**Supplemental Information for** Cataract Surgery & Environmental Sustainability: Waste & Life Cycle Assessment of Phacoemulsification at Aravind Eye Care System

### A. Life Cycle Inventory Data

# **Table 1: Life Cycle Inventory for Single Average Phacoemulsification at Aravind Eye Hospital.**\*all unit processes come from the LCI database Ecoinvent, 3 – allocation, default – unit EXCEPT the pharmaceutical category which was calculated using Economic Input Output LCA (EIOLCA) and the North American Industry Classification System (NAICS) sector number 325412: Pharmaceutical Preparation Manufacturing; HDPE= high density polyethylene; GLO= global; OR= operating room; Alloc Def, U= Allocation default, unit (reference to the Ecoinvent database); RoW= rest of world; IN=

*India*; kg = kilograms; m3 = cubic meters; kWh = kilowatt hours; MJ = megajoules

Allocated Example Category Material **Unit Process\*** Quantities Unit **Products** per Case Steel, chromium steel 18/8 Steel blades, needles {GLO}| market for | Alloc 0.015 kg Def. U Textile, woven cotton {GLO}| market for | Alloc 0.016 Cotton gauze kg Def, U Polypropylene, granulate Single-Use Disposable Items patient face drape, Polypropylene {GLO}| market for | Alloc 0.113 kg syringes Def, U Polycarbonate {GLO}| Polycarbonate eye shield 0.003 kg market for | Alloc Def, U Polyethylene, high **HDPE** packaging density, granulate {GLO}| 0.0002 kg market for | Alloc Def, U Packaging glass, white Glass, white packaging {GLO}| market for | Alloc 0.013 kg Def, U Kraft paper, bleached packaging and {GLO}| market for | Alloc Paper 0.067 kg directions Def, U Polybutadiene {GLO}| Polybutadiene gloves 0.012 kg market for | Alloc Def, U Steel, chromium steel 18/8 surgical Steel -Reusable Items and instruments and {GLO}| market for | Alloc 0.00015 kg Instruments tools Def, U Processes Steel, chromium steel 18/8 Steel - Bins instrument trays {GLO}| market for | Alloc 0.00061 kg Def, U Polyurethane, flexible staff surgical Polyurethane foam {GLO}| market for | 0.00072 kg footwear Alloc Def, U

|                          | Cotton                                                                                                                                                                    | gowns, blankets,<br>masks, bouffant                                  | Textile, woven cotton {GLO}  market for   Alloc Def, U                                                                                                                                | 0.00132 | kg       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
|                          | PROCESS -<br>Linens                                                                                                                                                       | laundry in Central<br>Sterile                                        | Combination: 27.4g/kg<br>cotton of Layered sodium<br>silicate, SKS-6, powder<br>{GLO}  market for   Alloc<br>Def, U and 1.5kWh/kg<br>cotton for electricity in<br>laundering machines | 0.00132 | kg       |
|                          | PROCESS -<br>Autoclave                                                                                                                                                    | instrument<br>sterilization in<br>Central Sterile                    | Combination: 0.5kWh/tray electricity between cases & 2.2kWh/tray for end-of-day cleaning and sterilization                                                                            | 1       | tray     |
|                          | Incineration                                                                                                                                                              | Biohazardous<br>Waste - sharps,<br>gloves, gauze                     | Hazardous waste, for incineration {GLO}  market for   Alloc Def, U                                                                                                                    | 0.016   | kg       |
|                          | Inert Waste -<br>Landfill                                                                                                                                                 | Municipal Solid<br>Waste - all other<br>items discarded in<br>OR     | Inert waste, for final<br>disposal {GLO}  market<br>for   Alloc Def, U                                                                                                                | 0.044   | kg       |
| End-of-Life and Disposal | Recycling - aluminum tabs, other metal items  Recycling - aluminum tabs, other metal items  Steel and iron (waste treatment) {GLO}  recycling of steel and   Alloc Def, U |                                                                      | treatment) {GLO}  recycling of steel and iron                                                                                                                                         | 0.018   | kg       |
| End-of-Life              | Recycling -<br>White Glass                                                                                                                                                | Recycling -<br>bottles                                               | Packaging glass, white (waste treatment) {GLO}  recycling of packaging glass, white   Alloc Def, U                                                                                    | 0.023   | kg       |
|                          | Recycling -<br>Mixed Plastics                                                                                                                                             | Recycling -<br>patient face<br>drapes, packaging                     | Mixed plastics (waste treatment) {GLO}  recycling of mixed plastics   Alloc Def, U                                                                                                    | 0.075   | kg       |
|                          | Recycling -<br>Paper                                                                                                                                                      | Recycling -<br>packaging and<br>directions                           | Paper (waste treatment) {GLO}  recycling of paper   Alloc Def, U                                                                                                                      | 0.062   | kg       |
| pu<br>Sl                 | Formaldehyde                                                                                                                                                              | OR fumigation                                                        | Formaldehyde {GLO} <br>market for   Alloc Def, U                                                                                                                                      | 0.0012  | kg       |
| Pharma and<br>Chemicals  | Pharmaceuticals*                                                                                                                                                          | eye drops & injections: dilation, block, salt solutions, antibiotics | EIOLCA - NAICS sector<br>325412: Pharmaceutical<br>Preparation Manufacturing                                                                                                          | 0.83    | 2002\$US |
| Water                    | Water Treatment                                                                                                                                                           | water for hand<br>washing,<br>instrument<br>cleaning                 | Tap water {RoW}  tap<br>water production,<br>underground water with<br>disinfection   Alloc Def, U                                                                                    | 300     | kg       |

# SI: Waste Generation & Environmental Impact of Cataract Surgery at Aravind Eye Care System

|        | Wastewater -<br>GLO Average                                                                  | wastewater<br>treatment   | Wastewater, average {RoW}  treatment of, capacity 1E9l/year   Alloc Def, U                  | 0.3  | m3           |
|--------|----------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------|------|--------------|
| sy.    | Electricity  Indian electric grid  Electricity, high voltage {IN}  market for   Alloc Def, U |                           | 0.70                                                                                        | kWh  |              |
| Energy | Diesel                                                                                       | combustion of diesel fuel | Diesel, burned in diesel-<br>electric generating set<br>{GLO}  market for   Alloc<br>Def, U | 1.04 | MJ<br>Diesel |

Table 2: Pharmaceuticals Used in Phacoemulsification at Aravind Eye Hospital & Assumptions about Usage and Cost

| Pharmaceutical                                         | Bottle<br>Size | Branded<br>Drug<br>Name   | Stage Used                  | Purpose                                             | # Uses<br>before<br>Disposal | Unit Cost<br>(rps) 2014 | Unit Cost<br>(USD)<br>12/2014<br>exchange<br>rate | Total Cost<br>(USD) / case | Total Cost<br>(rps) / case |
|--------------------------------------------------------|----------------|---------------------------|-----------------------------|-----------------------------------------------------|------------------------------|-------------------------|---------------------------------------------------|----------------------------|----------------------------|
| Ketlur Ls Eye Drops 0.4%,                              |                |                           | Ward, pre-op                |                                                     | 25                           | ₹ 52.00                 | \$ 0.84                                           | \$ 0.03                    | 2.08                       |
| Oflaxacin 0.3%                                         | 5mL            | Auroflox                  | Ward, pre-op                | antibiotic                                          | 25                           | ₹ 40.00                 | \$ 0.65                                           | \$ 0.03                    | ₹<br>1.60                  |
| Povidone Iodine<br>Solution 5%                         | 5mL            | Aurdone                   | Pre-Block,<br>Surgical Prep | anti-infective                                      | 25                           | ₹ 25.00                 | \$ 0.40                                           | \$ 0.02                    | ₹<br>1.00                  |
| Tropicamide 0.8% with Phenylephrine 5% Eye Drops       | 5mL            | Auromide<br>Plus          | Pre-Block,<br>Surgical Prep | Mydriatics and Cycloplegics                         | 25                           | ₹ 40.00                 | \$ 0.65                                           | \$ 0.03                    | ₹<br>1.60                  |
| Homatropine 2%                                         | 5mL            | Aurohom                   | Pre-Block,<br>Surgical Prep | Mydriatics and Cycloplegics                         | 25                           | ₹ 29.00                 | \$ 0.47                                           | \$ 0.02                    | ₹<br>1.16                  |
| Chlorhexidine gluconate 0.5% and 2-Propanol 70%        | 500mL          | Aurorub                   | Block                       | hand cleaning                                       | 100                          | ₹ 164.00                | \$ 2.65                                           | \$ 0.03                    | ₹<br>1.64                  |
| Hyaluronidase<br>Injection                             | 3mg            | Facidase                  | Block                       |                                                     | 20                           | ₹ 110.00                | \$ 1.77                                           | \$ 0.09                    | ₹<br>5.50                  |
| Lignocaine Hydrochloride 2% with Adrenaline Bitartrate | 30mL           | Xylocaine with Adrenaline | Block                       | Local<br>Anesthetic                                 | 20                           | ₹ 28.00                 | \$ 0.45                                           | \$ 0.02                    | ₹<br>1.40                  |
| Lignocaine<br>Hydrochloride<br>Injection 2%            | 30mL           | Xylocaine<br>Plain        | Block                       | Local<br>Anesthetic                                 | 20                           | ₹ 31.00                 | \$ 0.50                                           | \$ 0.03                    | ₹<br>1.55                  |
| Antimicrobial<br>Handwash Solution                     | 500mL          | Auroscrub                 | Surgical Prep               | hand cleaning                                       | 200                          | ₹ 164.00                | \$ 2.65                                           | \$ 0.01                    | ₹<br>0.82                  |
| Povidone Iodine<br>Solution 10%                        | 500mL          |                           | Surgical Prep               | clean exterior surgical site                        | 30                           | ₹ 155.00                | \$ 2.50                                           | \$ 0.08                    | ₹<br>5.17                  |
| Povidone Iodine<br>Solution 5%                         | 5mL            | Aurodone                  | Surgical Prep               | clean interior<br>surgical site<br>(anti-infective) | 30                           | ₹ 25.00                 | \$ 0.40                                           | \$ 0.01                    | ₹<br>0.83                  |

SI: Waste Generation & Environmental Impact of Cataract Surgery at Aravind Eye Care System

| Homatropine 2%                              | 5mL | Aurohom   | Surgical Prep | Mydriatics and Cycloplegics | 30 | ₹ | 29.00 | \$  | 0.47 | \$<br>0.02 | ₹<br>0.97  |
|---------------------------------------------|-----|-----------|---------------|-----------------------------|----|---|-------|-----|------|------------|------------|
| Proparacaine HCl 0.5%                       | 5mL | Aurocaine | Surgical Prep | Local<br>Anesthetic         | 30 | ₹ | 45.00 | \$  | 0.73 | \$<br>0.02 | ₹<br>1.50  |
| Sodium Lactate,<br>500mL (Baxter IV bag)    |     |           | Intra-op      |                             | 4  | ₹ | 57.00 | \$  | 0.92 | \$<br>0.23 | ₹<br>14.25 |
| Septidine Drops 5%                          |     |           | Intra-op      |                             | 30 | ₹ | 25.00 | \$  | 0.40 | \$<br>0.01 | ₹<br>0.83  |
| Hydroxy propyl methyl cellulose solution 2% | 3mL | Aurovisc  | Intra-op      |                             | 1  | ₹ | 60.00 | \$  | 0.97 | \$<br>0.97 | ₹<br>60.00 |
| Homatropine 2%                              | 5mL | Aurohom   | Post-Op       | Mydriatics and Cycloplegics | 25 | ₹ | 29.00 | \$  | 0.47 | \$<br>0.02 | ₹<br>1.16  |
| Povidone Iodine<br>Solution 5%              | 5mL | Aurdone   | Post-Op       | anti-infective              | 25 | ₹ | 25.00 | \$  | 0.40 | \$<br>0.02 | ₹<br>1.00  |
|                                             |     |           |               |                             |    |   |       | тот | TAL  | \$<br>1.68 | ₹ 104.06   |

Table 3: Changes in Total per-Case GHGs (Greenhouse Gases) in kg  $CO_2$ -e, based on variation in inventory items (by inventory category).

| Input<br>Variation     | Single-Use<br>Devices<br>Only | Reusable<br>Only | Waste<br>Treatment<br>Only | Formal-<br>dehyde<br>Only | Pharma-<br>ceuticals<br>Only | Water<br>Only | Energy<br>Only | Vary All<br>Categories |
|------------------------|-------------------------------|------------------|----------------------------|---------------------------|------------------------------|---------------|----------------|------------------------|
| -50%                   | 5.4                           | 4.0              | 6.0                        | 5.9                       | 5.7                          | 5.7           | 5.4            | 2.9                    |
| -40%                   | 5.5                           | 4.4              | 6.0                        | 5.9                       | 5.8                          | 5.8           | 5.5            | 3.5                    |
| -30%                   | 5.6                           | 4.8              | 5.9                        | 5.9                       | 5.8                          | 5.8           | 5.6            | 4.1                    |
| -20%                   | 5.7                           | 5.1              | 5.9                        | 5.9                       | 5.8                          | 5.8           | 5.7            | 4.7                    |
| -10%                   | 5.8                           | 5.5              | 5.9                        | 5.9                       | 5.9                          | 5.9           | 5.8            | 5.3                    |
| Median<br>GHG<br>Value | 5.9                           | 5.9              | 5.9                        | 5.9                       | 5.9                          | 5.9           | 5.9            | 5.9                    |
| 10%                    | 6.0                           | 6.2              | 5.9                        | 5.9                       | 5.9                          | 5.9           | 6.0            | 6.5                    |
| 20%                    | 6.1                           | 6.6              | 5.8                        | 5.9                       | 5.9                          | 5.9           | 6.1            | 7.1                    |
| 30%                    | 6.1                           | 7.0              | 5.8                        | 5.9                       | 6.0                          | 6.0           | 6.2            | 7.6                    |
| 40%                    | 6.2                           | 7.3              | 5.8                        | 5.9                       | 6.0                          | 6.0           | 6.3            | 8.2                    |
| 50%                    | 6.3                           | 7.7              | 5.8                        | 5.9                       | 6.0                          | 6.0           | 6.4            | 8.8                    |

#### 100% ■ Energy & Electricity Percent contribution of each inventory item to impact category 80% ■ Water Use & Treatment ■ Pharmaceuticals\* 60% & Cleaning Compounds Disposal -Recycling 40% ■ Disposal -Incineration & 20% Landfill ■ Reusable Materials -Production & 0% Sterilization RACI RAC **TRACI** CML **RACI** CED CML ■ Single Use Materials -Production GHG HT Smog **EUT** CED -20% Impact Category for Impact Assessment Method TRACI (used in study) & CML

## B. Sensitivity Analyses

Figure 1: Relative contributions of inventory data to impact categories based on impact assessment method (TRACI or CML).

GHG = greenhouse gases, ODP = ozone depletion potential, HT = human toxicity (TRACI category is called Carcinogenics), AP = acidification potential, EUT = eutrophication potential, CED = cumulative energy demand (CML category is Abiotic depletion, MJ) \*Emissions from pharmaceuticals were conducted using Economic Input-Output LCA (EIO-LCA)¹ which report only in TRACI. TRACI and CML have identical units in the categories of GHGs and ODP, and pharmaceuticals in this comparison are only reported in these two categories.

Since this study was based in India and there are no impact assessment methods specific to India, we tested two impact assessment methods: TRACI 2.1 v1.02 / US 2008 (The Tool for the Reduction and Assessment of Chemical and other environmental Impacts) by the US Environmental Protection Agency (US EPA)<sup>2</sup> and CML-IA baseline V3.02, World 2000, developed by the Center of Environmental Science of Leiden University.<sup>3</sup> TRACI is commonly used in the United States and was used as the reporting impact assessment for this study to enable future comparisons with US-based cataract surgeries. CML is

typically used in global studies, but as shown here there were no significant differences between the two methods for this study.

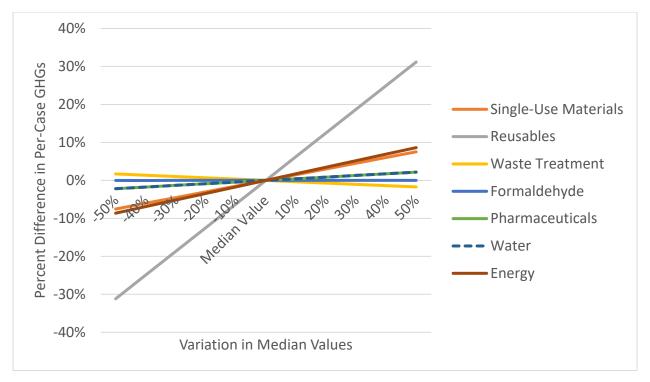



Figure 2: Variation in Total Greenhouse Gas Emissions per Case.

Sensitivity was conducted by varying the input quantity of each inventory item by 10% increments (from -50% of the median, reported value to +50%). Figure 1 summarizes the variation by category. For example, the line for "Single-Use Materials" shows the variation in the overall footprint per case when quantity of single-use materials (only) are increased or decreased. A 10% increase in "single-use materials" represents the summation of a 10% increase in the quantity of each single-use material in the study. Figures 2 through 5 show the changes in GHGs for inventory variation within each category. The top inventory items that create the highest variability in GHGs per case are, in order: (1) Reusable autoclaving, (2) Electricity, (3) Cotton production, (4) Pharmaceuticals, and (5) Polypropylene production.

As shown in Figure 1, variation in "reusables" creates the largest potential changes in GHGs per case. This is due to the autoclaving process and the electricity use from that process (Figures 3 and 5). The inventory value here is 1 instrument tray (so a 50% increase would be  $1\frac{1}{2}$  instrument trays). There is a very low probability that a surgical case at Aravind Eye Hospital will require more than one instrument tray, and even then, in absolute numbers using  $1\frac{1}{2}$  instrument trays will result in a total of 6.4 kg CO<sub>2</sub>-e per phacoemulsification rather than 5.9 kg CO<sub>2</sub>-e/case (Table 2).

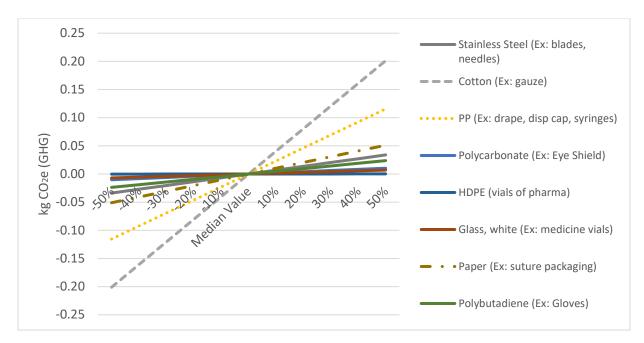



Figure 3: Sensitivity of Single-Use Devices: Variation in Greenhouse Gases (GHG, kg CO<sub>2</sub>-e) with Variation of Inventory Quantities.

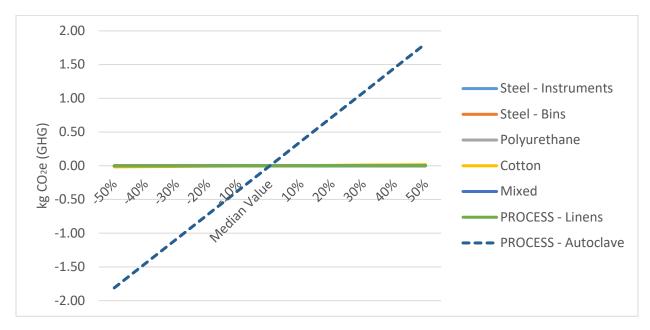



Figure 4: Sensitivity of Reusable Items: Variation in Greenhouse Gases (GHG, kg CO<sub>2</sub>-e) with Variation of Inventory Quantities.

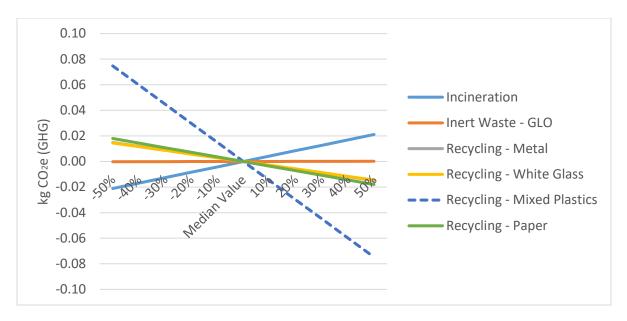



Figure 5: Sensitivity of Waste Treatment: Variation in Greenhouse Gases (GHG, kg CO<sub>2</sub>-e) with Variation of Inventory Quantities.

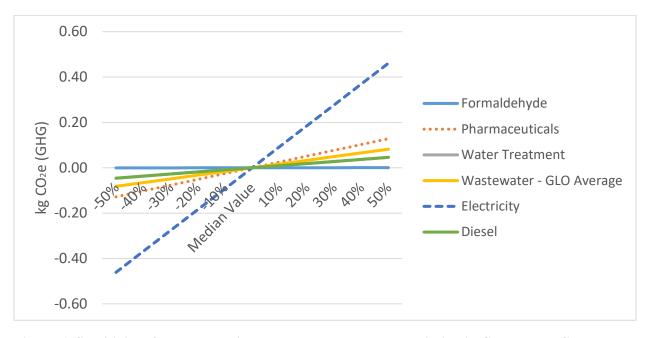



Figure 6: Sensitivity of Pharmaceuticals, Water, and Energy: Variation in Greenhouse Gases (GHG, kg CO<sub>2</sub>-e) with Variation of Inventory Quantities.

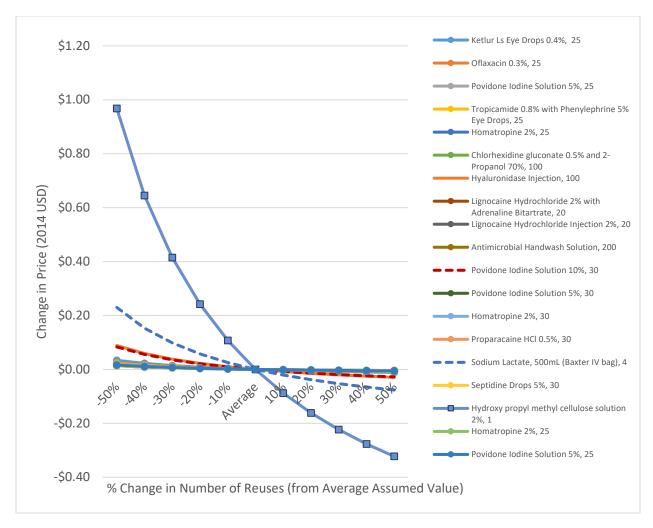



Figure 7: Sensitivity Analysis for Pharmaceuticals Category.

Variation in Prices of Individual Pharmaceuticals (directly correlated with emissions for Economic Input-Output Life Cycle Assessment EIO-LCA methods) based on Changes in the Number of Uses between Disposals. In legend: drug name, average number of uses used in base-LCA. Average cost of all drugs combined is US\$1.68.

Pharmaceuticals with largest variation in cost based on lifespan changes are: Hydroxy propyl methyl cellulose solution 2%; Sodium Lactate, 500mL (Baxter IV bag); Hyaluronidase Injection; and Povidone Iodine Solution 10%. Ex: A 50% decrease in the number of uses of hydroxyl propyl methyl cellulose (from 1 use before disposal to ½ use) increases the price per case by nearly US\$1.00. A 50% increase in the number of uses (from 1 use before disposal to 1-1/2 uses – or 1 and a half patients per bottle) decreases the price by US\$0.32 per case.

Table 4: Life Cycle Assessment Results in Table Form, Average Values of Total Impact Category

<sup>†</sup>Costs do NOT include staff salaries, the IOL, water use, overhead, or capital equipment; \*Pharmaceuticals were calculated using economic data in a US-based model, this did NOT include emissions in eutrophication, carcinogenics, noncarcinogenics, respiratory effects, and ecotoxicity

|                                |                              | Single Use                              | Reusable                              | Reusable                                 | Disposal                                              | Recycling                      | Pharma                | Cleaning<br>Compounds | Water                       | Energy      | Energy       | TOTAL        |
|--------------------------------|------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------------------|--------------------------------|-----------------------|-----------------------|-----------------------------|-------------|--------------|--------------|
| Impact category                | Unit                         | Single Use<br>Materials -<br>Production | Reusable<br>Materials -<br>Production | Reusable<br>Materials -<br>Sterilization | Materials<br>Disposal -<br>Incineration<br>& Landfill | Materials Disposal - Recycling | Pharma-<br>ceuticals* | Cleaning<br>Compounds | Water Use<br>&<br>Treatment | Electricity | Diesel       | TOTAL        |
| Ozone<br>Depletion             | (kg<br>CFC-11-<br>eq)        | 1.55E-06                                | 1.27E-07                              | 7.10E-08                                 | 3.25E-09                                              | -1.13E-08                      | 5.74E-07              | 2.88E-10              | 1.92E-08                    | 1.81E-08    | 2.25E-<br>08 | 2.37E-<br>06 |
| Greenhouse<br>Gases            | (kg CO <sub>2</sub> -        | 0.89                                    | 0.04                                  | 3.62                                     | 0.04                                                  | -0.24                          | 0.26                  | 0.00                  | 0.26                        | 0.92        | 0.09         | 5.88         |
| Smog                           | (kg O <sub>3</sub> -<br>eq)  | 0.05                                    | 0.00                                  | 0.25                                     | 0.00                                                  | -0.01                          | 0.02                  | 0.00                  | 0.02                        | 0.06        | 0.04         | 0.42         |
| Acidification                  | (kg SO <sub>2</sub> -<br>eq) | 4.18E-03                                | 2.01E-04                              | 2.59E-02                                 | 9.31E-05                                              | -1.11E-03                      | 1.41E-03              | 8.96E-06              | 1.90E-03                    | 6.60E-03    | 1.20E-<br>03 | 4.04E-<br>02 |
| Eutrophication                 | (kg N-<br>eq)                | 2.50E-03                                | 1.56E-04                              | 1.76E-02                                 | 1.25E-04                                              | -3.40E-04                      | 4.29E-05              | 2.80E-06              | 9.74E-03                    | 4.48E-03    | 1.10E-<br>04 | 3.44E-<br>02 |
| Carcinogenics                  | (CTUh)                       | 1.00E-07                                | 5.61E-09                              | 1.79E-07                                 | 6.19E-09                                              | -1.03E-08                      | -                     | 5.26E-11              | 5.48E-08                    | 4.55E-08    | 5.18E-<br>10 | 3.81E-<br>07 |
| Non<br>carcinogenics           | (CTUh)                       | 1.61E-07                                | 9.21E-09                              | 6.39E-07                                 | 5.75E-09                                              | -3.04E-08                      | -                     | 3.77E-10              | 9.13E-07                    | 1.63E-07    | 2.91E-<br>09 | 1.86E-<br>06 |
| Respiratory<br>Effects         | (kg<br>PM2.5-<br>eq)         | 1.22E-03                                | 7.09E-05                              | 2.80E-02                                 | 1.62E-05                                              | -1.96E-04                      | -                     | 1.12E-06              | 4.54E-04                    | 7.14E-03    | 2.06E-<br>04 | 3.69E-<br>02 |
| Ecotoxicity                    | (CTUe)                       | 8.21E+00                                | 5.40E-01                              | 1.68E+01                                 | 2.22E-01                                              | -1.02E+00                      | -                     | 1.18E-02              | 5.58E+00                    | 4.27E+00    | 5.15E-<br>02 | 34.63        |
| Cumulative<br>Energy<br>Demand | (MJ)                         | 21.47                                   | 0.60                                  | 4.06E+01                                 | 0.21                                                  | -9.76                          | 3.96                  | 0.05                  | 3.38                        | 10.35       | 1.40         | 72.29        |
| Cost <sup>†</sup>              | (USD,<br>\$)                 | 8.33                                    | 2.19                                  | 0.00                                     | 0.04                                                  | -0.04                          | 1.68                  | 0.00                  | 0.00                        | 0.04        | 0.01         | 12.25        |

Table 5: Life Cycle Assessment Results in Table Form, Percentage of Total Impact Category

<sup>†</sup>Costs do NOT include staff salaries, the IOL, water use, overhead, or capital equipment; \*Pharmaceuticals were calculated using economic data in a US-based model, this did NOT include emissions in eutrophication, carcinogenics, noncarcinogenics, respiratory effects, and ecotoxicity

|                                |                             | Single Use                              | Reusable                              | Reusable                                 | Disposal                                              | Recycling                      | Pharma                | Cleaning<br>Compounds | Water                       | Energy      | Energy |
|--------------------------------|-----------------------------|-----------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------------------|--------------------------------|-----------------------|-----------------------|-----------------------------|-------------|--------|
| Impact category                | Unit                        | Single Use<br>Materials -<br>Production | Reusable<br>Materials -<br>Production | Reusable<br>Materials -<br>Sterilization | Materials<br>Disposal -<br>Incineration<br>& Landfill | Materials Disposal - Recycling | Pharma-<br>ceuticals* | Cleaning<br>Compounds | Water Use<br>&<br>Treatment | Electricity | Diesel |
| Ozone<br>Depletion             | (kg<br>CFC-<br>11-eq)       | 65%                                     | 5%                                    | 3%                                       | 0%                                                    | 0%                             | 24%                   | 0%                    | 1%                          | 1%          | 1%     |
| Greenhouse<br>Gases            | (kg<br>CO <sub>2</sub> -eq) | 15%                                     | 1%                                    | 62%                                      | 1%                                                    | -4%                            | 4%                    | 0%                    | 4%                          | 16%         | 2%     |
| Smog                           | (kg O <sub>3</sub> -        | 11%                                     | 0%                                    | 58%                                      | 0%                                                    | -3%                            | 6%                    | 0%                    | 4%                          | 15%         | 9%     |
| Acidification                  | (kg SO <sub>2</sub> -eq)    | 10%                                     | 0%                                    | 64%                                      | 0%                                                    | -3%                            | 3%                    | 0%                    | 5%                          | 16%         | 3%     |
| Eutrophication                 | (kg N-<br>eq)               | 7%                                      | 0%                                    | 51%                                      | 0%                                                    | -1%                            | 0%                    | 0%                    | 28%                         | 13%         | 0%     |
| Carcinogenics                  | (CTUh)                      | 26%                                     | 1%                                    | 47%                                      | 2%                                                    | -3%                            | -                     | 0%                    | 14%                         | 12%         | 0%     |
| Non carcinogenics              | (CTUh)                      | 9%                                      | 0%                                    | 34%                                      | 0%                                                    | -2%                            | -                     | 0%                    | 49%                         | 9%          | 0%     |
| Respiratory<br>Effects         | (kg<br>PM2.5-<br>eq)        | 3%                                      | 0%                                    | 76%                                      | 0%                                                    | -1%                            | -                     | 0%                    | 1%                          | 19%         | 1%     |
| Ecotoxicity                    | (CTUe)                      | 24%                                     | 2%                                    | 48%                                      | 1%                                                    | -3%                            | -                     | 0%                    | 16%                         | 12%         | 0%     |
| Cumulative<br>Energy<br>Demand | (MJ)                        | 30%                                     | 1%                                    | 56%                                      | 0%                                                    | -14%                           | 5%                    | 0%                    | 5%                          | 14%         | 2%     |
| Cost <sup>†</sup>              | (USD,<br>\$)                | 68%                                     | 18%                                   | 0%                                       | 0%                                                    | 0%                             | 14%                   | 0%                    | 0%                          | 0%          | 0%     |

# C. Bibliography for Supplemental Information

- 1. Carnegie Mellon University Green Design Institute. Economic Input-Output Life Cycle Assessment (EIO-LCA) US 2002 (428) model. 2013 [cited April 18, 2013]Available from: <a href="http://www.eiolca.net">http://www.eiolca.net</a>
- 2. US EPA. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) v 2.1. US Environmental Protection Agency (US EPA); 2012.
- 3. Sleeswijk AW, van Oers LF, Guinée JB, Struijs J, Huijbregts MA. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. *Sci Total Environ* 2008, **390**(1): 227-240.