
Appendix S1: Supplemental theory 1

As discussed in the introduction, it is difficult to make analytical progress when modeling a 2

many-allele range expansion as a line of annihilating and coalescing domain walls subject to 3

diffusion and deterministic, selection-induced motion. This is because the moment hierarchy of an 4

equivalent system, the q-color Voter Model, does not close [1]. Much is understood, however, 5

about the neutral dynamics of many annihilating and coalescing walls; analytical predictions exist 6

for spatial correlation functions [2] and relative annihilation and coalescence rates [2–4]. In 7

addition, results for the dynamics of a monoclonal single sector (bordered by domain walls) of a 8

more fit strain sweeping through a less fit strain are available [1, 5, 6]. In this section, we review 9

previous theoretical work and introduce theoretical advances relevant to the main text. 10

The Stepping-Stone and Voter models with selection 11

The population dynamics of range expansions with flat fronts can be modeled as the evolution of 12

a one-dimensional line of individuals subject to growth/replication, death, and diffusion with the 13

constraint of a constant population density [1]. Two well-studied microscopic models of the 14

dynamics are the Voter model [6] and the Stepping Stone model [7]. The Voter model is 15

equivalent to a one-dimensional q-state Potts model [8, 9] governed by zero-temperature Glauber 16

dynamics [10]; individuals in the population are replaced by one of their neighbors with a 17

constant probability per time. The stepping stone model (prior to taking a continuum limit) 18

assumes that there are many connected “islands” that individuals diffuse to and from governed by 19

Moran reproduction [11]; each of these islands has a population size of N . The Voter model can 20

be viewed as a stepping stone model where the local population of each island is N = 1. 21

When either model is coarse-grained in space, the resulting stochastic differential equation 22

governing the evolution of fi(~x, t), the fraction of strain i at position ~x at time t, is the same, but 23

with different values for the model parameters and boundary conditions. The stochastic 24

differential equation for an arbitrary number of competing strains along the line is 25

∂fi

∂t
= Dw∇

2fi + [si − 〈s〉] fi +
∑

j

[δij − fi]
√

Dgfjζj(~x, t), (S1.1)

which is a spatial generalization of the equation studied by Good et al. [12]. Here, δij is the 26

Kronecker delta function (δij = 1 if i = j and δij = 0 otherwise), Dw is the spatial diffusion 27

coefficient of each strain and is the same Dw as the one used in the main text, si is the 28

dimensionless fitness of strain i, 〈s〉 =
∑

j sjfj is the mean fitness of all strains locally, and Dg 29

parameterizes genetic drift. The function ζi(~x, t) is a white noise random variable with the 30

properties 〈ζi(~x, t)〉 = 0 and
〈
ζi(~x, t)ζj(~x′, t′)

〉
= δijδ(~x − ~x′)δ(t − t′), where these noises are 31

interpreted in the Itô sense [13]. The noise term on the far-right captures fluctuations due to the 32

limited population size. Equation (S1.1) reduces to standard equations in the literature [1] when 33

describing with two competing strains. Unfortunately, equation (S1.1) becomes analytically 34

intractable when multiple strains and selective advantages are present because of the closure 35

problem: ∂
∂t 〈fi〉 depends on 〈fifj〉, and ∂

∂t 〈fifj〉 depends on 〈fifjfk〉, etc. The moment hierarchy 36

does not close. 37
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Neutral correlation functions 38

Much is known about equation (S1.1) in the neutral case where all si = 0 as discussed in the main 39

text [1]. Unsurprisingly, it can be shown that the average fraction Fi = 〈fi〉 (the bracket indicates 40

an average over many expansions) equals the initial inoculated fraction F 0
i at all times for an 41

initially well-mixed inoculant. Although the average fraction is constant in the neutral case, the 42

two-point correlation function broadens due to the coarsening of genetic domains. Upon adopting 43

polar coordinates for radial expansions and letting L = ut = R − R0 where u is the radial 44

expansion velocity, it can be shown, using equation (S1.1) when all s = 0, that the dynamics of the 45

average two-point correlation functions Fij(φ,L) = 〈fifj〉 are governed by (in polar coordinates), 46

∂

∂L
Fij(φ,L) =






i = j,
2Dw

(R0 + L)2
∂2

∂φ2
Fii +

Dg

R0 + L
δ(φ) [Fi − Fii]

i 6= j,
2Dw

(R0 + L)2
∂2

∂φ2
Fij −

Dg

R0 + L
δ(φ)Fij .

(S1.2)

where φ is the angular distance between points at the frontier and δ(φ) is a Dirac delta function. 47

For the Voter model with deme size N = 1, the boundary conditions are given by 48

Fij(L = 0) = F 0
i F 0

j , Fi=j(φ = 0) = Fi, and Fi 6=j(φ = 0) = 0; these conditions make the delta 49

functions δ(φ) disappear. F 0
i and F 0

j are the initial inoculated fractions of strains i and j. Solving 50

these equations by making a “conformal time” substitution [6, 14,15] yields 51

Fij(φ,L) =






i 6= j, F 0
i F 0

j erf
[√

1 + R0/L |φ/φc|
]

i = j, F 0
i

{
1 −

(
1 − F 0

i

)
erf
[√

1 + R0/L |φ/φc|
]} (S1.3)

where the characteristic angular width of Fij is given by φc =
√

8Dw/R0; again note that Dw is 52

the same as that from the main text. Figure A contains plots of Fij(φ,L) for both i 6= j and 53

i = j. As L → ∞, Fij approaches a constant shape given by the error function because inflation 54

will eventually completely dominate the diffusive motion of boundary walls which brings 55

coarsening of genetic domains to a halt. When φ � φc, we have Fij ≈ F 0
i F 0

j , because the different 56

genetic regions become uncorrelated. Note that if φc approaches 2π, this limit is impossible to 57

achieve and the correlation function will not factorize. These neutral results for Fij(φ,L) 58

tabulated above can be used as a null model when we introduce selection. 59

From the Fij(φ,L) above, we define the heterozygosity correlation function as [1] 60

H(φ,L) =
∑

i

∑

j 6=i

Fij(φ,L) = H0erf
[√

(1 + R0/L) |φ/φc|
]

(S1.4)

where H0 is the heterozygosity at L = 0, or H0 =
∑

i F 0
i (1 − F 0

i ) (this assumes that that the 61

initial condition is a well-mixed inoculation with some initial fraction F 0
i ) . The heterozygosity 62

can be thought of as the probability that two points separated by an angle of φ at a length 63

expanded of L are occupied by different strains; it is a spatial measure of genetic diversity. This 64

result is used to determine the wall diffusion constant Dw in the Measuring Dw section in the 65

Materials and Methods section. 66
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Fig A. Voter model predictions for Fij(φ,L) from eq. (S1.3) for i 6= j on the left and i = j on the
right. F 0

i and F 0
j , the initial inoculated fractions of strains i and j, were set to 0.3 and 0.7

respectively. The product F 0
i F 0

j determines the asymptote of the correlation function for large
angular separation. Note that L/R0 ≥ 0.

Neutral annihilation and coalescence probabilities 67

Upon collision, the diffusing domain walls either annihilate or coalesce as illustrated in Figure 1 of
the main text. Upon regarding these genetic boundaries as world lines of chemical species, these
processes can be described using the language of chemical reactions,

Annihilation: Wij + Wji → ∅

Coalescence: Wij + Wjk → Wik (i 6= k),

where Wij is a domain wall such that the strain on the left is of type i and the strain on the right 68

is of type j. Note that the inner indices of colliding domain walls are always identical, because 69

two neighboring domain walls always have a common strain between them. 70

Although little is known about the relative rates of annihilations and coalescences in the 71

presence of selection, analytical results are available for the neutral case (vij
w = 0). If q (an 72

integer) neutral alleles are inoculated at random locations with equal initial proportions on a 73

one-dimensional lattice, the probability of obtaining an annihilation per domain wall collision is 74

given by 75

PA =
1

q − 1
(S1.5)

and the probability of obtaining a coalescence per collision is given by [2–4] 76

PC =
q − 2
q − 1

. (S1.6)

One can easily derive these formulas; given that strain i is to the left of two colliding domain 77

walls and strain j is between them, we can ask: “what is the probability that strain k to the right 78

of the walls is the same as strain i (annihilation) or is not strain i or j (coalescence)?” Note that 79

although the rate of annihilations and coalescences decreases with time due to coarsening, the 80

probabilities per collision PA,C are independent of the length expanded L. In the presence of 81
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selection, however, the average global fraction of each strain will change with length expanded, 82

making PA and PC L-dependent. 83

To succinctly quantify the difference between the annihilation and coalescence probabilities, we 84

define the “annihilation asymmetry” ΔP (L) = PA(L) − PC(L) as the difference in probability of 85

obtaining an annihilation versus a coalescence per collision at a distance expanded of L. If q 86

neutral colors are inoculated in equal fractions, we find, using equations (S1.5) and (S1.6), 87

ΔP =
3 − q

q − 1
. (S1.7)

To determine how unequal global fractions of each neutral strain alters PA and PC and thus
ΔP , we write PA and PC in terms of Pijk, the probability that a collision between domain walls
Wij and Wjk occurred per collision:

PA =
q∑

i

q∑

j 6=i

Piji, (S1.8)

PC =
q∑

i

q∑

j 6=i

q∑

k 6=i,j

Pijk. (S1.9)

We expect that for q neutral colors, the chance of a particular color combination in a collision ijk 88

with color i on the left and color k on the right and j in the middle to be proportional to the 89

product F 0
i F 0

j F 0
k of the initial color fractions. We therefore expect that 90

Pijk =
Zijk

Ztotal
=

F 0
i F 0

j F 0
k

Ztotal
(S1.10)

where Zijk = F 0
i F 0

j F 0
k and the normalization constant is ZTotal =

∑q
i

∑q
j 6=i

∑q
k 6=j Zijk, i.e. the 91

sum of all Zijk. 92

Using the simulations described in the Simulation methods section, we checked eq. (S1.10) for 93

q = 3 neutral strains. The left side of Figure B displays the simulated values of Pijk and our 94

theoretical predictions for three neutral strains inoculated with initial fractions 95

{F1 = 0.1, F2 = 0.3, F3 = 0.6} in a linear range expansion; our theoretical predictions, represented 96

by black dashed lines, match the simulation results. As our predictions for Pijk were correct, our 97

predictions for PA and PC were also correct as they were composed of sums of Pijk. Inflating 98

simulations with the same Fi also returned the same values of Pijk and thus PA and PC . Inflation 99

changes the rate at which annihilations and coalescences occur, but not their relative proportions. 100

As discussed in the main text, to efficiently quantify the difference between the annihilation 101

and coalescence probabilities, we defined the “annihilation asymmetry” ΔP (L) = PA(L) − PC(L) 102

as the difference in probability of obtaining an annihilation vs. a coalescence in a given collision 103

at a distance expanded of L. In the neutral case, ΔP is independent of L. The right side of 104

Figure B displays a ternary diagram illustrating all possible values of ΔP that can be reached 105

when inoculating q = 3 neutral colors in different proportions. The blue dot corresponds to the 106

initial conditions where the Pijk probabilities were calculated in the plot to its left. For a 107

combination of three colors present in an expansion, ΔP is minimized when all three colors are 108

inoculated in equal fractions and is maximized when one of the fractions of the three colors goes 109

to zero. This is true for all q. 110
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Fig B. Left : Probability Pijk of a domain wall collision with color i to the left of the walls, color
j between the walls, and color k to the right vs. length expanded. We simulated q = 3 neutral
strains with initial fractions {F1 = 0.1, F2 = 0.3, F3 = 0.6} in a linear expansion, averaged the
results of 1000 simulations, and calculated Pijk (solid lines) and compared its value to that from
eq. (S1.10) (dashed black lines). L/a is the length expanded divided by the cell size and is
equivalent to the elapsed time in generations. The simulation confirms the predictions of eq.
(S1.10). Right: The annihilation bias ΔP = PA − PC , where PA and PC are the probabilities of
obtaining an annihilation or coalescence event per domain wall collision respectively, calculated
via eqs. (S1.8) and (S1.9) as a function of initial inoculated fractions for q = 3 neutral colors. ΔP
is independent of length expanded for neutral strains. The large blue dot corresponds to the
initial conditions that were used on the left. ΔP assumes its minimum value ΔP = 0 when q = 3
colors are inoculated in equal fractions and is maximized on the boundaries of the ternary
diagram corresponding to ΔP = 1. Discrete colors were used to more clearly highlight the
contours of ΔP .

Single sector dynamics with selection 111

We first review a simple phenomenological model [5, 6, 16] of the width w of a single sector of a 112

more fit strain sweeping through a less fit strain incorporating both wall diffusion and 113

deterministic motion due to selective differences. Let x be the position of one of the domain walls 114

of a sector. We quantify a domain wall’s displacement dx over a front expansion distance of dL by 115

the parameters 2Dw = dVar(x)/dL (Var(x) = 〈x2〉 − 〈x〉2 is the variance), describing the diffusive 116

motion of the wall, and vw = d〈x〉/dL, describing its deterministic motion, as discussed in the 117

Introduction and illustrated in Figure 1 of the main text. 118

We first describe a linear range expansion and then extend our treatment to a radially inflating 119

expansion. If we track the distance w between two walls that are sweeping through a less fit 120

strain per length expanded L, as sketched on the right side of Figure 1 of the main text, the 121

dynamics of w is given by 122

dw

dL
= 2vw +

√
4Dwζ(L) (S1.11)

where ζ(L) is white noise with 〈ζ(L)〉 = 0 and 〈ζ(L)ζ(L′)〉 = δ(L − L′) and should be interpreted 123

in the Itô sense [13]. The factors of 2 in front of vw and 4 in front of Dw arise because we monitor 124

the distance between two domain walls. Note that we make the smooth front approximation that 125

neglects the roughness of the expansion boundary. We assume that vw is constant [17] and that 126
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the domain wall motion is diffusive [6]. Within this approach, diffusive effects scale as
√

L while 127

deterministic effects scale as L; hence, at short expansion distances, diffusion dominates the sector 128

width while at larger length scales, deterministic motion becomes apparent. A crossover length 129

scale Ls follows by equating the deterministic average displacement (from the first term of 130

(S1.11)) with the root mean squared displacement associated with the second term, 131

2vwLs︸ ︷︷ ︸
Deterministic

=
√

4DwLs︸ ︷︷ ︸
Diffusive

⇒ Ls = Dw/v2
w. (S1.12)

Ls is the distance that a linear expansion must expand in order for selection to become dominant 132

over diffusive effects [1, 6, 18]. 133

What changes in the radially expanding case? We now shift to radial coordinates. Upon 134

setting L = R − R0 where R0 is the radius at which the alleles first fix, and denoting the angular 135

width between the two sector boundaries as φ = w/R, our phenomenological stochastic model 136

becomes [6] 137

dφ

dL
=

2vw

R0 + L
+

√
4Dw

(R0 + L)2
ζ(L). (S1.13)

The mean and variance of the sector width φ are, with R = L + R0,

〈φ − φ0〉 = 2vw ln

(
R

R0

)

= 2vw ln

(

1 +
L

R0

)

(S1.14)

Var (φ) =
〈
φ2
〉
− 〈φ〉2 = 4Dw

(
1

R0
−

1
R

)

=
4Dw

R0

[

1 −

(

1 +
L

R0

)−1
]

. (S1.15)

Eq. (S1.14) describes how the boundaries of the more fit domain sweep out a logarithmic 138

spiral as the expansion inflates [6, 16,17], and eq. (S1.15) shows that the effective angular 139

diffusion coefficient decreases as the radius R = R0 + L increases. If one now equates the 140

deterministic displacement of the boundaries to diffusive effects, in analogy with equation (S1.12), 141

we find that the crossover between diffusive wandering of the sector width and a deterministic 142

logarithmic sweep occurs at an expansion distance LI that satisfies 143

κ ln

(

1 +
LI

R0

)

︸ ︷︷ ︸
Deterministic

=

√

1 −

(

1 +
LI

R0

)−1

︸ ︷︷ ︸
Diffusive

(S1.16)

where the dimensionless parameter κ is an inflationary selective advantage, [6] 144

κ =
√

R0/Ls =
√

R0v2
w/Dw and LI is the inflationary analog of Ls, the length scale at which 145

selection dominates over diffusion on an inflating boundary [6, 16]. Fig. 5 of the main text 146

displays the numerical solution of eq. (S1.16) for LI(κ). 147

The impact of κ on domain behavior is demonstrated visually in Figure C. Three simulations 148

were conducted utilizing the algorithm from the Simulation methods Section with a more fit 149

yellow strain sweeping through a less fit red strain. Ls was kept constant but κ was varied by 150

altering the initial radius of each expansion. As κ decreases from right to left in Figure C, 151

inflation plays a larger role and dramatically slowed down the sweep of the more fit strain. 152
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Fig C. The impact of κ on domain behavior. Three simulations were conducted using the
algorithm from the Simulation methods section where a more fit yellow strain, initially occupying
a width of 10 cells at the front (the horizontal axis is in units of cell widths), sweeps through a
less fit red strain. As explained in the Simulation methods section, we accounted for inflation by
appropriately decreasing the “jump size” of domain walls; this leads to the identification that
x = R0φ where φ is the angular position along the radially expanding front. As κ decreases from
right to left, inflation plays a larger role and dramatically slows down sweeping through the less
fit strain due to the decreasing domain wall jump length. κ = ∞ was obtained by not inflating
the domain (a linear range expansion) with periodic boundary conditions; the expansion proceeds
along a cylinder.
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