
Overview of Supporting Information
This Supporting Information document is broken into four main sections that include:

• A description of the data used for the COPD network inference and analysis presented in the main
text

• A detailed description of the MONSTER approach for defining network state transitions

• Various evaluations of the MONSTER method

• An illustration of the irreproducibility of network differences outside of the transition matrix for-
malism

Data for COPD Network Inference and Analysis

Sequence binding motifs
A regulatory network prior between transcription factors and target genes was created by using position
weight matrices for 205 transcription factor motifs obtained from JASPAR 2014 (http://jaspar2014.genereg.net/),
[21] and running Haystack[22] to scan the hg19 genome for occurrences of these motifs. Sequences were
identified as hits for a transcription factor if they satisfied the significance threshold of p < 10−5. We
then used HOMER (http://homer.salk.edu/homer/ngs/index.html) [12] to identify transcription factor
binding motifs that map to a window ranging from 750 base pairs downstream to 250 base pairs up-
stream of each gene’s transcription start site under the assumption that transcription factors falling in
this region may actively regulate expression of the gene.

ECLIPSE
Gene expression data from the ECLIPSE study (GSE54837) [27] was collected using blood samples from
226 subjects classified as non-smokers (6), smoker controls (84) or COPD (136). Blood samples from
each individual were profiled using Affymetrix Human Genome U133 Plus 2.0 microarrays. CEL data
files from these assays were RMA-normalized[13] in R using the Bioconductor package ’affy’[8]. Array
probes were collapsed to 19,765 Entrez-gene IDs using a custom CDF[3] and the 220 samples for COPD
or smoker control subjects were retained for analysis. Finally, genes were associated with potential
regulatory transcription factors using a motif scan (described above). 1,553 genes were not associated
with any transcription factor and excluded from further analysis, leaving 17,342 genes that were used to
construct network models.

COPDGene
Gene expression data from the COPDGene study (GSE42057) [2, 26] was collected from blood samples
obtained from 136 subjects classified as smoker controls (42) or COPD (94) and profiled on Affymetrix
Human Genome U133 Plus 2.0 microarrays. Similar to the ECLIPSE data, CEL data files from these
microarray assays were RMA-normalized using the ’affy’ package and array probes were collapsed to
Entrez-gene IDs using a custom CDF[3], yielding 18,960 genes. After removal of genes that did not
match with our motif scan, the COPDGene data contained 17,253 genes.

LGRC
Gene expression data from 581 lung tissue samples in the LGRC (GSE47460) [1] was profiled using two
array platforms: Agilent-014850 Whole Human Genome Microarray 4x44K G4112F and Agilent-028004
SurePrint G3 Human GE 8x60K arrays. LIMMA was used to background correct and normalize gene
expression across samples within each of these two platforms. Genes that were represented by more than
one probe were then removed and the expression data was merged between the two array platforms by
matching probes that represented the same gene, leaving 17,573 genes. Next, batch effect due to the
array platform was addressed by running ComBat [14]. Genes not present in our motif scan were then
removed, yielding 14,721 genes. After normalization we filtered the samples included in the LGRC data-
set by removing those that corresponded to subjects that (1) were not designated as either a COPD case
or control (mostly subjects with Interstitial Lung Disease), (2) had a diagnosis of COPD, but spirometric
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measures in the normal range, (3) had been identified as non-Caucasian, (4) had been labeled as a former
smoker, but had zero or unknown pack years, (5) had high pre-bronchodilator FEV1/FVC ratios, or (6)
had been taken as a biological replicate of another sample which was included. After removal of those
samples we were left with 164 COPD cases and 64 controls for which we had gene expression data.

LTCDNM
Gene expression data from the LTCDNM (GSE76925)[23] was collected using HumanHT-12 BeadChips.
Quality control was performed using quantile, signal-to-noise, correlation matrix, MA, and principal
component analysis (PCA) plots using R statistical software (v 3.2.0) to identify outliers and samples
with questionable or low-quality levels, distributions, or associations. This process yielded 151 samples
for analysis, including 115 subjects classified as either diagnosed with COPD (87) or as a smoker control
(28). After filtering for low variance and percentage of high detection p-values, 32,831 probes representing
20,794 genes were retained. The R package lumi [4] was then used for background correction, log2
transformation and quantile normalization. Finally, we collapsed probes to gene symbols based on
maximum gene expression and removed genes that were not matched with our motif scan, yielding
14,273 genes.

TFs included in analysis
For each study, we identified transcription factors for which we had gene expression data, removing
those transcription factors that lacked expression values. This mapping and filtering left 164 transcription
factors in ECLIPSE and COPDGene, 148 in LGRC, and 145 in LTCDNM. MONSTER was run separately
on each of these studies. Comparisons of differential transcription factor involvement across studies were
performed using the 143 transcription factors that were common to all four studies.

MONSTER: MOdeling Network State Transitions from Expres-
sion and Regulatory data
The MONSTER algorithm conceptually consists of three parts: (1) inferring a gene regulatory network,
(2) computing a transition matrix, and (3) quantifying the differential transcription factor involvement.
We review each of these steps separately below.

Inferring Gene Regulatory Networks
In 2013, we described PANDA [9], a method for estimating gene regulatory networks that uses “message
passing” [7] to integrate multiple types of genomic data. PANDA begins with a prior regulatory network
based on mapping transcription factor motifs to a reference genome and then integrates other sources of
data, such as protein-protein interaction and gene expression, to estimate a collective network. While
PANDA has proven to be very useful in a number of applications [17, 11, 10], its iterative approach to
edge weight optimization limits its utility in situations requiring a large number of network bootstrap
estimations, including applications where the sample size is large [29].

To overcome this limitation in MONSTER we developed a regression-based approach that considers
the available evidence of a gene regulatory “edge” in the network for each possible transcription factor-
gene pair. This evidence can be divided into two components, referred to here as direct and indirect.
Consider the edge between a gene that codes for a transcription factor, TFi, and another gene. The
direct evidence, di,j , can be estimated by the squared conditional correlation:

d̂i,j = cor (gi, gj | {gk : k 6= i, k ∈ TFj})2 ,

where gi is the gene which encodes TFi, gj is any other gene in the genome, and TFj is the set of
gene indices corresponding to known transcription factors with binding site in the promoter region of
gj . The correlation is conditioned on the expression of all other potential regulators of gj based on the
transcription factor motifs associated with gj .

Naturally, the use of direct evidence alone inadequately captures regulatory relationships, which
can be difficult to estimate due to systematic and technical noise as well as biological factors, such as
transient protein-protein interactions and post-translational modifications, that may mask or modify a
true regulatory effect. Therefore we want to complement our estimate of the likelihood of a regulatory
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mechanism by aggregating the information from the gene expression patterns of all suspected targets of
any given transcription factor.

PANDA achieves its superior performance in part by convergence towards an “agreement” across
multiple sources of evidence, in essence requiring that large collections of gene expression patterns must
agree with the proposed regulatory structure in order to claim an interaction. In MONSTER, we look
for agreement between the gene expression patterns of large sets of co-targeted genes. We refer to this
as “indirect evidence” and estimate this by once again using the regulatory prior. Here, we no longer
consider transcription factors to be members of the set of genes and instead consider each of the m
transcription factors to be binary classifications across the entire gene list. Class labels are determined
by the presence or absence of a sequence binding motif for a given transcription factor in the promoter
region of a gene. For each transcription factor, we use the gene expression patterns of all targeted genes
against all non-targeted genes to build a classifier. In this manner we are assigning a higher score for
edges connecting each transcription factor to genes which demonstrate an expression pattern more similar
to the suspected targets.

Based on this, the indirect evidence between the two nodes, θi,j , is estimated by the fitted probability
that gj belongs to the class of genes targeted by TFi. We use a logistic regression on the gene expression
data with outcome taken to be the existence or non-existence of a known sequence motif for TFi in the
promoter region of gj .

logit (E [Mi]) = β0,i + β1,ig
(1) + · · ·+ βN,ig

(N)

where the response Mi is a binary vector of length p indicating the of the presence of a sequence motif
for transcription factor i in the vicinity of each of the p genes. And where g(k) is a vector of length p
representing the expression of genes in sample k.

For a given transcription factor-gene pair, the fitted values for each TFi−gj pair define the “indirect”
evidence θi,j , which can be estimated by:

θ̂i,j =
eβ̂0,i+β̂1,ig

(1)
j +···+β̂N,ig

(N)
j

1 + eβ̂0,i+β̂1,ig
(1)
j +···+β̂N,ig

(N)
j

where g(k)j is the measured gene expression for sample k at gene j.
We score each gene according to the strength of indirect evidence for a regulatory response to each of

the transcription factors and combine this with the direct evidence of regulation. Combining our measures
of direct and indirect evidence presents some challenges. Though both are bounded by [0,1] their interpre-
tations are quite different. The direct evidence can be considered in terms of its conditional gene expres-
sion R2 between nodes, while the indirect evidence is interpreted as an estimated probability. Therefore,
we use a non-parametric approach to combine evidence. Specifically, the targets of each transcription
factor are ranked and combined as a weighted sum, wi,j = (1− α)

[
rank

(
d̂i,j

)]
+α

[
rank

(
θ̂i,j

)]
, where

α is a constant bounded between [0, 1]. Our choice of the weight is by default α = 0.5, corresponding to
an equal contribution of direct and indirect evidence. This parameter could be adjusted if the context
of a study involved reason to prefer one source of evidence over the other.

Computation of MONSTER’s transition matrix
The hypothesis behind MONSTER is that different phenotypes are characterized by distinct regulatory
networks and that transitions between networks are associated with large-scale changes in the regulatory
structure of the network. Essentially, transcription factors gain or lose targets and in doing so, alter
the structure of the network from one phenotypic state to another. The task of identifying meaningful
network transitions then becomes an evaluation of the relative refinement of edge weights.

Our analysis of validation data sets (shown below) indicates that the reconstructed networks are
strongly driven by the structure of the motif prior, with small changes defining differences between
phenotypes. Hence, in comparing networks between phenotypes, the problem becomes one of of under-
standing changes in edges that have relatively low signal and high noise. In other words, state transitions
are characterized by a large number of individually unreliable edge weights.

Consider two adjacency matrices, A and B, that represent two gene regulatory networks estimated
from a case-control study. Each matrix has dimensions (p×m) representing the set of p genes targeted
by m transcription factors. We seek a matrix, T, such that

B = AT + E
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where E is our error matrix, which we want to minimize. Intuitively, we may frame this as a set of m
independent regression problems, where m is the number of transcription factors and also the column
rank of A, B, T, and E. For a column in B, bi, we note that a corresponding column in T, τi, represents
the ordinary least squares solution to

E [bi] = τi1a1i + τi2a2i + · · ·+ τimami

or alternatively expressed
bi1
bi2
...

bip

 = τ1,i


a11
a21
...

ap1

+ · · ·+ τp,i


a1p
a2p
...

app

+


εi1
εi2
...
εip


where E [εij ] = 0 . This can be solved with normal equations,

τi =
(
ATA

)−1
ATbi

T = [τ1, τ2, . . . , τm]

which produces the least squares estimate. In other words, the loss function L (T) =
∑N
gene=1 ||Bgene −

AgeneT||2 is minimized.
It is easy to see how this allows for a straightforward extension via the inclusion of a penalty term.

For example, an L1 regularization[28] can be used to create an identity penalty model matrix for each
column regression such that only the kth diagonal element is 0 and all other diagonals are 1. This gives
unpenalized priority for the kth regression coefficient in the kth regression model:

Qi,j =

{
1 for i = j 6= k

0 elsewhere
,

which results in the minimization of the penalized residual sum of squares

PRSS (T·,k) =

p∑
i=1

Bi,k −
m∑
j=1

Ai,jTj,k

2

+ λ
√
T′·,kQT·,k

Although not used in the analysis presented in the main text, an implementation of this extension is
available in the R package MONSTER.

Analyzing the Transition Matrix
The derivation described above illustrates a key feature of the MONSTER method. Specifically, that the
transition matrix (T) reduces the case-control network transformation from a set of 2× p×m estimates
to a set of m × m estimates that are more easily interpreted. We can think of a column, τi, on the
matrix T as containing the linear combination of regulatory targets of TFi in A that best approximates
the regulatory targets of TFi in B. As one would expect, a large proportion of the matrix “mass” would
be on the diagonal for those transcription factors which do not change regulatory behavior between case
and control. It is therefore of interest to evaluate values off of the diagonal as indicative of a network
transition.

There are many biological processes involved in gene regulation that may differ between phenotypic
states, including RNA degradation, post-translational modification, protein-level interactions and epige-
netic alterations. These all have the ability to impact transcription factor targeting without impacting
the expression level of the transcription factor itself. Because our hypothesis is that changes in phenotype
are associated with changes in regulatory networks, we want to identify those transcription factors that
have undergone significant overall changes in behavior between states. As a measure to quantify such
changes, we define the differential Transcription Factor Involvement (dTFI),

sj =

∑m
i=1 I (i 6= j) τ2i,j∑m

i=1 τ
2
i,j

.
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Supporting Figure 1: Overview of MONSTER analysis workflow. (1) Network inference is com-
puted separately to subsets of the gene expression data including the case group, the control group
and N permutations of the case and control labels. (2) The transition matrix is estimated between the
cases and controls and each of the pairs of permuted “case” and “control” groups. (3) The transition
matrix computed between the case and control group is interpreted within the context of the N matrices
estimated for the permuted groups.
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The dTFI can be loosely interpreted as the proportion of transcription factor targeting that is gained
from or lost to other available transcription factors as the state changes. It is a statistic on the interval
[0, 1] that can be used to identify transitions which are systematic, informative, and non-arbitrary in
nature. In other words, the dTFI can capture edge weight signal for which there is an attributable
regulatory pattern based on the inferred networks.

The distribution of the dTFI statistic under the null has a mean and standard deviation that depends
to a large extent on the motif-based network prior structure. In particular, we find that both mean and
standard deviation of the dTFI are higher for transcription factors that have fewer prior regulatory tar-
gets. From a statistical perspective, transcription factors with relatively more targets are able to generate
more stable targeted expression patterns, which leads to more consistent estimates in “agreement”. From
a biological perspective, increased motif presence may indicate that transcription factors are more likely
to be involved in “housekeeping” or tissue specific processes that are unlikely to change between cases
and controls.

We address the dependence of the null distribution of the dTFI on the motif structure using the
following resampling procedure (Supporting Figure 1):

0. Gene regulatory networks are reconstructed based on a prior regulatory structure and gene ex-
pression from case and control samples and the transition matrix and the dTFI values for each
transcription factor are computed.

1. Gene expression samples are randomly assigned as case and control forming null-case and null-
control groups with sizes reflecting the true case and control groups.

2. Gene regulatory networks are reconstructed for the null-case and null-control groups with the same
prior regulatory structure.

3. The transition matrix algorithm is applied to the two null networks.

4. The dTFI is calculated for each transcription factor based on the computed null transition matrix.

5. Steps 1-4 are repeated n times.

For the analysis presented in the main text, we set n = 400. This procedure allows us to estimate
a background distribution of dTFI values based on the underlying motif prior network structure and
therefore test the significance of observed dTFI values between cases and controls.

Validation of the MONSTER Approach

MONSTER recovers network edges in in silico, Escherichia coli and Yeast
(Saccharomyces cerevisiae)
For its initial step, MONSTER uses gene expression together with a prior network structure to infer
regulatory network edges. For method testing and validation of MONSTER’s network estimates we used
four data sets of increasing biological complexity: (1) in silico, (2) Escherichia coli, and (3) Saccha-
romyces cerevisiae (yeast) expression data together with simulated motif priors derived from reference
networks and (4) yeast expression data together with a biological motif prior generated independently
of the reference. For data set (4), we used the yeast motif prior, 106 gene expression samples from
transcription factor knockout or overexpression conditions, and ChIP gold standard described in Glass
et. al.[9]. Data for the first three sources was obtained from the 2012 DREAM5 challenge data set[19].
This challenge asked contestants to infer gene networks from expression data alone, using a reference
standard for evaluation. For the purposes of validating MONSTER, we instead started with the reference
network and randomly perturbed TF-gene pairs to create the type I and type II error rates consistent
with biological yeast motif prior used in the fourth data set. Specifically, if an edge appeared in the
reference network, that edge appeared in the simulated motif data with probability 0.3; if an edge was
absent from the reference network, that edge appeared in the simulated motif data with probability 0.1.
These probabilities result in an area under the Receiver-Operator Characteristic curve (AUC-ROC) of
approximately 0.7 for prediction of the reference edges by the simulated edges.

For each of the data sets, we evaluated the accuracy of MONSTER’s network inference method using
AUC-ROC. For the DREAM5 data sets we applied MONSTER to the expression data together with
the simulated priors and used the original reference networks as our gold-standards. For the fourth
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AUC-ROC for edge weight differences vs Transition Matrix using various NI methods

NI Method Network AUC edge weight MONSTER
differences

Pearson .704 .512 (p=.61) .688 (p<.0001)
TOM .703 .51 (p=.62) .689 (p<.0001)

ARACNE .515 .523 (p=.58) .566 (p=.09)
CLR .694 .57 (p=.19) .814 (p<.0001)

Supporting Table 1: Comparison of edge weight difference to Transition Matrix in simulated
case-control gene expression. Several network inference methods were run on our in silico case-control
data. The overall network area under the curve of the receiver-operator characteristic (AUC-ROC)
was performed for each method averaged across cases and controls. The naive transcription factor-
transcription factor transitions were calculated as the difference in transcription factor-transcription
factor edge weight between cases and controls. The transition matrix transcription factor-transcription
factor transitions used the absolute transition matrix values.

data set we applied MONSTER to the expression and motif data, and used the ChIP-chip data as our
gold-standard. We found that in all four of these data sets, the accuracy of the estimated edges from
MONSTER’s network inference was superior to the accuracy of the input motif prior data (Supporting
Figure 2).

MONSTER accurately predicts transcription factor transitions in in silico
gene expression data
We next used simulated data to evaluate MONSTER’s transition matrix. To begin, we randomly gener-
ated a “true” control adjacency matrix, M0, which contained information for all possible edges between
m = 100 transcription factors and p = 10, 000 genes with “edge weights” sampled from a standard
uniform distribution. We then defined a state transition matrix, T, with diagonal elements set equal
to one and 1, 000 random off-diagonal elements (representing random pairs of transcription factors) set
equal to values sampled from a uniform random distribution between -1.0 and 1.0. These off-diagonal
elements (transcription factor pairs) ultimately represent the transitions that we seek to recover and
their corresponding values represent the magnitude of the regulatory transition. Finally, based on M0

and T we defined the “true” cases network as M1 = TM0.
Next, we generated two in silico gene expression datasets, one each for the case and control networks.

To do this, we sampled 500 times from each of two multivariate Gaussian distributions with the variance-
covariance matrix, Σ, defined as M0M

′
0 and M1M

′
1 for controls and cases, respectively. We note that we

scaled the magnitude of the diagonal elements of Σ by 4 to simulate noise in the in silico data. This value
was chosen such that the networks predicted using the in silico gene expression data had an AUC-ROC
of approximately .70 when evaluated using the “true” networks (see below).

We next used this simulated data to reconstruct networks using several commonly used network
inference methods, including the Pearson correlation (used in WGCNA) [15] [16], Topological Overlap
Measure (TOM) [25], Algorithm for the Reconstruction of Gene Regulatory Networks (ARACNE) [20],
and Context Likelihood of Relatedness (CLR) [5]. The implementation of each method was from the R
package nettools [6].

We next constructed a gold-standard for our network transitions, defined as TGS = ceil(|M|). For
each of the five network inference methods, we then evaluated the accuracy of two potential approaches
for identifying network alterations. First, we simply subtracted edge weights between the inferred cases
network and the inferred controls network and selected those edges that extended between the 100
TFs in our model (excluding those genes that were not TFs). Second, we used MONSTER to predict
the transition needed to map the control network to the case network. The results are summarized
in Supporting Table 1. For each of the network inference methods tested, we found that the transition
matrix showed substantial improvement over the edge weight difference method in identifying transitions
between transcription factors. In all cases, the edge weight difference (column 3) was not statistically
significant for predicting transitions, but when the transition matrix was used (column 4) a strong
predictive signal appeared.
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Supporting Figure 2: Receiver-Operator Characteristic curves for three DREAM 5 data sets (A) in silico,
(B) Escherichia coli, (C) Saccharomyces cerevisiae, and an (D) additional Saccharomyces cerevisiae data
set as described in Glass et. al.[9]. The prior network for each of the DREAM5 data set analyses was
derived from the validation standard, with error introduced (both type I and type II) bringing the area
under the ROC curve to ≈ 0.70. In the other Saccharomyces cerevisiae data set analysis, sequence motifs
were used as the prior and a ChIP-chip derived network was used as the validation standard. In each of
these tests, we observed a measurable improvement in performance of MONSTER’s network inference
method over the prior.
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MONSTER finds significant protein-protein interactions
There are numerous biological regulatory mechanisms that may play a role in transitions between phe-
notypic states. Of particular interest to us are those that are not readily detectable via conventional
methods for the analysis of gene expression data. For example, gene regulation involves complex pro-
cesses in which transcription factors, either singly or in multiprotein complexes, bind to DNA in the
region of a gene to activate or repress the transcriptional process. Such multi-protein interactions cre-
ate combinatorial complexity that can explain much of the variation in organism complexity which is
unexplained by gene expression alone [18].

As reported in the main text, we ran MONSTER on data from 84 smoker controls and 136 COPD
subjects in the ECLIPSE study. To test whether MONSTER could reliably detect protein-protein inter-
actions between regulatory transcription factors, we evaluated whether our estimated transitions between
case and control COPD networks in this analysis recapitulated known protein-protein interactions, as
reported in Ravasi et. al.[24] and processed in Glass et. al.[11]. This dataset contained 223 interactions
between the transcription factors we used as input of our model; of these, 39 were self-interacting and
were removed. We attempted to predict the remaining 184 interactions between transcription factors
using MONSTER.

We used the absolute value of the transition matrix and tested whether that value predicted protein-
protein interactions based on the area under the ROC curve. To assess the significance of AUC-ROC, we
also applied this evaluation to the 400 “random” transition matrices generated based on the randomized
phenotypic labels. MONSTER achieved an AUC-ROC score of .548, suggesting predictive power to
identify known PPI between transcription factors. While weak, this result exceeded all randomized
phenotype results and was significant at p < .0025. This indicates that MONSTER is able to extract a
small but significant protein interaction signal from highly obfuscated data.

Irreproducibility of network inference methods in estimating tran-
scription factor - gene edge-weights in COPD
Conceptually, MONSTER is comprised of two elements. The first infers gene regulatory networks from
transcriptional data while the second uses the networks inferred for two different phenotypes to calcu-
late the transition matrix between states. Instead of using the second part of the MONSTER approach
to understand the transition between one state and another, one could imagine instead substracting
the edge-weights predicted for two networks and using those differences to define a transition between
two phenotypic states. To test whether this is a reasonable approach we examined the reproducibility
of edge weight differences between case and control networks estimated for four COPD datasets using
MONSTER’s network reconstruction approach as well as three other widely used network inference meth-
ods: Algorithm for the Reconstruction of Gene Regulatory Networks (ARACNE), Context Likelihood
of Relatedness (CLR), and the standard Pearson correlation used in such methods as Weighted Gene
Correlation Network Analysis (WGCNA).

We used each of the four methods to separately estimate networks for cases and controls in each of
the COPD studies. We then calculated the difference between case and control edges (differential edge
weights) in each study for each method. We reasoned that if edge-differences were reflective of biologically
meaningful associations, these should be present in each study and should appear as a correlated set of
differential edge weights.

We plotted the differential edge weights for each pairwise combination of studies (Supporting Figure
3) and found that the differential edges found by ARACNE, CLR, WGCNA and MONSTER were
almost entirely study specific, meaning that edges are found in one study comparing smoker controls to
COPD patients are not found in a second study comparing the same phenotypes. Clearly, evaluation of
individual edge-weight differences is not a reproducible approach for comparing inferred networks and
stands in stark contrast to the highly reproducible set of differentially-involved set of transcription factors
that we were able to identify across all four studies (as presented in the main text).

References
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A Top significantly differentially involved transcription factors
ECLIPSE COPDGene LGRC LTCDNM

transcription factor dTFI rank FDR dTFI rank FDR dTFI rank FDR dTFI rank FDR
SP2 .0314 1 .0357 .0100 9 .6812 .0213 6 .3752 .0176 2 .7438
E2F4 .0236 2 <.0001 .0143 3 <.0001 .0160 14 .037 .0148 7 <.0001
SP1 .0230 3 .1551 .0089 18 .7721 .0179 10 .3594 .0169 4 .5516

ZNF263 .0226 4 .311 .0089 16 .3372 .0177 11 .7716 .0152 6 .927
EGR1 .0224 5 .1242 .0079 23 .7597 .0124 28 .6892 .0152 5 .5305
NRF1 .0196 6 <.0001 .0115 5 .0304 .0122 30 <.0001 .0139 11 .0558
GABPA .0185 7 <.0001 .0157 2 <.0001 .0176 12 <.0001 .0097 32 .0853
ELK1 .0177 8 <.0001 .0174 1 <.0001 .0151 17 <.0001 .0083 40 .2099
ZFX .0175 9 <.0001 .0076 24 .8366 .0103 40 .4348 .0132 16 .2739
KLF4 .0173 10 .1025 .0072 28 .8142 .0143 21 .2312 .0119 20 .5516
ESR1 .0169 11 .0357 .0106 7 .0941 .0127 27 .0888 .0176 3 <.0001
ELK4 .0168 12 <.0001 .0125 4 <.0001 .0152 16 <.0001 .0086 39 .1318

TFAP2C .0139 17 .0656 .0114 6 .0941 .0148 19 .037 .0121 19 .2099
PLAG1 .0124 21 .263 .0092 15 .4136 .0219 5 <.0001 .0146 8 .1554
FOXQ1 .0115 28 .9318 .0099 10 .7905 .0209 7 .2846 .0107 27 .927
FOSL1 .0082 57 .9175 .0061 41 .6166 .0220 4 .037 .0131 17 .3496
NFIL3 .0077 62 .2365 .0067 33 .0304 .0264 1 .4669 .0209 1 .7121
FOS .0068 73 .9175 .0057 48 .5212 .0198 9 .037 .0112 24 .5139
JUNB .0067 77 .9318 .0059 43 .6392 .0236 2 <.0001 .0146 9 .2299
RFX1 .0019 159 .3532 .0009 164 <.0001 .0233 3 <.0001 .0070 48 .3496
RFX2 .0019 158 .4041 .0012 163 .0482 .0200 8 <.0001 .0049 81 .6245

B Differential gene expression for significantly involved transcription factors.
ECLIPSE COPDGene LGRC LTCDNM

transcription factor dTFI rank LIMMA p dTFI rank LIMMA p dTFI rank LIMMA p dTFI rank LIMMA p
SP2 1 .1756 9 .6517 6 .0075 2 .0009
E2F4 2 .3913 3 .9367 14 .0878 7 .8232
SP1 3 .3634 18 .0838 10 .4242 4 .9759

ZNF263 4 .9834 16 .0028 11 .0271 6 .1859
EGR1 5 .4379 23 .8540 28 .7979 5 .0378
NRF1 6 .0966 5 .0045 30 .2974 11 .3418
GABPA 7 .4650 2 .5138 12 .3868 32 .5771
ELK1 8 .0913 1 .9010 17 .7968 40 .0005
ZFX 9 .8253 24 .5795 40 .0474 16 .1572
KLF4 10 .1915 28 .0025 21 .0526 20 .1159
ESR1 11 .9598 7 .5853 27 .7246 3 .3477
ELK4 12 .0001 4 .8057 16 .0183 39 .7314

TFAP2C 17 .2318 6 .9574 19 .5853 19 .6754
PLAG1 21 .0384 15 .0008 5 .0371 8 .9523
FOXQ1 28 .4543 10 .5314 7 .0503 27 .5340
FOSL1 57 .5850 41 .6995 4 .8708 17 .3686
NFIL3 62 .0404 33 .1191 1 .7605 1 .8650
FOS 73 .5156 48 .6668 9 .9500 24 .7891
JUNB 77 .0197 43 .9526 2 .3996 9 .6077
RFX1 159 .0361 164 .0885 3 .0175 48 .8285
RFX2 158 .0109 163 .0059 8 .0004 81 .1345

Additional Table 1: Top Transcription Factor Hits. A Combined list of transcription factors which
were among the top 10 hits (out of 166 available transcription factors) in any of the 4 studies, ordered
by the dTFI in the ECLIPSE study. For each study, columns indicate the transcription factor’s (1)
differential transcription factor Involvement, (2) dTFI Rank within list of transcription factors, (3) and
Significance of dTFI by false discovery rate. B The same list of top transcription factors evaluated
for differential gene expression analysis using LIMMA. A substantial number of differentially involved
transcription factors do not exhibit gene expression differentiation, highlighting the ability of MONSTER
to identify key features distinguishing phenotypes which are not detectable via gene expression analysis.
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Supporting Figure 3: Edge weight differences between cases and controls do not correlate
across studies. Using MONSTER and three other commonly used methods, we performed network
inference separately on cases and controls in four COPD data sets. Here, the case-control difference is
compared for each method in each data set. Most methods had very poor overall concordance in the edge
weight differences they estimated. The methods tested were A Algorithm for the Reconstruction of Gene
Regulatory Networks (ARACNE), B Context Likelihood of Relatedness (CLR), C Pearson correlation
networks, such as in Weighted Gene Correlation Network Analysis (WGCNA), and D MONSTER. No
detectable agreement between studies exist were found, regardless of network inference method or tissue
type.
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COPDGENE

Additional Figure 1: MONSTER analysis results for COPDGENE study. A Heatmap depicting
the transition matrix calculated from smoker controls to COPD cases by applying MONSTER to the
COPDGene study. For the purposes of visualization, the magnitude of the diagonal is set to zero. B
A network visualization of the strongest 100 transitions identified based on the transition matrix shown
in A. Arrows indicate a change in edges from a transcription factor in the Control network to resemble
those of a transcription factor in the COPD network. Edges are sized according to the magnitude of
the transition and nodes (transcription factors) are sized by the dTFI for that transcription factor. The
gain of targeting features is indicated by the color blue while the loss of features is indicated by red. C
The dTFI score from MONSTER (red) and the background null distribution of dTFI values (blue) as
estimated by 400 random sample permutations of the data.
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LGRC

Additional Figure 2: MONSTER analysis results for LGRC study. A Heatmap depicting the
transition matrix calculated from smoker controls to COPD cases by applying MONSTER to the LGRC
study. For the purposes of visualization, the magnitude of the diagonal is set to zero. B A network
visualization of the strongest 100 transitions identified based on the transition matrix shown in A.
Arrows indicate a change in edges from a transcription factor in the Control network to resemble those
of a transcription factor in the COPD network. Edges are sized according to the magnitude of the
transition and nodes (transcription factors) are sized by the dTFI for that transcription factor. The
gain of targeting features is indicated by the color blue while the loss of features is indicated by red. C
The dTFI score from MONSTER (red) and the background null distribution of dTFI values (blue) as
estimated by 400 random sample permutations of the data.
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LTCDNM

Additional Figure 3: MONSTER analysis results for LTCDNM study. A Heatmap depicting
the transition matrix calculated from smoker controls to COPD cases by applying MONSTER to the
LTCDNM study. For the purposes of visualization, the magnitude of the diagonal is set to zero. B A
network visualization of the strongest 100 transitions identified based on the transition matrix shown
in A. Arrows indicate a change in edges from a transcription factor in the Control network to resemble
those of a transcription factor in the COPD network. Edges are sized according to the magnitude of
the transition and nodes (transcription factors) are sized by the dTFI for that transcription factor. The
gain of targeting features is indicated by the color blue while the loss of features is indicated by red. C
The dTFI score from MONSTER (red) and the background null distribution of dTFI values (blue) as
estimated by 400 random sample permutations of the data.
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Additional Figure 4: Differentially transcription factor involvement vs differential gene ex-
pression in four studies of COPD. Plots of the differential expression of transcription factors based
on LIMMA, and their different involvement (dTF1) based on MONSTER. We observe much higher
consistency between the transcription factors highlighted using MONSTER compared to LIMMA. In
addition, we note that MONSTER commonly finds transcription factors which are differentially involved
but are expressed at similar levels across cases and controls. This demonstrates the unique potential
MONSTER has for discovery beyond standard gene expression analysis.

17


