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Replica Exchange with grand canonical Monte Carlo

In the grand canonical ensemble, the equilibrium probability density for a system composed

of N identical molecules with configuration r at a chemical potential µ, volume V , and

inverse temperature β, is given by1

π(r, N |µ, V, β) =
1

Ξ(µ, V, β)

V N

Λ3NN !
exp (βµN − βU(r)) , (S.1)
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where Ξ(µ, V, β) is the grand canonical partition function (the normalization constant),

Λ is the thermal wavelength of the molecule, and U(r) is the potential energy of the system.

In this work, we consider a super ensemble composed ofM independent replica systems with

the same volume and temperature but each with a different chemical potential, for which

the probability density for a given microstate has the form

π(r1, N1, µ1; ...; rM , NM , µM |V, β) ∝
M∏
i=1

V Ni

Λ3NiNi!
exp (βµiNi − βU(ri)) . (S.2)

We seek an unbiased Monte Carlo scheme for this expanded ensemble that allows for

chemical potentials between replicas to be swapped with the aim of enhancing the sampling

in GCMC titration simulations. In the Metropolis-Hastings algorithm, the probability to

move from state a to b, with equilibrium probabilities πa and πb respectively, is accepted

according to the following probability:

A(a→ b) = min
[
1,
πb p(b→ a)

πa p(a→ b)

]
, (S.3)

where p(a → b) is the transition probability for going from state a to state b. By

attempting moves that have transition probabilities equal to the reverse transition probability

(i.e. p(a→ b) = p(b→ a)), we need only consider the ratio of equilibrium densities (πa/πb)

to find the acceptance probability. Attempting exchanges between uniformly selected replica

pairs fulfills this requirement. If, in the super ensemble specified by equation S.2, the ith and

jth chemical potentials were swapped and all others kept constant, the ratio of equilibrium

densities can be shown, after minimal algebra, to be
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πb(ri, Ni, µj; rj, Nj, µi, ...|V, β)

πa(ri, µi, Ni; rj, Nj, µj, ...|V, β)
= exp

(
β(µi − µj)(Nj −Ni)

)
. (S.4)

The simple relation on the right-hand side is the only function that needs to be evaluated

in the acceptance test for a GCMC replica exchange swap. Notably, the right-hand side of

the above does not depend on U(r) or V as the proposal does not involve a change of

configuration or volume for any of the replicas.

Standard state binding free energies

The aim of this section is to derive an expression for the Gibbs binding free energy for N

water molecules to a subvolume of a system of interest, within which water has been sampled

with GCMC. In particular, the goal is to derive an expression that can be used with grand

canonical integration (GCI). The binding free energy is given by

∆Gbind(Ni → Nf ) = ∆Gsys(Ni → Nf )−∆Gsol(Ni → Nf ) (S.5)

where ∆Gsys(Ni → Nf ) is the Gibbs free energy to change the number of water molecules

from Ni to Nf in the system of interest and ∆Gsol(Ni → Nf ) is the Gibbs free energy to

change the number of water molecules in bulk water similarly. Although an expression for

the binding free energy of water that exploited GCI was previously used by Ross et al.,2

the expression did not evaluate standard state binding free energies. The following analysis

derives a standard state binding free energy equation for GCI.

As shown previously in S41,2 the change in free energy of the solvent is given by
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∆Gsol(Ni → Nf ) = (Nf −Ni)µsol (S.6)

where µsol is the chemical potential of bulk water. See, for instance, McQuarry,1 for

more details on the relationship between chemical potential and Gibbs free energy. A general

expression for µsol is

µsol = µ′sol + kBT ln(ρsolΛ
3), (S.7)

where µ′sol is the excess chemical potential, kBT is Boltzmann’s constant multiplied by

temperature, ρsol is the number density of bulk water, and Λ is the de Broglie thermal

wavelength of a water molecule.3

The system contribution to the binding free energy, Gsys(Ni → Nf ), will be evaluated

using the grand canonical integration (GCI) equation. The GCI equation gives the difference

in Helmholtz free energy to transfer water molecules from ideal gas to the system of interest,

which is denoted ∆Ftrans(Ni → Nf ) and is defined as

∆Ftrans(Ni → Nf ) = ∆Fsys(Ni → Nf )−∆Fideal(Ni → Nf ), (S.8)

where ∆Fideal(Ni → Nf ) is the Helmholtz free energy to change the number of molecules

in ideal gas from Ni to Nf . The above free energies refer to changing the number of molecules

in the same fixed volume, denoted Vsys. As is common, the approximation ∆Gsys(Ni →

Nf ) ≈ ∆Fsys(Ni → Nf ) will be used. This approximation is often invoked due to the small

contribution changes in pressure have on differences of Gibbs free energies under physiological

conditions.3 With this approximation and equations S.6 and S.8, we have
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∆Gbind(Ni → Nf ) = ∆Ftrans(Ni → Nf ) + ∆Fideal(Ni → Nf )− (Nf −Ni)µsol. (S.9)

Owing to the explicit inclusion of the ideal gas free energy, the above differs from the

expression for the binding free energy considered in equation 5 (and S44 in the Supplementary

Information) in reference,2 where it was implicitly assumed that Fideal(Ni → Nf ) = 0. That

assumption is not made in the following analysis.

As described previously,2 ∆Ftrans(Ni → Nf ) can be calculated by sampling water at a

range of different chemical potentials, or, equivalently, Adams values and evaluating

∆Ftrans(Ni → Nf ) = kBT

[
NfBf −NiBi + ln

(
Ni!

Nf !

)
−
∫ Bf

Bi

N(B)dB

]
, (S.10)

where Bk is the Adams value in which an average of Nk waters are present in Vsys. As

the average number of water molecules changes with the applied Adams value, N appears

as a function of B in the integral on the right-hand side.

The Helmholtz free energy for N ideal gas particles in a volume V has the analytical

expression

Fideal(N) = −kBT ln

[
1

N !

(
V

Λ3

)N
]
, (S.11)

(see, for instance1) such that

∆Fideal(Ni → Nf ) = −kBT
[
ln

(
Ni!

Nf !

)
+ (Nf −Ni) ln

(
Vsys

Λ3

)]
. (S.12)

Using the expression for µsol (equation S.7), ∆Ftrans(Ni → Nf ) (equation S.10), and
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∆Fideal(Ni → Nf ) (equation S.12), we arrive at

β∆Gbind(Ni → Nf ) = NfBf −NiBi − (Nf −Ni) [βµ′sol + ln (ρsolVsys)]−
∫ Bf

Bi

N(B)dB,

(S.13)

where β = 1/kBT has been included for notational simplicity. In contrast to the expres-

sion previously presented,2 the above expression lacks the N factorial terms, and has the

extra term ln(ρsolVsys). When the solvent is in the standard state with density ρo, the stan-

dard state volume of water is defined as V o = 1/ρosol,4 so that the standard Gibbs binding

free energy is given by

β∆Go
bind(Ni → Nf ) = NfBf −NiBi − (Nf −Ni)

[
βµ′sol + ln

(
Vsys

V o

)]
−
∫ Bf

Bi

N(B)dB.

(S.14)

Equilibrium in grand canonical Monte Carlo

This section derives the condition for thermodynamic equilibrium for water binding to the

system of interest using the above framework. When discussing thermodynamic equilibrium,

we are obliged to consider water-protein binding in the thermodynamic limit, which occurs

when N →∞ and V →∞. Although this limit must be taken by necessity, it will allow for

some simplifying approximations. The starting point for this derivation is the expression for

the Gibbs binding free energy given in equation S.9. Thermodynamic equilibrium is estab-

lished when the binding free energy for N waters is at a minimum.5 Denoting ∆Gbind(0→ N)

as ∆Gbind(N), we seek an expression that satisfies
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d∆Gbind(N)

dN
= 0 (S.15)

A useful expression shown for this purpose—disscused by Ross et al.2—is that in the

thermodynamic limit, the Helmotz free energy to transfer water N molecules from ideal gas

to the system of interest is approximately given by

∆Ftrans(N) =

∫ N

0

µ′sys(N)dN, (S.16)

where µ′sys(N) is the excess potential of the system of interest and ∆Ftrans(N) = ∆Ftrans(0→

N). (Section 2.3 of the Supplementary Information in reference2 shows that equation S.16

is indeed a large N approximation to equation S.10.) With this and equations S.9 and S.11,

the binding free energy is given by

∆Gbind(N) =

∫ N

0

µ′sys(N)dN − kBT ln

[
1

N !

(
V

Λ3

)N
]
−Nµsol. (S.17)

To evaluate equation S.15, we must differentiate the above expression, which is hindered

by the presence of the factorial term. As we are concerned with thermodynamic equilbrium,

in which the thermodynamic limit is invoked, we can use Stirling’s approximation for ln(N !):

ln(N !) ≈ N ln(N)−N, (S.18)

and whose error decreases as N increases. With the relations immediately above and

equation S.7, we have
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d∆Gbind(N)

dN
= µ′sys − µ′sol + kBT ln

(
N

V ρsol

)
(S.19)

= 0 (S.20)

Recognising N/V as the number density of the system of interest, denoted ρsys, we arrive

at

µ′sol + kBT ln(ρsol) = µ′sys + kBT ln(ρsys) (S.21)

=⇒ µ′sol + kBT ln(ρsolΛ
3) = µ′sys + kBT ln(ρsysΛ

3) (S.22)

which, by equation S.7, is equivalent to stating that the chemical potentials of water

in the system of interest and bulk solvent are equal. Previously, Ross et al. derived the

equality of the excess chemical potentials as the condition for equilibrium,2 which was due

to the omission of the standard state volume correction for binding free energies. However,

determining equilibrium via the equality of excess chemical potential will likely result in

only a small error, as large difference in the densities are required to significantly affect the

determination of equilibrium. For example, at 300 K, KBT ln(ρsys/ρsol) contributes roughly

1 kcal/mol for every factor of 6 in the density ratio.

Scytalone Dehydratase

Scytalone dehydratase (SD) in complex with two congeneric ligands was used to quantify

the level of precision that could be reached by comparing free energies calculated with GCI

with RE-GCMC and double decoupling (DD) calculations in independent simulations. For

consistency with a previous study,6 the ligands are referred to as L1 and L3, Figure S.1.

Both ligands have two putative bridging water sites, waters D and E, that have been previ-
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ously identified6 and are shown in Figure S.2.

Figure S.1: Structure of L1 and L3, both of which bind to SD

Figure S.2: Ligand L3 bound to SD, with water D and E present. The active site of SD is
shown with a transparent grey surface. The incrementally increasing GCMC boxes for each
calculation are shown; red - water D, green - water E and blue for the box encompassing
both waters. Each box repeatedly increased in 1 Å increments. The increasing volume of
the GCMC region covers protein, not accessible to water.

To compare directly the binding free energies calculated with GCI with DD free energies,

GCMC simulations with a box encompassing each individual water site were performed for

both ligands, and with a box covering both hydration sites simultaneously. To test for any

GCMC region size dependence of the new GCI equation (equation S.10), each GCMC simu-

lation was repeated with different box sizes. Each GCMC box was extended along one axis
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in 1 Å increments over a 5 Å range into regions of high protein density (details available

in Table S.1). As the larger volumes do not increase the number of accessible hydration

sites, the free energies calculated with GCI should be the same for each set of GCMC boxes.

Simulations were repeated four times for each GCMC box. A diagram of L3 bound to SD,

with the water positions D and E as well as the various GCMC boxes used is shown in Figure

S.2.

Methodology

The protein and ligand structures were generated from PDB 3STD, where a structurally

similar ligand is bound to the protein. To improve the precision of the calculations as much

as possible, the protein and ligand configurations of the SD complexes were not sampled

and no surrounding bulk water solvent was added to the system. This is therefore a model

system. Only the water molecules shown in Figure S.2 were sampled for these simulations.

As the protein is not sampled, the protein structure was chosen from a fully sampled GCMC

simulation with L1 where both water A and B are bound. A protein scoop of 15 Å was

chosen to be consistent with other literature simulations of this protein.7

The protocols for GCMC and decoupling simulations are the same as the BPTI system,

however with the reduced system sampling described above. A replica exchange frequency

of every 100,000 moves was chosen. For the L3 complex, water E has a lower binding free

energy than water D, so water E was included for the GCMC simulations of water D. For the

L1 complex, the individual-box GCMC simulations were repeated both with and without

the other water molecule.
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Results

The reduced variance of the RE-GCMC simulations facilitates a precise comparison between

the binding free energies calculated with GCI and free energies calculated in separate, al-

chemical DD simulations. The corrections required for DD method have been included, and

are the same as those used fot BPTI in the main text. The new GCI equation (Equation

S.14) contains two modifications to the original equation: a new volume correction term,

and the removal of the factorial dependence on the number of molecules. As the latter term

would have zero effect on the free energy calculated for one water molecule, free energies

calculated for single waters will isolate the effect of the volume correction. Therefore, simu-

lations with SD were also used to verify whether the new standard state binding free energy

equation (Equation S.14) was not erroneously dependent of the volume of the GCMC box.

Figure S.4 shows the binding free energy for the SD water molecules D and E calcu-

lated with RE-GCMC and the standard state GCI binding free energy equation (equation

S.14), the original GCI binding free energy equation,2 and via DD. As can be seen, the

corrected standard state GCI binding free energy equation produces binding free energies

that are within 0.05 kcal mol−1 of the binding free energies computed via alchemical double

decoupling. In contrast, the previous, non-standard state formulation of the GCI binding

free energy produces energies that are distinct from the decoupling results, with a small but

statistically significant volume dependence.

The binding free energy of each two water network has also been calculated in a single

step, using a GCMC volume region covering both sites (see Figure S.2). All GCMC binding

free energies in Figure S.4 are calculated with the corrected GCI equation, and the values

are within error of alchemical DD irrespective of which decoupling pathway is chosen.
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Water D, ligand 1 Water E, ligand 1

Water D, ligand 3 Water E, ligand 3

Figure S.3: Binding free energy of waters in SD. Dotted line (purple) - GCMC results
without volume correction, dashed line (green) - GCMC result with volume correction, solid
line (blue) - double decoupling result. For each, the shaded region shows the 95% confidence
interval calculated from four repeats.
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Figure S.4: Thermodynamic cycles of the Scytalone Dehydratase system with L1 and L3.
Blue arrows - restraint double decoupling, green arrows - single water GCMC and orange
arrows - two water GCMC. Standard errors shown in parenthesis from four repeats. Grey
waters represent those removed from the system. Free energies are in kcal mol−1
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Bovine pancreatic trypsin inhibitor

Additional methodological details

GCMC subvolumes

Table S.1: Location and dimensions of GCMC boxes. The origin of the box is the co-
ordinates of the lowest corner of the box and dimension shows the length in Å of the box in
each dimension. Where a range is provided for the dimension, a series of GCMC calculations
have been performed with each box length at 1 Å intervals along the range.

box origin box length
system x y z x y z
one D 24.141 11.225 32.916 4 4 - 8 4
one E 27.913 11.260 28.713 4 4 - 8 4
one both 26.000 10.500 30.000 5 5 8 - 12
three D 24.141 11.225 34.000 4 4 - 8 4
three E 27.9135 11.260 28.713 4 4 -8 4
three both 26.000 10.500 30.000 5 4 8 - 12

Double decoupling restraints

For every water, a restraint of strength k = 2 kcal mol−1Å −2 was used. This corresponds

to a Vsim of 2.54 Å3 (Equation 9), and therefore a correction of -1.46 kcal mol−1 for the gas

phase restraint (Equation 8). The method to calculate the bound phase restraint correction

is outlined in the main text.
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Table S.2: Details of the center of the restraint applied to the oxygen atom of each decoupled
water molecule. Calculation of the gas phase restraint is explained above. Calculation of the
bound phase restraint was performed using a short simulation, explained in the main text,
and repeated four times.

restraint origin
system x y z ∆Ggas

rest ∆Gbound
rest

A 31.705 7.133 1.254 -1.46 +0.33
B 32.184 7.273 4.121 -1.46 +0.10
C 32.310 5.881 0.041 -1.46 +0.64
one D 26.585 13.658 36.700 -1.46 +0.14
one E 29.913 13.260 30.713 -1.46 +0.21
three D 27.520 13.723 36.826 -1.46 +0.10
three E 30.119 13.546 30.417 -1.46 +0.06

Additional results

Replica exchange improves the consistency of titration data

To quantify the consistency of the BPTI titration data with and without replica exchange,

the root-mean squared variance of the water occupancy at each B value, averaged over all B

values and repeats for a given replica exchange frequency was calculated, excluding the first

200,000 MC steps of each repeat as equilibration. Lower values of this consistency measure

indicate which set of repeats have more reliable titration data. Error bars were generated for

this measure by sampling with replacement B values for each repeat. Figure S.5 shows that

RE-GCMC produces simulations that are significantly more consistent than without replica

exchange, irrespective of the frequency with which neighboring replicas were exchanged.
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Figure S.5: The root-mean squared variance of the water occupancy at each B value, aver-
aged over all B values and repeats for each replica exchange frequency for BPTI. The box
plots show the minimum, first quartile, median, third quartile, and maximum of the data.

The median centered average water occupancy at each B value for the RE and all of

the non-RE data was compared using the Kolmogorov-Smirnov test, which found the distri-

bution of the values to be significantly different with a p-value of 1.3%. The distributions

between the data for different RE frequencies were found to have p-values >5%, suggesting

the water occupancies at each B value are drawn from the same distribution, irrespective of

the RE frequency.

Acceptance rates and replica exchange sampling

Table S.3: Percentage acceptance rates for Adams parameter (B) exchange moves for each
replica exchange (RE) frequency.

RE Frequency B exchange (%)
100,000 89.9
200,000 89.7
500,000 89.8
1,000,000 89.4

The acceptance rates of the water insertion and deletion moves are 0.002% and 0.003%

respectively, on average over all B values and for all RE frequencies.
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100,000 200,000

500,000 1,000,000

Figure S.6: Pathway of replicas through B space over example titration simulations at various
exchange frequencies. Only seven replicas out of twenty-four, which were initially equally
spaced in B before equilibration, have been shown for clarity. The water occupancy for B
values below -24.8 was 0 for all repeats.
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