Figure S4 such correlation

is clear for the magnesium case, but weaker (although still present) in the

sodium case. It is interesting to note that the GC content dependence for

m (m = m0 + αfGC) implies a corresponding GC-content dependence for

the salt correction to the entropy, m log([Mg2+])/T0 = αfGC log([Mg2+])/T0

where T0 =298K. In the limit of very large Nbp only the linear logarithmic

salt correction prevails in Eq.(S37) giving α = d∆H0T0. The linear fits in

Figure S4 then give α = −0.04kcal/mol (Mg2+) whereas d = 1.42 ∗ 10−5K−1

(see Table 2 in Ref. [16]) giving ∆H0 = α/(dT0) = −9.45kcal/mol per NN

motif. This value should be compared with the average enthalpy per NN

motif obtained from the 10 values of ∆h0
i in our paper (third column of

Table 2) which is equal to -9.16 kcal/mol, showing the compatibility of our

results and those in Ref. [16]. A similar calculation for the sodium case

gives ∆H0 = α/(d ∗ T0) = −1.95kcal/mol per NN motif (note that in Na+,

α = −0.025kcal/mol see Figure S4 , d = 4.29 ∗ 10−5K−1 see Eq.(S37)) which

16



Figure S4: Salt correction parameter as a function of GC content of the different NN

motifs. A correlation is clear for the magnesium case (left) as compared to sodium (right)

except for the motif CC/GG that lies far from the correlation line. Fits to straight lines

give m = 0.09−0.04fGC (χ2 = 7∗10−5) for the magnesium case and m = 0.12−0.025fGC

(χ2 = 6 ∗ 10−4).

is completely off (the expected value is around -7.8kcal/mol). Summing up,

our NN specific magnesium corrections to the free energy show a strong cor-

relation with the GC content and are well compatible with the fGC correction

term in Eq.(S37) for the melting temperature correction formula of Ref. [16].

This is not true for sodium where there is a much weaker correlation between

the NN specific sodium corrections to the free energy and the GC content.

This suggests that, in the sodium case, either Eq.(22) in Ref. [17] or Eq.(4)

in Ref. [17] do not capture the sequence dependence as it probably does the

salt correction Eq.(22) in magnesium [16].

G An attempt to combine Na+ and Mg+ ex-

periments into a single expression.

The correction formulas for Mg2+ buffers use the same generalized logarithmic

expressions as for Na+ buffers, with a simple adjustment wherein Mg2+ ion

concentration is replaced by the equivalent Na+ concentration, [Na+]eq =

β
√

[Mg2+]. The equivalent Na+ concentration [Na+]eq is defined as the con-
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centration of sodium ions in a buffer that stabilizes duplexes to the same

extent as the magnesium buffer does. The squared root factor term accounts

for the law of mass action for cation binding activity: the binding rate of

divalent cations to DNA is expected to scale proportionally to the square

of the binding rate of monovalent cations. The following expression usually

describes the combined effect of [Na+] and [Mg2+] ions:

[Mon+]eq = [Na+]eq + [Na+] = β
√

[Mg2+] + [Na+] (S38)

where [Mon+]eq is the equivalent monovalent salt condition (as if all salt was

[Na+]). The Mfold server uses β = 3.3 when predicting the effect of the

Mg2+ ions on DNA hybridization [20]. To account for the competitive effect

between the different type of ions we generalize the previous expression and

write:

[Mon+]eq = c · [Mg2+]
α

+ [Na+] (S39)

with c a constant and α an exponent not necessarily equal to 1/2. Using

this expression, we can write a single free energy salt dependency of the NN

motifs (as in Eq.1 of main text) including contributions from both types of

ions:

∆gi = ∆g◦i −mi · ln
(
ci · [Mg2+]

αi + [Na+]
)

(S40)

where i=AA/TT, AC/TC,...,GA/CT is the index of the motif and ci and αi
are motif dependent parameters.

If [Mg2+]=0, Eq. S40 reduces to:

∆gi = ∆g◦i −mi · ln[Na+] (S41)

where ∆g◦i and mi are given in the left side of Table 1 (main text). On the

other hand, if [Na+]=0, then Eq. S40 is reduced to:

∆gi = ∆g◦i −mi · ln
(
ci · [Mg2+]

αi
)

∆gi = ∆g◦i −mi · ln ci −mi · αi · ln [Mg2+]

∆gi = ∆g◦i (Mg)−mi(Mg) · ln [Mg2+]) (S42)

where ∆g◦i (Mg) = ∆g◦i −mi · ln ci and mi(Mg) = mi · αi are given in Table

1 (main text). Table S4 summarizes all the combined parameters. Equa-

tion (S40) should be seen as an attempt to interpolate all results of the
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NNBP ∆g◦i (kcal/mol) mi (kcal/mol) ci αi

AA/TT -1.24 0.142 24 0.60

AC/TG -1.49 0.115 40 0.64

AG/TC -1.33 0.087 254 0.81

AT/TA -1.07 0.107 89 0.87

CA/GT -1.76 0.096 73 0.83

CC/GG -1.92 0.069 44 0.46

CG/GC -2.34 0.117 14 0.49

GA/CT -1.52 0.142 13 0.53

∆IF◦ (kcal/mol) mIF (kcal/mol) cIF αIF

IF 0.40 0.05 0.003 -2.1

Table S4: Combined parameters for Na+ and Mg2+ obtained from unzipping experiments.

unzipping experiments (Na+ and Mg2+ ) into a single expression valid for all

salt concentrations. Figure S5 shows a three dimensional view of the free

energy surface of different NN motifs plotted over the plane of monovalent-

divalent salt concentrations and where the results from the unzipping exper-

iments are shown as blue dots (Na+ case) or red dots (Mg2+ case) connected

by lines. Melting experiments suggest the existence of competitive effects be-

tween monovalent and divalent ions, which led Owczarzy and collaborators

to define 4 different salt regimes [16], depending on the ratio
√

[Mg2+]/[Na+].

In contrast Mfold uses one single regime with homogeneous salt correction,

an approximation which validity range is unknown. In contrast, our results

can be described by a single logarithmic correction (Eq.(S40)) with hetero-

geneous salt corrections, which provides a simple framework accurately de-

scribing not only unzipping data but also melting data (Section H). If we

define F = (∆gi − ∆g◦i )/mi and we use Equation (S40), the resulting ex-

pression for F exhibits a logarithmic salt dependence for all the NN motifs

at all salt concentrations: F = − ln[Mon+]eq. Figure S6 shows the results

of our experiments in an attempt to collapse all data into a single logarith-

mic curve. Although such relation captures the global trend of data, some

NN motifs (e.g. CC/GG) appear to be incompatible with a hypothetical

universal dependence of salt correction, as they deviate by a few standard
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Figure S5: Explored salt regimes. NNB energies vs. different salt concentrations. In

our unzipping experiments we have explored the boundaries ([Mg2+ ]=0, [Na+ ]=0). The

green surface shows the extrapolation of our results to arbitrary monovalent and divalent

salt condition.
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Figure S6: Normalized salt correction for both Mg2+ and Na+ . Some NNBP motifs do

not collapse to a logarithm dependence.

deviations from the general rule.
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H Fit of melting temperatures

To extract the enthalpies and entropies in Mg2+ of the NN motifs and initia-

tion factors we have fit our predicted melting temperatures to the set of melt-

ing temperature data reported by Owczarzy and collaborators in Ref.[16]. As

reported in that reference, melting temperatures increase monotonically with

Mg2+ concentration reaching a maximum around 50mM and then decreasing

again. Such trend cannot be reproduced within the scheme of linear loga-

rithmic corrections of Eq.4 (main text). For this reason, our fits to melting

temperature data are made only up to 10mM Mg2+ where the scheme of Eq.4

(main text) applies.

For that we calculate the melting temperature of a DNA duplex using the

NN model and our thermodynamic values for the NN motifs. The enthaply

(∆H) and entropy (∆S) contributions to the hybridization free energy are

computed as:

∆H =
∑
i

∆hi + IFh(1) + IFh(N), (S43)

∆S =
∑
i

∆si + IFs(1) + IFs(N), (S44)

where ∆hi,∆si are the motif dependent NN enthalpy and entropy contribu-

tions and IFh, IFs are the initiation factors as described in the main text.

From these quantities the melting temperature, Tm, can be predicted as:

Tm =
∆H

∆S +R ln[cT/4]
, (S45)

where cT is the total oligo concentration. Using the previous calculation of

Tm, we minimize the value of χ2 in Eq. 3 in the main text. The minimization

scheme we used is described in Eq.4 (main text) and illustrated in Table S5.

I Bootstrap re-sampling and independent val-

idation dataset

Our enthalpy and entropy values are determined by combining our own free

energy measurements with melting temperature data published in Ref. [16].
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NNBP ∆g◦i ∆h◦i ∆s◦i mi mh msi

(kcal/mol) (kcal/mol) (kcal·mol−1·K−1) (kcal/mol) (kcal/mol) (kcal/mol)

aa/tt ∆g◦aa/tt ∆h◦aa/tt ∆s◦aa/tt =
∆h◦

aa/tt
−∆g◦

aa/tt
T

maa/tt mh = 0 msaa/tt
= maa/tt

ac/tg ∆g◦ac/tg ∆h◦ac/tg ∆s◦ac/tg =
∆h◦

ac/tg
−∆g◦

ac/tg
T

mac/tg mh = 0 msac/tg
= mac/tg

ag/tc ∆g◦ag/tc ∆h◦ag/tc ∆s◦ag/tc =
∆h◦

ag/tc
−∆g◦

ag/tc
T

mag/tc mh = 0 msag/tc
= mag/tc

at/ta ∆g◦at/ta ∆h◦at/ta ∆s◦at/ta =
∆h◦

at/ta
−∆g◦

at/ta
T

mat/ta mh = 0 msat/ta
= mat/ta

ca/gt ∆g◦ca/gt ∆h◦ca/gt ∆s◦ca/gt =
∆h◦

ca/gt
−∆g◦

ca/gt
T

mca/gt mh = 0 msca/gt
= mca/gt

cc/gg ∆g◦cc/gg ∆h◦cc/gg ∆s◦cc/gg =
∆h◦

cc/gg
−∆g◦

cc/gg
T

mcc/gg mh = 0 mscc/gg
= mcc/gg

cg/gc ∆g◦cg/gc ∆h◦cg/gc ∆s◦cg/gc =
∆h◦

cg/gc
−∆g◦

cg/gc
T

mcg/gc mh = 0 mscg/gc
= mcg/gc

ga/ct ∆g◦ga/ct ∆h◦ga/ct ∆s◦ga/ct =
∆h◦

ga/ct
−∆g◦

ga/ct
T

mga/ct mh = 0 msga/ct
= mga/ct

IFat ∆g◦at ∆h◦at ∆s◦at =
∆h◦at−∆g◦at

T

IFcg ∆g◦cg = ∆g◦at −∆g◦IF ∆h◦cg ∆s◦cg =
∆h◦cg−∆g◦gc

T

Table S5: Dependencies of thermodynamic parameters. Red cells correspond to fixed

values, as given by the unzipping experiments. Green cells correspond to fitting param-

eters, which are determined by minimizing the mean squared error in Eq. 3 (main text).

Yellow cells correspond to dependent parameters, determined by the fixed (red) and the

fitting parameters (green). Note that the free energy difference for the inititation factors,

∆g◦IF, is marked as red because it has been measured in the unzipping experiments.

23



It is true that, as a result of such a fitting procedure, our newly determined

enthalpies and entropies are prone to be biased towards predicting the main

data published in that reference. It is therefore expected that predictions

from unzipping data (red points in Figure 5b, main text) perform better than

UO numbers (blue points in Figure 5b,main text). However our fits to melting

temperatures are done by constraining the free energy of the different motifs,

something that has not been done in bulk studies. To better understand how

reliable is our approach we have carried out two additional tests. On the one

hand we have carried out a bootstrap re-sampling of available data. On the

other hand we have challenged our newly derived set of energy values with

an independent set of 22 oligos at various salt conditions and a total of 58

melting temperatures.

I.1 Bootstrap re-sampling

We have performed 5744 bootstrap re-samplings of the data and our NN

model has been fit to each subset of data. We have collected the fitting pa-

rameters (enthalpy, entropy and initiation factors) for all re-samplings and we

have computed the mean and the standard deviation of all of them. The mean

and standard deviation of the temperature errors for all the re-samplings is

3.2± 0.2◦C. The table shiown in Fig. S7 summarizes the results:

We get an estimation of the error involved in the fit, which is approxi-

mately 0.3 kcal/mol for the enthalpies and 0.9 cal/(mol*K) for the entropies.

Figures S8,S9 shows that the distribution of the fitting parameters after per-

forming the bootstrap are nearly Gaussians centered on the mean providing

an independent validation of our energy numbers.

I.2 Independent validation dataset

In order to check our energy numbers we have used a new independent val-

idation datasets shown in Tables 4 and S2 (supplementary material) taken

from Reference[16]. These tables combine sodium and magnesium, how-

ever the reliable data to us are those sequences where the parameter R =√
[Mg2+]/[Mon+] is greater than 0.22, a regime where magnesium competes
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Figure S7: Bootstrap re-sampling analysis. New thermodynamic data for DNA in

magnesium at 298K derived from bootstrap re-sampling from the melting temperature

data corresponding to the 92 different oligos of length 10-30 bp at four different salt

concentrations ([Mg2+]=0.5, 1.5, 3, 10 mM) as described in the text.
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Enthalpy (kcal/mol) 
Figure S8: Distributions of enthalpies after bootstrap re-sampling.
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Figure S9: Distributions of entropies after bootstrap re-sampling.
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with or dominates sodium. This regime corresponds also to our own experi-

mental range of magnesium concentrations so we can use our energy numbers

to predict the values of Tm in such regime. The results are shown in the Table

displayed in Figure S10 and exhibit excellent prediction accuracy (χ2 being

lower than 3, see Figure S11). In Figure S12 we plot the experimentaql ver-

sus predicted melting temperatures according to salt concentration (upper

panel) or source (lower panel).
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Figure S10: Independent validation dataset. (Caption next page.)
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Figure S10: (Previous page.) Independent validation dataset. Melting tem-

perature prediction from our unzipping energy numbers using melting temperatures

from an independent validation dataset. Melting temperatures of different oligo se-

quences (first column) were measured in buffers containing a given amount of monova-

lent salt (second column) at different magnesium concentrations (0.5mM, third column;

1.5mM, fifth column; 3mM, seventh column; 10mM, ninth column). All sequences have

R =
√

[Mg2+]/[Mon+] > 0.22, a regime where magnesium competes with or dominates

sodium. This regime corresponds also to our own experimental range of magnesium con-

centrations. The first 12 sequences were obtained from Table 4 from Ref. [16] at a to-

tal oligo concentration of CT ∼ 2um. The rest 10 sequences are given in Table S2 of

Ref. [16] and are obtained at different salt conditions and CT (value indicated in the

first column) in different labs (as indicated by letters a-k). References: a. [Owc08]. b.

Nakano, S., Fujimoto, M., Hara, H., and Sugimoto, N. (1999) Nucleic Acids Res. 27,

2957-2965. c. Hudson, R. H. E., Uddin, A. H., and Damha, M. J. (1995) J. Am. Chem.

Soc. 117, 12470-12477. d. Tomac, S., Sarkar, M., Ratilainen, T., Wittung, P., Nielsen,

P. E., Norden, B., and Graslund, A. (1996) J. Am. Chem. Soc. 118, 5544-5552. e.

Gryaznov, S., and Schultz, R. G. (1994) Tetrahedron Lett. 35, 2489-2492. f. Sugiyama,

T., Schweinberger, E., Kazimierczuk, Z., Ramzaeva, N., Rosemeyer, H., and Seela, F.

(2000) Chem. Eur. J. 6, 369-378. g. Sugimoto, N., Wu, P., Hara, H., and Kawamoto, Y.

(2001) Biochemistry 40, 9396-9405. h. Sund, C., Puri, N., and Chattopadhyaya, J. (1996)

Tetrahedron 52, 12275-12290. i. Germann, M. W., Kalisch, B. W., and van de Sande,

J. H. (1988) Biochemistry 27, 8302-8306. j. Hou, M-H., Lin, S-B., Yuann, J-M. P., Lin,

W-C., Wang, A. H-J., and Kan, L-S. (2001) Nucleic Acids Res. 29, 5121-5128. k. Jovin,

T. M., Rippe, K., Ramsing, N. B., Klement, R., Elhorst, W., and Vojtiskova, M. (1990)

Structure and Methods 3, 155-174. i. Jain, A., Rajeswari, M. R., and Ahmed, F. (2002)

J. Biomol. Struct. Dyn. 19, 691-699

Figure S11: χ2 analysis of the different melting temperature data prediction shown in

previous Table. N is the total number of melting temperatures.
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Figure S12: Experimental versus predicted melting temperature for the dataset of 58

independent measurements shown in the independent validation dataset table (Upper:

classified by salt condition; Lower: classified from data source according to table shown in

Figure S10 . Owc stands for the first 12 sequences obtained from Table 4 from Ref. [16] at

a total oligo concentration of CT ∼ 2um (see top table in Fig. S10). The rest 10 sequences

are given in Table S2 of Ref. [16] and are obtained at different salt conditions in different

labs (as indicated by letters a-k in caption of Figure S10, see ”OTHER LABS” bottom

table in Fig. S10).
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J Derivation of enthalpies and entropies from

melting data in Na+ buffers.

The thermodynamic values for DNA duplex formation in Na+ salt buffers

are summarized in Table S6. These values were already obtained from un-

zipping experiments in Ref.[9] using the NN model with ten parameters.

Table S6 shows the new results with eight parameters and initiation fac-

tors. As for the Mg2+ case the fits in the Na+ case follow the scheme of Eq.4

(main text) illustrated in Table S5. Figure S13 shows a comparison between

melting temperature data from Ref. [17] and prediction results from the UO

values dataset of Santalucia [15], the ten NN energy values from unzipping

experiments Ref.[9] and the new eight plus initiation factors values shown in

Table S6.

The new results improve melting temperature data prediction over the

numbers given in our previous work in Ref.[9] indicating better accuracy of

the new scheme with eight parameters and initiation factors.

32



NNBP ∆g◦i ∆h◦i ∆s◦i mi

(kcal/mol) (kcal/mol) (cal·mol−1·K−1) (kcal/mol)

aa/tt -1.24 -7.6 -21.2 0.142

ac/tg -1.49 -7.1 -18.8 0.115

ag/tc -1.33 -6.2 -16.4 0.087

at/ta -1.07 -7.1 -20.4 0.110

ca/gt -1.76 -9.0 -24.2 0.096

cc/gg -1.92 -8.5 -22.0 0.069

cg/gc -2.34 -9.6 -24.3 0.117

ga/ct -1.52 -7.6 -20.3 0.142

GC/CG -2.38 -9.8 -25.0 0.08

TA/AT -0.98 -5.45 -15.3 0.09

IFat 0.75 2.4 5.6 0

IFcg 0.25 -2.8 -10.4 0

Table S6: Values of all the thermodynamic parameters after fitting melting temperatures

of oligos in Na+ buffer. These values were obtained from unzipping experiments using

the NN model with eight parameters and initiation factors. The salt dependencies for

enthalpies and entropies follows the scheme shown in Eq. 4 (main text).
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Improved melting temperature prediction 
Now including circular symmetry (8 parameters) plus initiation factors 

J.J. SantaLucia, PNAS  1998 (Bulk) 
J. M. Huguet et al., PNAS 2010 (Unzipping)  
New results (Unzipping) 

Figure S13: Improved melting temperature prediction in Na+ buffer. Data

shows experimental melting temperature data taken from Ref. [17] compared to predictions

from the UO dataset from SantaLucia [15] (green points), from unzipping data using

the NN model with ten parameters [9] (red points) and the new improved energy values

reported in Table S6 obtained from the NN model with eight parameters and initiation

factors obtained from unzipping experiments (blue points).
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